1
|
Chemicobiological effects of herbicide MCPA-Na on plasma proteins. Mol Biol Rep 2011; 39:2745-51. [DOI: 10.1007/s11033-011-1030-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
|
2
|
Johnson CH, Karlsson E, Sarda S, Iddon L, Iqbal M, Meng X, Harding JR, Stachulski AV, Nicholson JK, Wilson ID, Lindon JC. Integrated HPLC-MS and (1)H-NMR spectroscopic studies on acyl migration reaction kinetics of model drug ester glucuronides. Xenobiotica 2010; 40:9-23. [PMID: 19919325 DOI: 10.3109/00498250903348720] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acyl glucuronides (AGs) are common, chemically reactive metabolites of acidic xenobiotics. Concerns about the potential of this class of conjugate to cause toxicity in man require efficient methods for the determination of reactivity, and this is commonly done by measuring transacylation kinetics. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy were applied to the kinetic analysis of AG isomerization and hydrolysis for the 1-beta-O-AGs of ibufenac, (R)- and (S)-ibuprofen, and an alpha,alpha-dimethylated ibuprofen analogue. Each AG was incubated in either aqueous buffer at pH 7.4 or human plasma at 37 degrees C. Aliquots of these samples, taken throughout the reaction time course, were analysed by HPLC-MS and (1)H-NMR spectroscopy and the results compared. For identification of the AGs incubated in pH 7.4 buffer and for analysis of kinetic rates, (1)H-NMR spectroscopy generally gave the most complete set of data, but for human plasma the use of (1)H-NMR spectroscopy was impractical and HPLC-MS was more suitable. HPLC-MS was more sensitive than (1)H-NMR spectroscopy, but the lack of suitable stable-isotope labelled internal standards, together with differences in response between glucuronides and aglycones, made quantification problematic. Using HPLC-MS a specific 1-beta-O-AG-related ion at m/z 193 (the glucuronate fragment) was noted enabling selective determination of these isomers. In buffer, transacylation reactions predominated, with relatively little hydrolysis to the free aglycone observed. In human plasma incubations the observed rates of reaction were much faster than for buffer, and hydrolysis to the free aglycone was the major route. These results illustrate the strengths and weaknesses of each analytical approach for this class of analyte.
Collapse
Affiliation(s)
- C H Johnson
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Skordi E, Wilson ID, Lindon JC, Nicholson JK. Kinetic studies on the intramolecular acyl migration of β-1-O-acyl glucuronides: Application to the glucuronides of (R)- and (S)-ketoprofen, (R)- and (S)-hydroxy-ketoprofen metabolites, and tolmetin by1H-NMR spectroscopy. Xenobiotica 2008; 35:715-25. [PMID: 16316930 DOI: 10.1080/00498250500230750] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Conjugation of carboxylate drugs with D-glucuronic acid is of considerable interest because of the inherent reactivity of the resulting beta-1-O-acyl glucuronides. These conjugates can degrade by spontaneous hydrolysis and internal acyl migration. beta-1-O-acyl glucuronides and their acyl migration products can also react covalently with macromolecules with potential toxicological consequences. The spontaneous degradation of the diastereoisomeric beta-1-O-acyl glucuronide metabolites of the racemic drug ketoprofen, two of its ring-hydroxylated metabolites and of tolmetin beta-1-O-acyl glucuronide was investigated by (1)H-NMR spectroscopy in buffer solutions, at pH 7.4 and 37 degrees C. A plot of the logarithm of the peak integrals against time revealed first-order kinetics. Degradation rates and half-lives were calculated for each glucuronide using first-order reaction equations. Tolmetin glucuronide had the fastest degradation rate, whilst all of the ketoprofen-related glucuronides had similar degradation rates. The degradation of the diastereoisomeric glucuronides was stereoselective, with the rate for the (S)-isomer always slower compared with the (R)-isomer by approximately a factor of 2.
Collapse
Affiliation(s)
- E Skordi
- Biological Chemistry, Imperial College London, South Kensington, London, UK
| | | | | | | |
Collapse
|
4
|
Li C, Olurinde MO, Hodges LM, Grillo MP, Benet LZ. Covalent binding of 2-phenylpropionyl-S-acyl-CoA thioester to tissue proteins in vitro. Drug Metab Dispos 2003; 31:727-30. [PMID: 12756204 DOI: 10.1124/dmd.31.6.727] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we investigated the possible involvement of acyl-CoA, reactive intermediary metabolites of 2-arylpropionic acids (profens), in protein adduct formation in rat liver homogenate and in human serum albumin (HSA) in buffer. (RS)-[1-14C]-2-Phenylpropionic acid (14C-2-PPA, 1 mM) was incubated with rat liver homogenate (1.5 mg/ml) in the presence of cofactors of acyl-CoA formation (Mg2+, ATP, and CoA). Aliquots of the incubation mixture were analyzed for covalent binding and acyl-CoA formation over a 3-h period. High-performance liquid chromatographic analysis of the products from such incubations showed the presence of 2-phenylpropionyl-S-acyl-CoA (2-PPA-CoA), which was confirmed by coelution with authentic 2-PPA-CoA, as well as by mass spectrometry. In the same incubations, 2-PPA was shown to bind covalently to hepatic proteins in a time- and ATP-dependent fashion. Inhibition of 2-PPA-CoA formation by acyl-CoA synthetase inhibitors, such as palmitic acid, lauric acid, octanoic acid, and ibuprofen, markedly decreased the extent of covalent binding of 2-PPA to hepatic proteins. Results from these in vitro studies strongly suggest that acyl-CoA thioester derivatives are chemically reactive and are able to bind covalently to tissue proteins in vitro, and, therefore, may contribute significantly to covalent adduct formation of profen drugs in vivo.
Collapse
Affiliation(s)
- Chunze Li
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA 94143-0446, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences.
Collapse
Affiliation(s)
- Mark J Bailey
- Department of Medicine, Centre for Studies in Drug Disposition, The University of Queensland at Royal Brisbane Hospital, Queensland 4029, Australia
| | | |
Collapse
|
6
|
Shipkova M, Armstrong VW, Oellerich M, Wieland E. Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther Drug Monit 2003; 25:1-16. [PMID: 12548138 DOI: 10.1097/00007691-200302000-00001] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although glucuronidation is generally considered a detoxification route of drug metabolism, the chemical reactivity of acyl glucuronides has been linked with the toxic properties of drugs that contain carboxylic acid moieties. It is now well documented that such metabolites can reach appreciable concentrations in blood. Furthermore, they are labile, undergo hydrolysis and pH-dependent intramolecular acyl migration to isomeric conjugates of glucuronic acid, and may react irreversibly with plasma proteins, tissue proteins, and with nucleic acids. This stable binding causes chemical alterations that are thought to contribute to drug toxicity either through changes in the functional properties of the modified molecules or through antigen formation with subsequent hypersensitivity and other immune reactions. Whereas in vitro data on the toxicity of acyl glucuronides have steadily accumulated, direct evidence for their toxicity in vivo is scarce. Acyl glucuronides display limited stability, which is dependent on pH, temperature, nature of the aglycon, and so on. Therefore, careful sample collection, handling, and storage procedures are critical to ensure generation of reliable pharmacologic and toxicologic data during clinical studies. Acyl glucuronides can be directly quantified in biologic specimens using chromatographic procedures. Their adducts with plasma or cell proteins can be determined after electrophoretic separation, followed by blotting. ELISA techniques have been used to assess the presence of antibodies against acyl glucuronide-protein adducts. This review summarizes the most recent evidence concerning biologic and toxicologic effects of acyl glucuronide metabolites of various drugs and discusses their relevance for drug monitoring. A critical evaluation of the available methodology is included.
Collapse
Affiliation(s)
- Maria Shipkova
- Department of Clinical Chemistry, Georg-August-University, Göttingen, Germany.
| | | | | | | |
Collapse
|
7
|
Bolze S, Bromet N, Gay-Feutry C, Massiere F, Boulieu R, Hulot T. Development of an in vitro screening model for the biosynthesis of acyl glucuronide metabolites and the assessment of their reactivity toward human serum albumin. Drug Metab Dispos 2002; 30:404-13. [PMID: 11901094 DOI: 10.1124/dmd.30.4.404] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An in vitro screening model was developed to determine the reactivity of acyl glucuronide metabolites from carboxylic drugs. This assay is composed of two phases. The first is a phase of biosynthesis of acyl glucuronides by human liver microsomes (HLM). The second, during which acyl glucuronides are incubated with human serum albumin (HSA), consists of assessing the reactivity of acyl glucuronides toward HSA. Both phases are performed successively in the same experiment. This model was validated using eight carboxylic drugs that were well known for their reactivity, their extent of covalent binding, and their immunological potential. These products were representative of the scale of reactivity. Each compound was incubated with HLM at 400 microM and metabolized into acyl glucuronide to different extents, ranging from 5.6% (tolmetin) to 89.4% (diclofenac). The first-order aglycone appearance rate constant and the extent of covalent binding to proteins were assayed during the incubation of acyl glucuronides formed with HSA for 24 h. Extensive isomerization phenomenon was observed for each acyl glucuronide between the two phases. An excellent correlation was observed (r(2), 0.94) between the extent of drug covalent binding to albumin and the aglycone appearance constant weighted by the percentage of isomerization. This correlation represents an in vitro reactivity scale, which will be helpful in drug discovery support programs to predict the covalent binding potential of new chemical entities. This screening model will also allow the comparison of acyl glucuronide reactivity for related structure compounds.
Collapse
Affiliation(s)
- Sebastien Bolze
- Department of Pharmacokinetics and Metabolism, Lipha S.A., Centre de Recherche Lyon-Lacassagne, Lyon, France.
| | | | | | | | | | | |
Collapse
|
8
|
Georges H, Presle N, Buronfosse T, Fournel-Gigleux S, Netter P, Magdalou J, Lapicque F. In vitro stereoselective degradation of carprofen glucuronide by human serum albumin. Characterization of sites and reactive amino acids. Chirality 2000; 12:53-62. [PMID: 10637410 DOI: 10.1002/(sici)1520-636x(2000)12:2<53::aid-chir1>3.0.co;2-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acyl glucuronides formed from carboxylic acids can undergo hydrolysis, acyl migration, and covalent binding to proteins. In buffers at physiological pH, the degradation of acylglucuronide of a chiral NSAID, carprofen, consisted mainly of acyl migration. Acidic pH reduced hydrolysis and acyl migration, thus stabilizing the carprofen acyl glucuronides. Addition of human serum albumin (HSA) led to an increased hydrolysis of the conjugates of both enantiomers. This protein protected R-carprofen glucuronide from migration and therefore improved its overall stability. Hydrolysis was stereoselective in favor of the S conjugate. The protein domains and the amino acid residues likely to be responsible for the hydrolytic activity of HSA were deduced from the results of various investigations: competition with probes specific of binding sites, effects of pH and of chemical modifications of albumin. Dansylsarcosine (DS), a specific ligand of site II of HSA, impaired the hydrolysis, whereas dansylamide (DNSA) and digoxin, which are specific ligands of sites I and III, respectively, had no effect. The extent of hydrolysis by HSA strongly increased with pH, indicating the participation of basic amino acids in this process. The results obtained with chemically modified HSA suggest the major involvement of Tyr and Lys residues in the hydrolysis of glucuronide of S-carprofen, and of other Lys residues for that of its diastereoisomer.
Collapse
Affiliation(s)
- H Georges
- UMR 7561 CNRS-UHP Nancy 1, Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Iwaki M, Ogiso T, Inagawa S, Kakehi K. In vitro regioselective stability of beta-1-O- and 2-O-acyl glucuronides of naproxen and their covalent binding to human serum albumin. J Pharm Sci 1999; 88:52-7. [PMID: 9874702 DOI: 10.1021/js9802704] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
beta-1-O- (NAG) and 2-O-glucuronides (2-isomer) of (S)-naproxen (NA) were prepared to determine which positional isomer(s) of the acyl glucuronide of NA is responsible for forming covalent adducts with human serum albumin (HSA). Their comparative stability and covalent binding adduct formation with HSA were investigated at pH 7.4 and at 37 degreesC. NA and its acyl glucuronides were simultaneously determined by HPLC. Three positional isomers were formed successively after incubation of NAG in the buffer only. However, when NAG was incubated with HSA (30 mg/mL), isomers other than the 2-isomer were formed in little or negligible quantities. In HSA solution, NAG (kd = 2.08 +/- 0.08 h-1) was four times less stable than 2-isomer (kd = 0.51 +/- 0.02 h-1). NAG was degraded by hydrolysis (khyd = 1.01 +/- 0.10 h-1) and isomerization (kiso = 1.07 +/- 0.07 h-1) to the same extent; however, hydrolysis was predominant for the 2-isomer (kd = 0.51 +/- 0.02 h-1). The incubation of both NAG and 2-isomer with HSA led to the formation of a covalent adduct; however, the adduct formation from the 2-isomer proceeded more slowly than that from NAG. The present results suggest that the covalent binding of NA to HSA via its acyl glucuronides proceeds through both transacylation (direct nucleophilic displacement) and glycation mechanisms; NAG rapidly forms an adduct that may be unstable, and the protein adduct from the 2-O-acyl glucuronide is as important for the covalent binding as those from the 1-O-acyl glucuronides.
Collapse
Affiliation(s)
- M Iwaki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502,
| | | | | | | |
Collapse
|
10
|
King AR, Dickinson RG. The utility of the bile-exteriorized rat as a source of reactive acyl glucuronides: studies with zomepirac. J Pharmacol Toxicol Methods 1996; 36:131-6. [PMID: 8959578 DOI: 10.1016/s1056-8719(96)00106-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acyl glucuronide conjugates of acidic drugs are chemically unstable metabolites, able to undergo a number of reactions including covalent binding interactions with proteins. The question of whether any toxicological or immunological responses result from such covalent modification of native proteins in vivo is topical. Study of acyl glucuronide reactivity thus requires a convenient source of these metabolites. The utility of the bile-exteriorized rat for this purpose is highlighted herein using the formerly marketed nonsteroidal antiinflammatory agent zomepirac. Zomepirac was injected i.v. at 60 mg/kg four times into bile-exteriorized rats at 6-h intervals. The 24-h bile samples contained ca. 24% of zomepirac doses as zomepirac acyl glucuronide (ZAG). Purification was achieved by washing of the acidified bile with etherhexane, extraction into ethyl acetate, semipreparative HPLC, and crystallization. Overall recovery through the purification procedure was ca. 50%. Identity as ZAG was confirmed by mass spectrometry. The approach takes advantage of the robust glucuronidation capacity of the rat, especially at higher drug doses, and of its ability to preferentially excrete hepatically formed drug glucuronides into bile rather than into urine via blood. Prior to this work, ZAG was presumed to be only a minor metabolite of zomepirac in rats, based on early urinary recovery studies. Thus, measurement of urinary acyl glucuronide conjugates in the rat may severely underestimate their true formation in this species.
Collapse
Affiliation(s)
- A R King
- Department of Medicine, University of Queensland, Royal Brisbane Hospital, Australia
| | | |
Collapse
|
11
|
Castillo M, Lam YW, Dooley MA, Stahl E, Smith PC. Disposition and covalent binding of ibuprofen and its acyl glucuronide in the elderly. Clin Pharmacol Ther 1995; 57:636-44. [PMID: 7781263 DOI: 10.1016/0009-9236(95)90226-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ibuprofen is an over-the-counter nonsteroidal anti-inflammatory drug with a low incidence of severe adverse reactions. It is metabolized by oxidation to carboxyibuprofen and hydroxyibuprofen and by conjugation to an acyl glucuronide. In vitro studies have indicated that ibuprofen glucuronide is labile and reactive, forming covalent adducts with proteins. To verify the formation of ibuprofen-protein adducts in vivo, the pharmacokinetics of ibuprofen glucuronide and its covalent binding to plasma proteins were studied in five elderly patients who received long-term administration of oral doses of ibuprofen. Plasma levels of ibuprofen glucuronide were low relative to those of ibuprofen; the ratio of area under the plasma concentration versus time curve for the glucuronide relative to the parent drug was only 4%. Covalent binding of ibuprofen to plasma protein was observed in all patients, correlating well with the area under the plasma concentration versus time curve of ibuprofen glucuronide (r = 0.966). Compared with reports for other nonsteroidal anti-inflammatory drugs that form acyl glucuronides, plasma levels of ibuprofen-protein adduct are low during long-term administration. The observed lower reactivity in vivo is probably attributable to the greater stability of ibuprofen glucuronide relative to other acyl glucuronides.
Collapse
Affiliation(s)
- M Castillo
- Department of Medicine, University of North Carolina at Chapel Hill 27599-7360, USA
| | | | | | | | | |
Collapse
|
12
|
Dubois N, Lapicque F, Magdalou J, Abiteboul M, Netter P. Stereoselective binding of the glucuronide of ketoprofen enantiomers to human serum albumin. Biochem Pharmacol 1994; 48:1693-9. [PMID: 7980637 DOI: 10.1016/0006-2952(94)90453-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Since acyl glucuronides are known to undergo deconjugation, especially in the presence of human serum albumin (HSA), only a few reports have described their reversible binding to plasma proteins. The aim of this study was to investigate the reversible binding of R and S ketoprofen glucuronides to HSA by a rapid technique, such as ultraviolet circular dichroism. Binding of R ketoprofen glucuronide only induced an extrinsic Cotton effect at 340 nm. Scatchard plot analysis revealed that R ketoprofen and its glucuronide are bound to one site of albumin with an association constant of 28.1 x 10(4) and 6.1 x 10(4) M-1, respectively. Modification of one tyrosine residue by diisopropylfluorophosphate prevented the access of ligands to sites I and II of albumin, and also fully inhibited the binding of R ketoprofen and that of its conjugate. Displacement experiments with specific probes of albumin binding sites suggested that R ketoprofen and the glucuronide are bound to site II rather than site I. However, R ketoprofen was not displaced by its conjugate. S ketoprofen glucuronide is also bound to HSA, since it decreased the binding of the antipode conjugate. However, the binding of this metabolite to albumin did not induce an extrinsic Cotton effect large enough to determine the binding constants. D-Glucuronic acid did not bind to sites I or II of albumin. This moiety is likely responsible for the lower affinity of HSA for the R ketoprofen glucuronide when compared to that for R ketoprofen, due to the hydrophilicity and/or the bulkiness of this group.
Collapse
Affiliation(s)
- N Dubois
- Laboratoire de Pharmacologie, URA CNRS 1288, Faculté de Médecine, Nancy, France
| | | | | | | | | |
Collapse
|
13
|
Ojingwa JC, Spahn-Langguth H, Benet LZ. Irreversible binding of tolmetin to macromolecules via its glucuronide: binding to blood constituents, tissue homogenates and subcellular fractions in vitro. Xenobiotica 1994; 24:495-506. [PMID: 7975715 DOI: 10.3109/00498259409043252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. The degradation of tolmetin glucuronide (TG) in biological fluids and tissue homogenates appears to follow first-order kinetics and is quite rapid in plasma. TG degradation was minimized upon the addition of phenylmethylsulphonyl fluoride (PMSF) and 1,4-saccharolactone, suggesting that the majority of the degradation may be enzymatic, rather than chemical hydrolysis. 2. Irreversible binding via TG was detected in all tissue preparations examined. Upon addition of an inhibitor of esterases (PMSF) to human serum albumin (HSA) and plasma, binding was extensive (2.5%) and the extent of binding was both time- and pH-dependent. Similar extents of binding were obtained with most tissue homogenates, except for spleen and intestine which exhibited much lower binding. 3. Incubation of TG with microsomal protein from sheep and rat yielded no significant differences. Incubations of tolmetin (T) and TG with microsomes, as well as tissue homogenates, indicates that irreversible binding occurs only in the presence of TG. 4. Irreversible binding occurred in all of the blood constituents, the highest extent with haemolyzed erythrocytes. The extent of binding was 15 times higher in disrupted versus intact red blood cells, suggesting a correlation between the extent of binding and the overall exposure of TG to the macromolecules to which it may bind irreversibly.
Collapse
Affiliation(s)
- J C Ojingwa
- Department of Pharmacy, University of California, San Francisco 94143-0446
| | | | | |
Collapse
|
14
|
Williams AM, Dickinson RG. Studies on the reactivity of acyl glucuronides--VI. Modulation of reversible and covalent interaction of diflunisal acyl glucuronide and its isomers with human plasma protein in vitro. Biochem Pharmacol 1994; 47:457-67. [PMID: 8117313 DOI: 10.1016/0006-2952(94)90176-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acyl glucuronide conjugates are chemically reactive metabolites which can undergo hydrolysis, rearrangement (isomerization via acyl migration) and covalent binding reactions with protein. The present study was undertaken to identify factors modulating the reactivity of diflunisal acyl glucuronide (DAG) with human serum albumin (HSA) in vitro, by comprehensively evaluating the interplay of the three pathways above when DAG and a mixture of its 2-, 3- and 4-isomers (iso-DAG) were incubated with protein. Buffer, plasma, fraction V HSA, fatty acid-free HSA, globulin-free HSA and fatty acid- and globulin-free HSA were investigated at pH 7.4 and 37 degrees, each in the absence and presence of warfarin, diazepam and diflunisal (DF) as reversible binding competitors. DAG and iso-DAG were highly reversibly bound (ca. 98-99.5%) in plasma and HSA solutions. The binding was primarily at the benzodiazepine site, since displacement occurred in the presence of diazepam and fatty acids but not warfarin. DAG degradation, via rearrangement, hydrolysis and covalent adduct formation (in that order of quantitative importance), was retarded in plasma and HSA solutions compared to buffer. The protective effect of protein was afforded by the high reversible binding to the (non-catalytic) benzodiazepine site. The warfarin site appeared to be catalytic for DAG hydrolysis, whereas rearrangement appeared to be hydroxide ion-catalysed only. In contrast to DAG, iso-DAG degradation was greatly accelerated in the presence of protein, through both covalent binding and catalysis of hydrolysis. Covalent binding via DAG was increased in the presence of warfarin but decreased in the presence of diazepam, DF and fatty acids. The opposite effects were found for covalent binding via iso-DAG. The data suggest that covalent binding of DF to HSA via DAG and iso-DAG occurs by different mechanisms (presumably transacylation and glycation, respectively) at different sites (benzodiazepine and warfarin, respectively) whereas reversible binding occurs primarily at the same site (benzodiazepine).
Collapse
Affiliation(s)
- A M Williams
- Department of Medicine, University of Queensland, Royal Brisbane Hospital, Australia
| | | |
Collapse
|
15
|
Ojingwa JC, Spahn-Langguth H, Benet LZ. Reversible binding of tolmetin, zomepirac, and their glucuronide conjugates to human serum albumin and plasma. JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS 1994; 22:19-40. [PMID: 8027947 DOI: 10.1007/bf02353408] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acyl glucuronides of drugs and bilirubin have been shown in the past decade to be reactive metabolites undergoing acyl migration and irreversible binding. The latter reaction has been hypothesized to be facilitated by or to proceed through the formation of a reversible complex. Furthermore, it has been suggested that the decreased binding seen in patients with compromised excretory function may be due to competition by elevated plasma concentrations of the glucuronides. In these reversible binding studies, we characterized the extent and the "site" of binding of tolmetin, zomepirac, their glucuronides and isomeric conjugates. We also examined the displacement between the parent drugs and their glucuronide conjugates using a rapid ultrafiltration method. Tolmetin exhibited three classes of binding sites with a primary association constant of 1.7 x 10(6) M-1 (Kd1 = 0.60 microM). The primary association constant of zomepirac (1.16 x 10(6) M-1, Kd1 = 0.86 microM) is similar to that of tolmetin. The beta 1 and alpha/beta 3 glucuronides of both compounds bind to a lesser extent than their parent aglycones. The isomeric glucuronide conjugates of both compounds showed much stronger binding than the beta/1 conjugates. Of the four glucuronides investigated, tolmetin glucuronide-alpha/beta 3 isomer was bound by fatty acid free human serum albumin with the highest affinity (4.6 x 10(5) M-1, Kd = 2.22 microM). Protein binding of the parent drugs and conjugates were decreased significantly at pH 5.0. In displacement studies, except for salicylate and acetylsalicylate, drugs known to bind to Sites I and II as well as the digitoxin and tamoxifen binding sites had little inhibitory effect on the binding of tolmetin, zomepirac, and their glucuronide conjugates.
Collapse
Affiliation(s)
- J C Ojingwa
- Department of Pharmacy, University of California, San Francisco 94143-0446
| | | | | |
Collapse
|
16
|
Zia-Amirhosseini P, Spahn-Langguth H, Benet LZ. Bioactivation by glucuronide-conjugate formation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 27:385-97. [PMID: 8068561 DOI: 10.1016/s1054-3589(08)61040-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Affiliation(s)
- H Cheng
- Department of Drug Metabolism, Merck Research Laboratories, West Point, PA 19486
| | | |
Collapse
|
18
|
Grubb N, Weil A, Caldwell J. Studies on the in vitro reactivity of clofibryl and fenofibryl glucuronides. Evidence for protein binding via a Schiff's base mechanism. Biochem Pharmacol 1993; 46:357-64. [PMID: 8347161 DOI: 10.1016/0006-2952(93)90510-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Clofibryl and fenofibryl acyl (ester) glucuronides (CAG and FAG) are major metabolites in humans of the hypolipidaemic drugs clofibrate and fenofibrate, respectively. We have investigated three inter-related aspects of the reactivity of CAG and FAG in human serum albumin (HSA) solution, human plasma and in buffer at pH 7.0: namely (a) rearrangement via acyl migration to glucuronic acid esters of clofibric acid (CA) and fenofibric acid (FA), (b) hydrolysis of the parent glucuronide and rearrangement products to yield CA and FA and (c) the formation of covalent adducts with albumin and plasma protein. CAG was more reactive than FAG in all media, especially the protein solutions. The reactivity of both glucuronides was accelerated in protein solution compared with buffer and this was more marked in plasma than in HSA solution. The predominant reaction during the initial stages of the incubation was formation of isomeric rearrangement products. In the protein solutions, CA and FA were the major reaction products after 24 hr, compared to the rearranged isomers in buffer. Protein binding of 14C to HSA was markedly higher after incubation of CAG and FAG labelled on the glucuronyl moiety compared with the label on the aglycone. This is consistent with the covalent binding of CAG and FAG to protein proceeding via the formation of a Schiff's base rather than by transacylation.
Collapse
Affiliation(s)
- N Grubb
- Department of Pharmacology and Toxicology, St. Mary's Hospital Medical School, Imperial College of Science, Technology and Medicine, London, U.K
| | | | | |
Collapse
|
19
|
Ding A, Ojingwa JC, McDonagh AF, Burlingame AL, Benet LZ. Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc Natl Acad Sci U S A 1993; 90:3797-801. [PMID: 8483897 PMCID: PMC46392 DOI: 10.1073/pnas.90.9.3797] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Acyl glucuronide metabolites of bilirubin and many drugs can react with serum albumin in vivo to form covalent adducts. Such adducts may be responsible for some toxic effects of carboxylic nonsteroidal antiinflammatory agents. The mechanism of formation of the adducts and their chemical structures are unknown. In this paper we describe the use of tandem mass spectrometry to locate binding sites and elucidate the binding mechanism involved in the formation of covalent adducts from tolmetin glucuronide and albumin in vitro. Human serum albumin and excess tolmetin glucuronide were coincubated in the presence of sodium cyanoborohydride to trap imine intermediates. The total protein product was reduced, carboxymethylated, and digested with trypsin. Six tolmetin-containing peptides (indicated by absorbance at 313 nm) were isolated by high-pressure liquid chromatography and analyzed by liquid secondary-ion mass spectrometry and collision-induced dissociation, using a four-sector tandem mass spectrometer. All six peptides contained tolmetin linked covalently via a glucuronic acid to protein lysine groups. Major attachment sites on the protein were Lys-195, -199, and -525; minor sites were identified as Lys-137, -351, and -541. Our results show unambiguously that the glucuronic acid moiety of acyl glucuronides can be retained within the structure when these reactive metabolites bind covalently to proteins, and they suggest that acyl migration followed by Schiff base (imine) formation is a credible mechanism for the generation of covalent adducts in vivo.
Collapse
Affiliation(s)
- A Ding
- Department of Pharmacy, University of California, San Francisco 94143-0446
| | | | | | | | | |
Collapse
|
20
|
Brouwer KL, Hall ES, Pollack GM. Protein binding and hepatobiliary distribution of valproic acid and valproate glucuronide in rats. Biochem Pharmacol 1993; 45:735-42. [PMID: 8442771 DOI: 10.1016/0006-2952(93)90149-q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The protein binding and hepatobiliary distribution of valproic acid (VPA) and its glucuronide conjugate (V-G) were examined in rats with a combination of in vitro and ex vivo protocols. VPA was moderately bound to proteins in both serum and hepatic cytosol, and the degree of binding was lower ex vivo than in vitro. V-G, which was more highly bound than VPA ex vivo in serum, may have displaced the parent drug from its binding sites when VPA was administered in vivo. Examination of ex vivo hepatic subcellular distribution revealed that VPA localization tended to be high in cytosol and low in the microsomal fraction; V-G appeared to be distributed evenly throughout the cell although V-G concentrations within the liver were very low. The steady-state elimination rate of VPA did not increase proportionately with increasing steady-state concentrations of unbound VPA in serum, consistent with saturable systemic elimination of the drug. In contrast, steady-state VPA elimination was related linearly to unbound cytosolic VPA concentrations. Moreover, a nonlinear relationship between the unbound concentrations of VPA in hepatic cytosol and serum was observed, consistent with saturable distribution of the unbound drug between the two compartments in vivo. These observations suggest that the nonlinear elimination of VPA in rats may be due to concentration-dependent penetration of the drug into the liver as opposed to saturable biotransformation.
Collapse
Affiliation(s)
- K L Brouwer
- Division of Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill 27599-7360
| | | | | |
Collapse
|
21
|
Benet LZ, Spahn-Langguth H, Iwakawa S, Volland C, Mizuma T, Mayer S, Mutschler E, Lin ET. Predictability of the covalent binding of acidic drugs in man. Life Sci 1993; 53:PL141-6. [PMID: 8350674 DOI: 10.1016/0024-3205(93)90279-c] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although metabolism via glucuronide conjugation has generally been considered a detoxification route for carboxylic acids, the newly discovered chemical reactivity of these conjugates, leading to covalent binding with proteins, is consistent with the toxicity observed for drugs containing the carboxylic acid moiety. Here we report that degradation rates (intramolecular rearrangement and hydrolysis) for 9 drug glucuronide metabolites show an excellent correlation (r2 = 0.995) with the extents of drug covalent binding to albumin in vitro. Furthermore, this binding capacity is predictable based on chemical structure of the acid and depends on the degree of substitution at the carbon alpha to the carboxylic acid. The in vivo covalent binding in humans for these drugs is also predictable (r2 = 0.873) when the extent of adduct formation is corrected for the measured plasma glucuronide concentrations. These results suggest that the structure of a carboxylic acid drug may predict the degree to which the corresponding acyl glucuronides will form covalent adducts that probably/possibly lead to toxicity. This information could be a useful adjunct in drug design.
Collapse
Affiliation(s)
- L Z Benet
- Department of Pharmacy, University of California, San Francisco 94143-0446
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Williams AM, Worrall S, de Jersey J, Dickinson RG. Studies on the reactivity of acyl glucuronides--III. Glucuronide-derived adducts of valproic acid and plasma protein and anti-adduct antibodies in humans. Biochem Pharmacol 1992; 43:745-55. [PMID: 1540228 DOI: 10.1016/0006-2952(92)90239-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The major metabolite of the anti-epileptic agent valproic acid (VPA) is its acyl glucuronide conjugate (VPA-G), which undergoes non-enzymic, pH-dependent rearrangement via acyl migration to a mixture of beta-glucuronidase-resistant forms (collectively VPA-G-R). We have compared the reactivity of VPA-G and VPA-G-R towards covalent VPA-protein adduct formation by incubation in buffer, human serum albumin (HSA) and fresh human plasma at pH 7.4 and 37 degrees. In all three media, the predominant reaction of VPA-G over 30 hr was rearrangement to VPA-G-R (ca. 24%). Hydrolysis was quite minor (ca. 2%) and covalent adduct formation negligible (when protein was present). On the other hand, both hydrolysis (ca. 27%) and adduct formation (ca. 7%) were extensive when VPA-G-R was incubated with HSA or plasma. These data do not support a transacylation mechanism for VPA-protein adduct formation, since this pathway should be much more highly favoured by VPA-G (an acyl-substituted acetal) than VPA-G-R (simple esters). VPA-protein adducts were found in the plasma of epileptic patients taking VPA chronically (mean 0.77 +/- SD 0.63 microgram VPA equivalents/mL, N = 17). An enzyme linked immunosorbent assay was developed, using HSA modified by incubation with VPA-G-R, to test the immunoreactivity of the patients' plasma. Of 57 patients tested, nine showed measurable levels of antibodies to these adducts, but the titres were very low, with no difference in response to modified and unmodified protein detectable at plasma dilutions of 1:16 or greater. These results suggest that the VPA-protein adducts have little immunogenicity, and are in agreement with clinical observations that drug hypersensitivity responses have not been associated with VPA therapy. Thus, although the in vitro data show that VPA-G is an example of a relatively unreactive acyl glucuronide, covalent VPA-plasma protein adducts and anti-adduct antibodies are nonetheless formed in vivo, at least in some patients on chronic therapy with the drug.
Collapse
Affiliation(s)
- A M Williams
- Department of Medicine, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
23
|
Uetrecht JP. The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions. Drug Metab Rev 1992; 24:299-366. [PMID: 1628536 DOI: 10.3109/03602539208996297] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence strongly suggests that many adverse drug reactions, including idiosyncratic drug reactions, involve reactive metabolites. Furthermore, certain functional groups, which are readily oxidized to reactive metabolites, are associated with a high incidence of adverse reactions. Most drugs can probably form reactive metabolites, but a simple comparison of covalent binding in vitro is unlikely to provide an accurate indication of the relative risk of a drug causing an idiosyncratic reaction because it does not provide an indication of how efficiently the metabolite is detoxified in vivo. In addition, the incidence and nature of adverse reactions associated with a given drug is probably determined in large measure by the location of reactive metabolite formation, as well as the chemical reactivity of the reactive metabolite. Such factors will determine which macromolecules the metabolites will bind to, and it is known that covalent binding to some proteins, such as those in the leukocyte membrane, is much more likely to lead to an immune-mediated reaction or other type of toxicity. Some reactive metabolites, such as acyl glucuronides, circulate freely and could lead to adverse reactions in almost any organ; however, most reactive metabolites have a short biological half-life, and although small amounts may escape the organ where they are formed, these metabolites are unlikely to reach sufficient concentrations to cause toxicity in other organs. Many idiosyncratic drug reactions involve leukocytes, especially agranulocytosis and drug-induced lupus. We and others have demonstrated that drugs can be metabolized by activated neutrophils and monocytes to reactive metabolites. The major reaction appears to be reaction with leukocyte-generated hypochlorous acid. Hypochlorous acid is quite reactive, and therefore it is likely that many other drugs will be found that are metabolized by activated leukocytes. Some neutrophil precursors contain myeloperoxidase and the NADPH oxidase system, and it is likely that these cells can also oxidize drugs. Therefore, although there is no direct evidence, it is reasonable to speculate that reactive metabolites generated by activated leukocytes, or neutrophil precursors in the bone marrow, could be responsible for drug-induced agranulocytosis and aplastic anemia. This could involve direct toxicity or an immune-mediated reaction. These mechanisms are not mutually exclusive, and it may be that both mechanisms contribute to the toxicity, even in the same patient. In the case of drug-induced lupus, a prevalent hypothesis for lupus involves modification of class II MHC antigens.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J P Uetrecht
- Faculties of Pharmacy and Medicine, University of Toronto, Canada
| |
Collapse
|
24
|
Spahn-Langguth H, Benet LZ. Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a detoxification mechanism? Drug Metab Rev 1992; 24:5-47. [PMID: 1555494 DOI: 10.3109/03602539208996289] [Citation(s) in RCA: 301] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Spahn-Langguth
- Department of Pharmacy, University of California, San Francisco 94143-0446
| | | |
Collapse
|
25
|
Dickinson RG, King AR. Studies on the reactivity of acyl glucuronides--II. Interaction of diflunisal acyl glucuronide and its isomers with human serum albumin in vitro. Biochem Pharmacol 1991; 42:2301-6. [PMID: 1764115 DOI: 10.1016/0006-2952(91)90233-u] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A major metabolite of diflunisal (DF) is its reactive acyl glucuronide conjugate (DAG) which can undergo hydrolysis (regeneration of DF), intramolecular rearrangement (isomerization via acyl migration) and intermolecular reactions with nucleophiles. We have compared the fate of DAG and its individual 2-, 3- and 4-O-acyl positional isomers (at ca. 55 micrograms DF equivalents/mL) after incubation with human serum albumin (HSA, 40 mg/mL) at pH 7.4 and 37 degrees. Initial half-lives (T1/2) for DAG and its 2-, 3- and 4-isomers were 53, 75, 61 and 26 min, respectively. DAG was more labile to hydrolysis than any of its isomers but the latter, in particular the 4-isomer, were much better substrates for formation of covalent DF-HSA adducts. After a 2-hr incubation, 2.4, 8.2, 13.7 and 36.6% of substrate DAG and its 2-, 3- and 4-isomers (respectively) were present as DF-HSA adducts. With long term incubation, the concentrations of adducts so generated in situ declined in a biphasic manner, with apparent terminal T1/2 values of ca. 28 days. DAG was much more labile to transacylation with methanol (i.e. formation of DF methyl ester) than an equimolar mixture of its isomers after incubation in a 1:1 methanol:pH 7.4 buffer solution at 37 degrees (T1/2 values of 5 and 70 min, respectively). The data do not support direct transacylation with nucleophilic groups on protein as the predominant mechanism of formation of covalent DF-HSA adducts in vitro.
Collapse
Affiliation(s)
- R G Dickinson
- Department of Medicine, University of Queensland, Royal Brisbane Hospital, Australia
| | | |
Collapse
|
26
|
Chapter 19. Chemical Basis for Immune Mediated Idiosyncratic Drug Hypersensitivity. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1991. [DOI: 10.1016/s0065-7743(08)61206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|