1
|
Bunda J, Gittings W, Vandenboom R. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation. ACTA ACUST UNITED AC 2018; 221:jeb.167718. [PMID: 29361581 DOI: 10.1242/jeb.167718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/31/2017] [Indexed: 01/12/2023]
Abstract
Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK-/-) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK-/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK-/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK-/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK-/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK-/- muscles without RLC phosphorylation.
Collapse
Affiliation(s)
- Jordan Bunda
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| | - William Gittings
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| | - Rene Vandenboom
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| |
Collapse
|
2
|
Gittings W, Bunda J, Vandenboom R. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles. ACTA ACUST UNITED AC 2018; 221:jeb.167742. [PMID: 29122950 DOI: 10.1242/jeb.167742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/28/2017] [Indexed: 11/20/2022]
Abstract
Skeletal myosin light chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wild-type, WT) and without (skMLCK ablated, skMLCK-/-) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during, before and after isovelocity contractions in WT but not in skMLCK-/- muscles (i.e. 0.65 and 0.05 mol phosphate mol-1 RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes, the increase was significantly greater in WT than in skMLCK-/- muscles (1.51±0.03 versus 1.10±0.05, respectively; all data P<0.05, n=8). Interestingly, the HEPC determined during repeated isovelocity contractions was statistically similar between genotypes at 19.03±3.37 and 16.02±3.41 μmol P; respectively (P<0.27). As a result, despite performing significantly more work, the contractile economy calculated for WT muscles was similar to that calculated for skMLCK-/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J kg-1 μmol-1 P, respectively (P<0.27). In conclusion, our results support the notion that myosin RLC phosphorylation enhances dynamic contractile function of mouse fast skeletal muscle but does so without decreasing contractile economy.
Collapse
Affiliation(s)
- William Gittings
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| | - Jordan Bunda
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| | - Rene Vandenboom
- Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| |
Collapse
|
3
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
4
|
Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro. Pflugers Arch 2016; 468:2007-2016. [DOI: 10.1007/s00424-016-1897-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
5
|
|
6
|
Hortemo KH, Aronsen JM, Lunde IG, Sjaastad I, Lunde PK, Sejersted OM. Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle. Physiol Rep 2015; 3:3/2/e12285. [PMID: 25713325 PMCID: PMC4393194 DOI: 10.14814/phy2.12285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myosin light chain 2 (MLC2) is a small protein in the myosin complex, regulating muscle contractile function by modulating Ca2+ sensitivity of myofilaments. MLC2 can be modified by phosphorylation and O-GlcNAcylation, two reversible and dynamic posttranslational modifications. The slow isoform of MLC2 (sMLC2) is dephosphorylated in soleus muscle during in situ loaded shortening contractions, which correlates with reduction in shortening capacity. Here, we hypothesize that exhausting in vivo treadmill running induces dephosphorylation of MLC2 in slow twitch soleus, but not in fast twitch EDL muscle, and that there are reciprocal changes in MLC2 O-GlcNAcylation. At rest, both phosphorylation and O-GlcNAcylation of MLC2 were lower in slow than fast twitch muscles. One bout of exhausting treadmill running induced dephosphorylation of sMLC2 in soleus, paralleled by reduced levels of the kinase MLCK2 associated to myofilaments, suggesting that the acute reduction in phosphorylation is mediated by dissociation of MLCK2 from myofilaments. O-GlcNAcylation of MLC2 did not change significantly, and seems of limited importance in the regulation of MLC2 phosphorylation during in vivo running. After 6 weeks of treadmill running, the dephosphorylation of sMLC2 persisted in soleus along with reduction in MLCK2 both in myofilament- and total protein fraction. In EDL on the contrary, phosphorylation of MLC2 was not altered after one exercise bout or after 6 weeks of treadmill running. Thus, in contrast to fast twitch muscle, MLC2 dephosphorylation occurs in slow twitch muscle during in vivo exercise and may be linked to reduced myofilament-associated MLCK2 and reduced shortening capacity.
Collapse
Affiliation(s)
- Kristin Halvorsen Hortemo
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway Bjørknes College, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Ole M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models. J Muscle Res Cell Motil 2013; 34:317-32. [PMID: 24162313 DOI: 10.1007/s10974-013-9363-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/21/2023]
Abstract
The contractile performance of mammalian fast twitch skeletal muscle is history dependent. The effect of previous or ongoing contractile activity to potentiate force, i.e. increase isometric twitch force, is a fundamental property of fast skeletal muscle. The precise manifestation of force potentiation is dependent upon a variety of factors with two general types being identified; staircase potentiation referring to the progressive increase in isometric twitch force observed during low frequency stimulation while posttetanic potentiation refers to the step-like increase in isometric twitch force observed following a brief higher frequency (i.e. tetanic) stimulation. Classic studies established that the magnitude and duration of potentiation depends on a number of factors including muscle fiber type, species, temperature, sarcomere length and stimulation paradigm. In addition to isometric twitch force, more recent work has shown that potentiation also influences dynamic (i.e. concentric and/or isotonic) force, work and power at a range of stimulus frequencies in situ or in vitro, an effect that may translate to enhanced physiological function in vivo. Early studies performed on both intact and permeabilized models established that the primary mechanism for this modulation of performance was phosphorylation of myosin, a modification that increased the Ca(2+) sensitivity of contraction. More recent work from a variety of muscle models indicates, however, the presence of a secondary mechanism for potentiation that may involve altered Ca(2+) handling. The primary purpose of this review is to highlight these recent findings relative to the physiological utility of force potentiation in vivo.
Collapse
|
8
|
Crum AJ, Kawamori N, Stone MH, Haff GG. The Acute Effects of Moderately Loaded Concentric-Only Quarter Squats on Vertical Jump Performance. J Strength Cond Res 2012; 26:914-25. [DOI: 10.1519/jsc.0b013e318248d79c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
de Assis Ferreira SL, GonÇalves Panissa VL, Miarka B, Franchini E. Postactivation Potentiation: Effect of Various Recovery Intervals on Bench Press Power Performance. J Strength Cond Res 2012; 26:739-44. [DOI: 10.1519/jsc.0b013e318225f371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Stull JT, Kamm KE, Vandenboom R. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 2011; 510:120-8. [PMID: 21284933 PMCID: PMC3101293 DOI: 10.1016/j.abb.2011.01.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca(2+)/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca(2+) binding to calmodulin forming a (Ca(2+))(4)•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca(2+) results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca(2+)/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca(2+)-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.
Collapse
Affiliation(s)
- James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, 75390-9040, USA.
| | | | | |
Collapse
|
11
|
Xeni J, Gittings WB, Caterini D, Huang J, Houston ME, Grange RW, Vandenboom R. Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle. Pflugers Arch 2011; 462:349-58. [PMID: 21499697 DOI: 10.1007/s00424-011-0965-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/02/2011] [Accepted: 04/02/2011] [Indexed: 11/24/2022]
Abstract
The intent of this study was to determine if the stimulation-induced increase or "potentiation" of dynamic function of mouse extensor digitorum longus muscle (in vitro 25°C) during work cycles is graded to myosin regulatory light-chain (RLC) phosphorylation. To do this, concentric force and muscle work output during sinusoidal length changes were determined before (unpotentiated) and after (potentiated) the application of conditioning stimuli (CS) producing incremental elevations in RLC phosphorylation from rest. Sine wave excursion was from 1.09 to 0.91 of L (o) with a period of 142 ms; stimulating muscles to twitch and generate force during these cycles produced plots of force × displacement termed work loops. Stimulation at 2.5-, 5.0-, and 100-Hz elevated RLC phosphorylation from 0.16±0.02 (rest) to 0.29±0.03, 0.45±0.02 and 0.56±0.02 mol phos per mole RLC, respectively (n= 6-7, P<0.05). These CS potentiated mean concentric force (at all lengths) to 1.14±0.02, 1.26±0.04 and 1.41±0.06 of pre-stimulus, control levels (all n= 5-7, P<0.05) while work was increased to 1.07±0.02, 1.17±0.02 and 1.34±0.03 of controls, respectively. In a No CS condition that did not elevate RLC phosphorylation, neither mean concentric force nor work was altered. Thus, strong correlations between RLC phosphorylation and mean concentric force and work support the hypothesis that this molecular mechanism modulates muscle power output. No length-dependence for concentric force potentiation was observed in any condition, an outcome suggesting that interactions between instantaneous variations in muscle length and shortening velocity during work cycles modulates the potentiation response.
Collapse
Affiliation(s)
- Jason Xeni
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Ruben RM, Molinari MA, Bibbee CA, Childress MA, Harman MS, Reed KP, Haff GG. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J Strength Cond Res 2010; 24:358-69. [PMID: 20072064 DOI: 10.1519/jsc.0b013e3181cc26e0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of the present investigation was to examine the effects of a strength-power potentiation complex that involved performing a horizontal plyometric activity 5 minutes after the completion of an ascending back squat protocol. Twelve men who could back squat a minimum of 1.5 time body mass participated in a familiarization session and 2 randomly assigned testing sessions each separated by approximately 1 week. In the control session, the subject rested for 5 minutes and then performed the horizontal plyometric tests. In the potentiation session (POT), the subjects performed an ascending back squat protocol that consisted of 5 repetitions at 30% of 1 repetition maximum (1RM), 3 repetitions at 70% 1RM, and 3 repetitions at 90% 1RM. Five minutes after completing the ascending back squat protocol, the subjects undertook the horizontal plyometric test, which consisted of jumping over 5 hurdles that were separated by 45.7 cm and were set to a height of 65.2 +/- 4.0 cm. An accelerometer was used to assess peak power output (PP), velocity (PV), and force (PF) across the 5 jumps. The average PF generated across the 5 hurdles was significantly higher in the POT session (p = 0.01, d = 0.45). In addition, the maximum PP output (p = 0.05, d = 1.12) and PF (p = 0.004, d = 0.61) were higher in the POT trials. Individuals who were able to back squat approximately 2.0 +/- 0.1 times body mass exhibited a greater percent potentiation for average PP output (p = 0.001, eta = 0.68) and average PV (p = 0.02, eta = 0.61). The present data suggest only very strong individuals (back squat > or = 2.0 x body mass) exhibit a potentiation effect in a horizontal plyometric activity after performing an ascending back squat protocol.
Collapse
Affiliation(s)
- Ryan M Ruben
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Power and power potentiation among strength-power athletes: preliminary study. Int J Sports Physiol Perform 2009; 3:55-67. [PMID: 19193949 DOI: 10.1123/ijspp.3.1.55] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess the effects of manipulating the loading of successive sets of midthigh clean pulls on the potentiation capabilities of 7 international-level US weightlifters (4 men, 3 women). METHODS Isometric and dynamic peak-force characteristics were measured with a force plate at 500 Hz. Velocity during dynamic pulls was measured using 2 potentiometers that were suspended from the top of the right and left sides of the testing system and attached to both ends of the bar. Five dynamic-performance trials were used (in the following order) as the potentiation protocol: women at 60, 80, 100, 120, and 80 kg and men at 60, 140, 180, 220, and 140 kg. Trials 2 vs 5 were specifically analyzed to assess potentiation capabilities. Isometric midthigh pulls were assessed for peak force and rate of force development. Dynamic lifts were assessed for peak force (PF), peak velocity (PV), peak power (PP), and rate of force development (RFD). RESULTS Although all values (PF, PV, PP, and RFD) were higher postpotentiation, the only statistically higher value was found for PV (ICC? = .95, P = .011, ?2 = .69). CONCLUSIONS Results suggest that manipulating set-loading configuration can result in a potentiation effect when heavily loaded sets are followed by a lighter set. This potentiation effect was primarily characterized by an increase in the PV in elite weightlifters.
Collapse
|
14
|
Calcium and the role of motoneuronal doublets in skeletal muscle control. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:159-73. [DOI: 10.1007/s00249-008-0364-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/26/2022]
|