1
|
Genetic variants in Argentinean isolates of Spodoptera frugiperda Multiple Nucleopolyhedrovirus. Virus Genes 2020; 56:401-405. [PMID: 32030574 DOI: 10.1007/s11262-020-01741-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
The fall armyworm, Spodoptera frugiperda (JE Smith) is a key pest in the Americas. Control strategies are mainly carried out by use of chemical insecticides and transgenic crops expressing Bacillus thuringiensis toxins. In the last years, resistance of S. frugiperda populations to transgenic corn was reported in different Latin American countries. The baculovirus Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV) is a pathogenic agent for the fall armyworm and a potential alternative for its control in integrated pest management strategies. In this work, we analyze some characteristics of two baculovirus isolates collected from maize (SfMNPV-M) and cotton (SfMNPV-C) fields from Argentina. The isolates were compared by restriction enzymes patterns and the analysis reveals the presence of genotypic variants in the SfMNPV-M isolate. We confirmed a deletion by sequencing fragments encompassing egt gene and most part of its contiguous gene (orf A) in a SfMNVP-M genotypic variant. Additionally, we estimated the 50% lethal dose and median survival time of each isolate in bioassays with S. frugiperda larvae.
Collapse
|
2
|
Ferrelli ML, Pidre ML, Ghiringhelli PD, Torres S, Fabre ML, Masson T, Cédola MT, Sciocco-Cap A, Romanowski V. Genomic analysis of an Argentinean isolate of Spodoptera frugiperda granulovirus reveals that various baculoviruses code for Lef-7 proteins with three F-box domains. PLoS One 2018; 13:e0202598. [PMID: 30133523 PMCID: PMC6105029 DOI: 10.1371/journal.pone.0202598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/05/2018] [Indexed: 01/19/2023] Open
Abstract
A new isolate of the Spodoptera frugiperda granulovirus, SfGV ARG, was completely sequenced and analyzed. The SfGV ARG genome is 139,812 bp long and encodes 151 putative open reading frames. Of these ORFs, 56 were found in betabaculoviruses, 19 of which are present only in GVs closely related to SfGV. Seven ORFs found homologs in this small GV group and also in noctuid NPVs. ORF066 codes a 74 amino acid protein, overlapped with nudix gene, with several homologs in baculovirus, found by tblastn search. Comparison with the genome of the Colombian isolate SfGV VG008 resulted in SfGV being 1101 bp smaller and lacking a homologue of VG008 ORF084, which codes for Lef-7. However, we found that ORF051 shows remote homology to Lef-7 proteins. Moreover, analysis of ORF051 along with Lef-7 proteins coded by a group of noctuid specific GVs and NPVs indicated that Lef-7 proteins coded by these viruses include three F-box domains in contrast to the single one reported for AcMNPV Lef-7. SfGV ARG genome also contains a split photolyase as a distinct feature not found in VG008. BlastX analysis revealed that a complete photolyase is coded considering a putative frameshift in a poly-A tract, which resembles known slippery sequences involved in programmed ribosome frameshifting.
Collapse
Affiliation(s)
- María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Matías Luis Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Pablo Daniel Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Sofía Torres
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - María Laura Fabre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Tomás Masson
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Maia Tatiana Cédola
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alicia Sciocco-Cap
- IMYZA-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 25 (B1712WAA) Castelar, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
3
|
Ferrelli ML, Salvador R, Biedma ME, Berretta MF, Haase S, Sciocco-Cap A, Ghiringhelli PD, Romanowski V. Genome of Epinotia aporema granulovirus (EpapGV), a polyorganotropic fast killing betabaculovirus with a novel thymidylate kinase gene. BMC Genomics 2012; 13:548. [PMID: 23051685 PMCID: PMC3496565 DOI: 10.1186/1471-2164-13-548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 09/22/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epinotia aporema (Lepidoptera: Tortricidae) is an important pest of legume crops in South America. Epinotia aporema granulovirus (EpapGV) is a baculovirus that causes a polyorganotropic infection in the host larva. Its high pathogenicity and host specificity make EpapGV an excellent candidate to be used as a biological control agent. RESULTS The genome of Epinotia aporema granulovirus (EpapGV) was sequenced and analyzed. Its circular double-stranded DNA genome is 119,082 bp in length and codes for 133 putative genes. It contains the 31 baculovirus core genes and a set of 19 genes that are GV exclusive. Seventeen ORFs were unique to EpapGV in comparison with other baculoviruses. Of these, 16 found no homologues in GenBank, and one encoded a thymidylate kinase. Analysis of nucleotide sequence repeats revealed the presence of 16 homologous regions (hrs) interspersed throughout the genome. Each hr was characterized by the presence of 1 to 3 clustered imperfect palindromes which are similar to previously described palindromes of tortricid-specific GVs. Also, one of the hrs (hr4) has flanking sequences suggestive of a putative non-hr ori. Interestingly, two more complex hrs were found in opposite loci, dividing the circular dsDNA genome in two halves. Gene synteny maps showed the great colinearity of sequenced GVs, being EpapGV the most dissimilar as it has a 20 kb-long gene block inversion. Phylogenetic study performed with 31 core genes of 58 baculoviral genomes suggests that EpapGV is the baculovirus isolate closest to the putative common ancestor of tortricid specific betabaculoviruses. CONCLUSIONS This study, along with previous characterization of EpapGV infection, is useful for the better understanding of the pathology caused by this virus and its potential utilization as a bioinsecticide.
Collapse
Affiliation(s)
- María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Detection and kinetic analysis of Epinotia aporema granulovirus in its lepidopteran host by real-time PCR. Arch Virol 2012; 157:1149-53. [PMID: 22398913 DOI: 10.1007/s00705-012-1265-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
Epinotia aporema granulovirus (EpapGV) has attracted interest as a potential biocontrol agent of the soybean pest Epinotia aporema in Argentina. Studies on virus/host interactions conducted so far have lacked an accurate method to assess the progress of virus load during the infection process. The present paper reports the development of a real-time PCR for EpapGV and its application to describe viral kinetics following ingestion of two different virus doses by last-instar E. aporema larvae. Real-time PCR was shown to be a reliable method to detect and quantify the presence of EpapGV in the analyzed samples. The increase in virus titer (log) exhibited a sigmoidal pattern, with an exponential growth phase between 24 and 48 h postinfection for both initial doses tested.
Collapse
|
5
|
Rodríguez VA, Belaich MN, Gómez DLM, Sciocco-Cap A, Ghiringhelli PD. Identification of nucleopolyhedrovirus that infect Nymphalid butterflies Agraulis vanillae and Dione juno. J Invertebr Pathol 2010; 106:255-62. [PMID: 21047512 DOI: 10.1016/j.jip.2010.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/11/2010] [Accepted: 10/22/2010] [Indexed: 11/17/2022]
Abstract
Dione juno and Agraulis vanillae are very common butterflies in natural gardens in South America, and also bred worldwide. In addition, larvae of these butterflies are considered as pests in crops of Passiflora spp. For these reasons, it is important to identify and describe pathogens of these species, both for preservation purposes and for use in pest control. Baculoviridae is a family of insect viruses that predominantly infect species of Lepidoptera and are used as bioinsecticides. Larvae of D. juno and A. vanillae exhibiting symptoms of baculovirus infection were examined for the presence of baculoviruses by PCR and transmission electron microscopy. Degenerate primers were designed and used to amplify partial sequences from the baculovirus p74, cathepsin, and chitinase genes, along with previously designed primers for amplification of lef-8, lef-9, and polh. Sequence data from these six loci, along with ultrastructural observations on occlusion bodies isolated from the larvae, confirmed that the larvae were infected with nucleopolyhedroviruses from genus Alphabaculovirus. The NPVs from the two different larval hosts appear to be variants of the same, previously undescribed baculovirus species. Phylogenetic analysis of the sequence data placed these NPVs in Alphabaculovirus group I/clade 1b.
Collapse
Affiliation(s)
- Vanina Andrea Rodríguez
- LIGBCM, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, Argentina
| | | | | | | | | |
Collapse
|
6
|
Multiplex PCR and quality control of Epinotia aporema granulovirus production. Virus Genes 2008; 37:203-11. [PMID: 18626762 DOI: 10.1007/s11262-008-0256-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
A specific multiplex PCR was developed for the rapid and highly sensitive quality control of the viral DNA during Epinotia aporema granulovirus (EpapGV) production. At the beginning of this work only 2.3% of the EpapGV genomic sequence was known. In order to increase the availability of specific information, the terminal sequences of the inserts of several selected clones of EpapGV genomic libraries were determined. These data comprised 8.4% of the total DNA sequence and corresponded to regions distributed throughout the genome. Based on the small fraction of known sequence available a set of 32 primers was designed, using information theory to set the basis for this study. Each pair of designed primers was initially tested in individual PCRs to assess the correct size of the expected product and the sensitivity of the amplification. The specificity was verified in multiplex PCRs, using alternatively 1-3 sets of selected 5-6 primer pairs and EpapGV DNA preparations from different sources and degrees of purity. The results indicate that the multiplex PCR could be used for quality control in the bioinsecticide production, as well as in other applications such as the detection of latent infections in E. aporema colonies, and studies related to virus distribution, vertical transmission, host range, or persistence in the field.
Collapse
|