1
|
Sedmera D, Kockova R, Vostarek F, Raddatz E. Arrhythmias in the developing heart. Acta Physiol (Oxf) 2015; 213:303-20. [PMID: 25363044 DOI: 10.1111/apha.12418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/08/2014] [Accepted: 10/23/2014] [Indexed: 01/10/2023]
Abstract
Prevalence of cardiac arrhythmias increases gradually with age; however, specific rhythm disturbances can appear even prior to birth and markedly affect foetal development. Relatively little is known about these disorders, chiefly because of their relative rarity and difficulty in diagnosis. In this review, we cover the most common forms found in human pathology, specifically congenital heart block, pre-excitation, extrasystoles and long QT syndrome. In addition, we cover pertinent literature data from prenatal animal models, providing a glimpse into pathogenesis of arrhythmias and possible strategies for treatment.
Collapse
Affiliation(s)
- D. Sedmera
- Institute of Anatomy; First Faculty of Medicine; Charles University; Prague Czech Republic
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - R. Kockova
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Department of Cardiology; Institute of Clinical and Experimental Medicine; Prague Czech Republic
| | - F. Vostarek
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - E. Raddatz
- Department of Physiology; Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
2
|
Raddatz E, Thomas AC, Sarre A, Benathan M. Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart. Am J Physiol Heart Circ Physiol 2011; 300:H820-35. [DOI: 10.1152/ajpheart.00827.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases ( N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30–40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.
Collapse
Affiliation(s)
- Eric Raddatz
- Department of Physiology, Faculty of Biology and Medicine, and
| | | | - Alexandre Sarre
- Department of Physiology, Faculty of Biology and Medicine, and
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne; and
| | - Messod Benathan
- Department of Plastic and Reconstructive Surgery, University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Raddatz E, Gardier S, Sarre A. Physiopathology of the embryonic heart (with special emphasis on hypoxia and reoxygenation). Ann Cardiol Angeiol (Paris) 2006; 55:79-89. [PMID: 16708991 DOI: 10.1016/j.ancard.2006.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The adaptative response of the developing heart to adverse intrauterine environment such as reduced O2 delivery can result in alteration of gene expression with short- and long-term consequences including adult cardiovascular diseases. The tolerance of the developing heart of acute or chronic oxygen deprivation, its capacity to recover during reperfusion and the mechanisms involved in reoxygenation injury are still under debate. Indeed, the pattern of response of the immature myocardium to hypoxia-reoxygenation differs from that of the adult. This review deals with the structural and metabolic characteristics of the embryonic heart and the functional consequences of hypoxia and reoxygenation. The relative contribution of calcium and sodium overload, pH disturbances and oxidant stress to the hypoxia-induced cardiac dysfunction is examined, as well as various cellular signaling pathways (e.g. MAP kinases) involved in cell survival or death. In the context of the recent advances in developmental cardiology and fetal cardiac surgery, a better understanding of the physiopathology of the stressed developing heart is required.
Collapse
Affiliation(s)
- E Raddatz
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, CH-1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
4
|
Sarre A, Lange N, Kucera P, Raddatz E. mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways. Am J Physiol Heart Circ Physiol 2005; 288:H1611-9. [PMID: 15550517 DOI: 10.1152/ajpheart.00942.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K+ (mitoKATP) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2′,7′-dichlorofluorescin (DCFH). Effects of the specific mitoKATP channel opener diazoxide (Diazo, 50 μM) or the blocker 5-hydroxydecanoate (5-HD, 500 μM), the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 50 μM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 μM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or l-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, l-NAME, or Chel, whereas protection of the PR interval was abolished by l-NAME exclusively. Thus pharmacological opening of the mitoKATP channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.
Collapse
Affiliation(s)
- Alexandre Sarre
- Dept. of Physiology, Faculty of Biology and Medicine, University of Lausanne, 7 rue du Bugnon, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|