1
|
Ishigami T, Abe K, Aoki I, Minegishi S, Ryo A, Matsunaga S, Matsuoka K, Takeda H, Sawasaki T, Umemura S, Endo Y. Anti‐interleukin‐5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukin‐5 levels. FASEB J 2013; 27:3437-45. [DOI: 10.1096/fj.12-222653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tomoaki Ishigami
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kaito Abe
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Ichiro Aoki
- Department of Molecular PathologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Akihide Ryo
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Satoko Matsunaga
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuhiro Matsuoka
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Hiroyuki Takeda
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Tatsuya Sawasaki
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yaeta Endo
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| |
Collapse
|
2
|
Bandyopadhyay K, Li P, Gjerset RA. The p14ARF alternate reading frame protein enhances DNA binding of topoisomerase I by interacting with the serine 506-phosphorylated core domain. PLoS One 2013; 8:e58835. [PMID: 23555599 PMCID: PMC3608632 DOI: 10.1371/journal.pone.0058835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/07/2013] [Indexed: 12/27/2022] Open
Abstract
In addition to its well-characterized function as a tumor suppressor, p14ARF (ARF) is a positive regulator of topoisomerase I (topo I), a central enzyme in DNA metabolism and a target for cancer therapy. We previously showed that topo I hyperphosphorylation, a cancer-associated event mediated by elevated levels of the protein kinase CK2, increases topo I activity and the cellular sensitivity to topo I-targeted drugs. Topo I hyperphosphorylation also increases its interaction with ARF. Because the ARF−topo I interaction could be highly relevant to DNA metabolism and cancer treatment, we identified the regions of topo I involved in ARF binding and characterized the effects of ARF binding on topo I function. Using a series of topo I deletion constructs, we found that ARF interacted with the topo I core domain, which encompasses most of the catalytic and DNA-interacting residues. ARF binding increased the DNA relaxation activity of hyperphosphorylated topo I by enhancing its association with DNA, but did not affect the topo I catalytic rate. In cells, ARF promoted the chromatin association of hyperphosphorylated, but not basal phosphorylated, topo I, and increased topo I-mediated DNA nicking under conditions of oxidative stress. The aberrant nicking was found to correlate with increased formation of DNA double-strand breaks, which are precursors of many genome destabilizing events. The results suggest that the convergent actions of oxidative stress and elevated CK2 and ARF levels, which are common features of cancer cells, lead to a dysregulation of topo I that may contribute both to the cellular response to topo I-targeted drugs and to genome instability.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
| | - Pingchuan Li
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Bandyopadhyay K, Li P, Gjerset RA. CK2-mediated hyperphosphorylation of topoisomerase I targets serine 506, enhances topoisomerase I-DNA binding, and increases cellular camptothecin sensitivity. PLoS One 2012. [PMID: 23185622 PMCID: PMC3503890 DOI: 10.1371/journal.pone.0050427] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Topoisomerase I is the target for a potent class of chemotherapeutic drugs derived from the plant alkaloid camptothecin that includes irinotecan and topotecan. In this study we have identified a novel site of CK2-mediated topoisomerase I (topo I) phosphorylation at serine 506 (PS506) that is relevant to topo I function and to cellular responses to these topo I-targeted drugs. CK2 treatment induced hyperphosphorylation of recombinant topo I and expression of the PS506 epitope, and resulted in increased binding of topo I to supercoiled plasmid DNA. Hyperphosphorylated topo I was approximately three times more effective than the basal phosphorylated enzyme at relaxing plasmid supercoils but had similar DNA cleavage activity once bound to DNA. The PS506 epitope was expressed in cancer cell lines with elevated CK2 activity, hyperphosphorylated topo I, and increased sensitivity to camptothecin. In contrast, PS506 was not detected in normal cells or cancer cell lines with lower levels of CK2 activity. By experimentally manipulating CK2 activity in cancer cell lines, we demonstrate a cause and effect relationship between CK2 activity, PS506 expression, camptothecin-induced cellular DNA damage, and cellular camptothecin sensitivity. Our results show that the PS506 epitope is an indicator of dysregulated, hyperphosphorylated topo I in cancer cells, and may thus serve as a diagnostic or prognostic biomarker and predict tumor responsiveness to widely used topo I-targeted therapies.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Camptothecin/pharmacology
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line, Tumor
- DNA Fragmentation/drug effects
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Superhelical/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epitopes
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Phosphorylation/drug effects
- Plasmids
- Serine/genetics
- Serine/metabolism
- Topoisomerase I Inhibitors/pharmacology
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Pingchuan Li
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Xavier CP, Rastetter RH, Blömacher M, Stumpf M, Himmel M, Morgan RO, Fernandez MP, Wang C, Osman A, Miyata Y, Gjerset RA, Eichinger L, Hofmann A, Linder S, Noegel AA, Clemen CS. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration. Sci Rep 2012; 2:241. [PMID: 22355754 PMCID: PMC3268813 DOI: 10.1038/srep00241] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/20/2011] [Indexed: 01/27/2023] Open
Abstract
CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration.
Collapse
Affiliation(s)
- Charles-Peter Xavier
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
- Present address: Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Raphael H. Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
| | - Margit Blömacher
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Mirko Himmel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Reginald O. Morgan
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Conan Wang
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Asiah Osman
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, California, 92121, USA
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Andreas Hofmann
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Angelika A. Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph S. Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| |
Collapse
|
5
|
Identification of cyclohexanone derivatives that act as catalytic inhibitors of topoisomerase I: effects on tamoxifen-resistant MCF-7 cancer cells. Invest New Drugs 2011; 30:2103-12. [PMID: 22105790 PMCID: PMC3484282 DOI: 10.1007/s10637-011-9768-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/02/2011] [Indexed: 01/05/2023]
Abstract
Breast cancer is commonly treated with anti-estrogens or aromatase inhibitors, but resistant disease eventually develops and new therapies for such resistance are of great interest. We have previously isolated several tamoxifen-resistant variant sub-lines of the MCF-7 breast cancer cell line and provided evidence that they arose from expansion of pre-existing minor populations. We have searched for therapeutic agents that exhibit selective growth inhibition of the resistant lines and here investigate 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91). We found that two of the tamoxifen-resistant sub-lines (TamR3 and TamC3) unexpectedly showed increased sensitivity to RL90 and RL91. We utilized growth inhibition assays, flow cytometry and immunoblotting to establish a mechanistic basis for their action. Treated sensitive cells showed S-phase selective DNA damage, as detected by histone H2AX phosphorylation. Cellular responses were similar to those induced by the topoisomerase I poison camptothecin. Although IC(50) values of camptothecin, RL90, RL91 were correlated, studies with purified mammalian topoisomerase I suggested that RL90 and RL91 differed from camptothecin by acting as catalytic topoisomerase I inhibitors. These drugs provide a platform for the further development of DNA damaging drugs that have selective effects on tamoxifen resistant breast cancer cells. The results also raise the question of whether clinical topoisomerase I poisons such as irinotecan and topotecan might be active in the treatment of some types of tamoxifen-resistant cancer.
Collapse
|
6
|
Bandyopadhyay K, Gjerset RA. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines. Biochemistry 2011; 50:704-14. [PMID: 21182307 DOI: 10.1021/bi101110e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Topoisomerase I (topo I) is required to unwind DNA during synthesis and provides the unique target for camptothecin-derived chemotherapeutic agents, including Irinotecan and Topotecan. While these agents are highly effective anticancer agents, some tumors do not respond due to intrinsic or acquired resistance, a process that remains poorly understood. Because of treatment toxicity, there is interest in identifying cellular factors that regulate tumor sensitivity and might serve as predictive biomarkers of therapy sensitivity. Here we identify the serine kinase, protein kinase CK2, as a central regulator of topo I hyperphosphorylation and activity and cellular sensitivity to camptothecin. In nine cancer cell lines and three normal tissue-derived cell lines we observe a consistent correlation between CK2 levels and camptothecin responsiveness. Two other topo I-targeted serine kinases, protein kinase C and cyclin-dependent kinase 1, do not show this correlation. Camptothecin-sensitive cancer cell lines display high CK2 activity, hyperphosphorylation of topo I, elevated topo I activity, and elevated phosphorylation-dependent complex formation between topo I and p14ARF, a topo I activator. Camptothecin-resistant cancer cell lines and normal cell lines display lower CK2 activity, lower topo I phosphorylation, lower topo I activity, and undetectable topo I/p14ARF complex formation. Experimental inhibition or activation of CK2 demonstrates that CK2 is necessary and sufficient for regulating these topo I properties and altering cellular responses to camptothecin. The results establish a cause and effect relationship between CK2 activity and camptothecin sensitivity and suggest that CK2, topo I phosphorylation, or topo I/p14ARF complex formation could provide biomarkers of therapy-responsive tumors.
Collapse
Affiliation(s)
- Keya Bandyopadhyay
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121, United States
| | | |
Collapse
|
7
|
Chen-Roetling J, Li Z, Regan RF. Hemoglobin neurotoxicity is attenuated by inhibitors of the protein kinase CK2 independent of heme oxygenase activity. Curr Neurovasc Res 2009; 5:193-8. [PMID: 18691077 DOI: 10.2174/156720208785425684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown, and may accelerate oxidative injury to neurons exposed to heme or hemoglobin. HO-1 and HO-2 are activated in vitro by the phos-phatidylinositol 3-kinase (PI3K)/Akt and protein kinase C (PKC)/CK2 pathways, respectively. The present study tested the hypotheses that CK2, PKC, and PI3K inhibitors would reduce both HO activity and neuronal vulnerability to hemoglobin in murine cortical cultures. Oxidative cell injury was quantified by LDH release and malondialdehyde assays. HO activity was assessed by carbon monoxide assay. Consistent with prior observations, treating primary cortical cultures with hemoglobin for 16h resulted in release of approximately half of neuronal LDH and a seven-fold increase in malondialdehyde. Both endpoints were significantly reduced by the CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBB) and 2-dimethyl-amino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), and by the PKC inhibitor GF109203X; the PI3K inhibitors LY294002 and wortmannin had no effect. None of these inhibitors altered basal HO activity. The 1.9-fold activity increase observed after hemoglobin treatment was largely prevented by LY294002 and LY303511, a structural analog of LY294002 that does not inhibit PI3K activity. It was not reduced by wortmannin, TBB or GF109203X. These results suggest that the protective effect of CK2 and PKC inhibitors in this model is not dependent on reduction in HO activity. In this culture system that expresses both HO-1 and HO-2, HO activity does not appear to be primarily regulated by the PKC/CK2 or PI3K pathways.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1020 Sansom Street, Thompson Building Room 239, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
8
|
Abstract
The transcription factor DeltaFosB (also referred to as FosB2 or FosB[short form]) is an important mediator of the long-term plasticity induced in brain by chronic exposure to several types of psychoactive stimuli, including drugs of abuse, stress, and electroconvulsive seizures. A distinct feature of DeltaFosB is that, once induced, it persists in brain for relatively long periods of time in the absence of further stimulation. The mechanisms underlying this apparent stability, however, have remained unknown. Here, we demonstrate that DeltaFosB is a relatively stable transcription factor, with a half-life of approximately 10 h in cell culture. Furthermore, we show that DeltaFosB is a phosphoprotein in brain and that phosphorylation of a highly conserved serine residue (Ser27) in DeltaFosB protects it from proteasomal degradation. We provide several lines of evidence suggesting that this phosphorylation is mediated by casein kinase 2. These findings constitute the first evidence that DeltaFosB is phosphorylated and demonstrate that phosphorylation contributes to its stability, which is at the core of its ability to mediate long-lasting adaptations in brain.
Collapse
|
9
|
Jiang XG, Wang Y. Phosphorylation of human high mobility group N1 protein by protein kinase CK2. Biochem Biophys Res Commun 2006; 345:1497-503. [PMID: 16729963 DOI: 10.1016/j.bbrc.2006.05.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 05/09/2006] [Indexed: 11/24/2022]
Abstract
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro.
Collapse
Affiliation(s)
- Xinzhao Grace Jiang
- Department of Chemistry-027, University of California, Riverside, 92521-0403, USA
| | | |
Collapse
|
10
|
Soto D, Pancetti F, Marengo JJ, Sandoval M, Sandoval R, Orrego F, Wyneken U. Protein kinase CK2 in postsynaptic densities: phosphorylation of PSD-95/SAP90 and NMDA receptor regulation. Biochem Biophys Res Commun 2004; 322:542-50. [PMID: 15325264 DOI: 10.1016/j.bbrc.2004.07.158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 11/19/2022]
Abstract
Protein kinase CK2 (CK2) is highly expressed in rat forebrain where its function is not well understood. Subcellular distribution studies showed that the catalytic subunit of CK2 (CK2alpha) was enriched in postsynaptic densities (PSDs) by 68%. We studied the putative role of CK2 activity on N-methyl-D-aspartate receptor (NMDAR) function using isolated, patch-clamped PSDs in the presence of 2 mM extracellular Mg(2+). The usual activation by phosphorylation of the NMDARs in the presence of ATP was inhibited by the selective CK2 inhibitor 5,6-dichloro-1-beta-ribofuranosyl benzimidazole (DRB). This inhibition was voltage-dependent, i.e., 100% at positive membrane potentials, while at negative potentials, inhibition was incomplete. Endogenous CK2 substrates were characterized by their ability to use GTP as a phosphoryl donor and susceptibility to inhibition by DRB. Immunoprecipitation assays and 2D gels indicated that PSD-95/SAP90, the NMDAR scaffolding protein, was a CK2 substrate, while the NR2A/B and NR1 NMDAR subunits were not. These results suggest that postsynaptic NMDAR regulation by CK2 is mediated by indirect mechanisms possibly involving PSD-95/SAP90.
Collapse
Affiliation(s)
- Dagoberto Soto
- Neuroscience Laboratory, Faculty of Medicine, Universidad de Los Andes, Santiago-6782468, Chile
| | | | | | | | | | | | | |
Collapse
|