1
|
Marcial-Quino J, Fernández FJ, Fierro F, Montiel-González AM, Tomasini A. Purification and activity enhancement of extracellular tyrosinase from a protease-silenced zygomycete Amylomyces rouxii strain. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01264-6. [PMID: 40316814 DOI: 10.1007/s12223-025-01264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
The intra- and extra-cellular monophenolase and diphenolase activities of the tyrosinase produced by Amylomyces rouxii were determined in submerged culture using Melin-Norkrans medium supplemented with 12.5 mg/L pentachlorophenol (PCP) and 0.1 g/L tyrosine. Maximal intracellular monophenolase activity was 180 U/mL while maximal extracellular monophenolase activity was 80 U/mL, both using p-cresol as substrate. For diphenolase, the highest intracellular activity was 2233 U/mL using 4-tert-butylcatechol (TBC) as substrate and extracellular diphenolase activity was 975 U/mL with catechol as substrate. The peak tyrosinase activity (mono- and diphenolase) was observed at 48 h of culture. The transformant A412-3 exhibited the highest extracellular activities, with a 2.14-fold increase in monophenolase and a 3.02-fold increase in diphenolase activity compared to the parental strain of A. rouxii. Additionally, it was confirmed that the enzyme secreted was in its active form. Extracellular tyrosinase from the transformant A412-3 was partially purified, achieving a purification factor of 10.6. SDS-PAGE analysis of partially purified tyrosinase revealed three bands of 40, 53, and 130 kDa. These bands were sequenced by LC-MS/MS, revealing eight peptides that showed similarity to tyrosinases from different fungi. It was determined that purified tyrosinase exhibited higher diphenolase activity than monophenolase activity, in line with previous studies on fungal tyrosinases.
Collapse
Affiliation(s)
- Jaime Marcial-Quino
- Posgrado en Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09310, Mexico City, Mexico
| | - Francisco J Fernández
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Francisco Fierro
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Alba M Montiel-González
- Laboratorio de Investigación en Microbiología, Facultad de Odontología, Universidad Autónoma de Tlaxcala, 90000, Av. Ribereña Sin Número, Col. CentroTlaxcala, Mexico
| | - Araceli Tomasini
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
2
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
3
|
Marcial-Quino J, Fierro F, Fernández FJ, Montiel-Gonzalez AM, Sierra-Palacios E, Tomasini A. Silencing of Amylomyces rouxii aspartic II protease by siRNA to increase tyrosinase activity. Fungal Biol 2023; 127:1415-1425. [PMID: 37993253 DOI: 10.1016/j.funbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Amylomyces rouxii is a zygomycete that produces extracellular protease and tyrosinase. The tyrosinase activity is negatively regulated by the proteases and, which attempts to purify the tyrosinase (tyr) enzyme that has been hampered by the presence of a protease that co-purified with it. In this work we identified genes encoding aspartic protease II (aspII) and VI of A. rouxii. Using an RNAi strategy based on the generation of a siRNA by transcription from two opposite-orientated promoters, the expression of these two proteases was silenced, showing that this molecular tool is suitable for gene silencing in Amylomyces. The transformant strains showed a significant attenuation of the transcripts (determined by RT-qPCR), with respective inhibition of the protease activity. In the case of aspII, inhibition was in the range of 43-90 % in different transformants, which correlated well with up to a five-fold increase in tyr activity with respect to the wild type and control strains. In contrast, silencing of aspVI caused a 43-65 % decrease in protease activity but had no significant effect on the tyr activity. The results show that aspII has a negative effect on tyr activity, and that the silencing of this protease is important to obtain strains with high levels of tyr activity.
Collapse
Affiliation(s)
- Jaime Marcial-Quino
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Francisco Fierro
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Francisco José Fernández
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Alba Mónica Montiel-Gonzalez
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico, 09620, Mexico
| | - Araceli Tomasini
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
4
|
Cortés-Maldonado L, Marcial-Quino J, Gómez-Manzo S, Fierro F, Tomasini A. A method for the extraction of high quality fungal RNA suitable for RNA-seq. J Microbiol Methods 2020; 170:105855. [PMID: 32004552 DOI: 10.1016/j.mimet.2020.105855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 11/16/2022]
Abstract
Transcriptomic analysis is an OMICs technology that is becoming indispensable to understand and get a complete picture of cell functioning and adaptation to the environmental cues the cell is continuously receiving. Among the techniques available to perform transcriptomics, RNA-seq is becoming the method of choice. The quality of the RNA used for the generation of cDNA libraries and subsequent sequencing is crucial for the success of the process. Good RNA-seq performance is often limited by problems such as low RNA yield and/or integrity, RNA stability, and contamination with DNA, salts or chemicals. RNA isolation from fungi usually faces these problems and is particularly sensitive to degradation due to the high RNase activity content present in many species. Here we describe the development of a robust, highly reproducible and simple RNA purification method for filamentous fungi, which combines various strategies to get fully DNA-free RNA samples of high purity and integrity without the need to use a DNase I digestion step. The obtained RNA samples complied with all required standards to be used for RNA-seq and showed an excellent performance when subjected to Illumina-HiSeq 2500.
Collapse
Affiliation(s)
- Leyda Cortés-Maldonado
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico.
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico.
| | - Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Araceli Tomasini
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Mexico City 09340, Mexico.
| |
Collapse
|
5
|
Karich A, Ullrich R, Scheibner K, Hofrichter M. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants. Front Microbiol 2017; 8:1463. [PMID: 28848501 PMCID: PMC5552789 DOI: 10.3389/fmicb.2017.01463] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments.
Collapse
Affiliation(s)
- Alexander Karich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - René Ullrich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - Katrin Scheibner
- Enzyme Technology Unit, Brandenburg University of TechnologyCottbus, Germany
| | - Martin Hofrichter
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| |
Collapse
|
6
|
Agarwal P, Singh J, Singh RP. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2. Appl Biochem Biotechnol 2016; 182:1-15. [DOI: 10.1007/s12010-016-2306-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
7
|
Vacondio B, Birolli WG, Ferreira IM, Seleghim MH, Gonçalves S, Vasconcellos SP, Porto AL. Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Jadhav SB, Patil NS, Watharkar AD, Apine OA, Jadhav JP. Batch and continuous biodegradation of Amaranth in plain distilled water by P. aeruginosa BCH and toxicological scrutiny using oxidative stress studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2854-2866. [PMID: 22996819 DOI: 10.1007/s11356-012-1155-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Bacterium Pseudomonas aeruginosa BCH was able to degrade naphthylaminesulfonic azo dye Amaranth in plain distilled water within 6 h at 50 mg l(-1) dye concentration. Studies were carried out to find the optimum physical conditions and which came out to be pH 7 and temperature 30 °C. Amaranth could also be decolorized at concentration 500 mg l(-1). Presence of Zn and Hg ions could strongly slow down the decolorization process, whereas decolorization progressed rapidly in presence of Mn. Decolorization rate was increased with increasing cell mass. Induction in intracellular and extracellular activities of tyrosinase and NADH-DCIP reductase along with intracellular laccase and veratryl alcohol oxidase indicated their co-ordinate action during dye biodegradation. Up-flow bioreactor studies with alginate immobilized cells proved the capability of strain to degrade Amaranth in continuous process at 20 ml h(-1) flow rate. Various analytical studies viz.--HPLC, HPTLC, and FTIR gave the confirmation that decolorization was due to biodegradation. From GC-MS analysis, various metabolites were detected, and possible degradation pathway was predicted. Toxicity studies carried out with Allium cepa L. through the assessment of various antioxidant enzymes viz. sulphur oxide dismutase, guaiacol peroxidase, and catalase along with estimation of lipid peroxidation and protein oxidation levels conclusively demonstrated that oxidative stress was generated by Amaranth.
Collapse
Affiliation(s)
- Shekhar B Jadhav
- Department of Biochemistry, Shivaji University, Kolhapur 416004, MS, India
| | | | | | | | | |
Collapse
|
9
|
Diez MC, Gallardo F, Tortella G, Rubilar O, Navia R, Bornhardt C. Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S83-S87. [PMID: 20971547 DOI: 10.1016/j.jenvman.2010.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 09/03/2010] [Accepted: 09/26/2010] [Indexed: 05/30/2023]
Abstract
The white-rot fungus Anthracophyllum discolor immobilized on wheat grains was evaluated for chlorophenol (2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) degradation in allophanic soil columns activated by acidification. Columns without inoculation were used as the control to evaluate the adsorption capacity of the soil columns. The chlorophenols were removed efficiently in soil columns by both adsorption and degradation processes. In inoculated soil columns, 2,4-dichlorophenol was highly degraded and this degradation is associated with a high production of manganese peroxidase. 2,4,6-trichlorophenol was degraded to a lesser extent compared with 2,4-dichlorophenol. Pentachlorophenol was first removed by adsorption and then through degradation by the fungus. Manganese peroxidase activity was lowest when the column was fed with pentachlorophenol and highest when the column was fed with 2,4-dichlorophenol. Laccase was also produced by the fungus but to a lesser degree.
Collapse
Affiliation(s)
- M C Diez
- Chemical Engineering Department, Universidad de La Frontera, PO Box 54-D, Temuco, Chile.
| | | | | | | | | | | |
Collapse
|
10
|
Carvalho MB, Tavares S, Medeiros J, Núñez O, Gallart-Ayala H, Leitão MC, Galceran MT, Hursthouse A, Pereira CS. Degradation pathway of pentachlorophenol by Mucor plumbeus involves phase II conjugation and oxidation-reduction reactions. JOURNAL OF HAZARDOUS MATERIALS 2011; 198:133-42. [PMID: 22074894 DOI: 10.1016/j.jhazmat.2011.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 05/07/2023]
Abstract
Environmental pollution by pentachlorophenol (PCP) is a critical concern worldwide and fungal bioremediation constitutes an elegant and environment-friendly solution. Mucorales from the Zygomycota phylum are often observed to be competitive in field conditions and Mucor plumbeus, in particular, can efficiently deplete PCP from media. The pathway for PCP degradation used by this fungus has not been investigated. In this study, PCP-derived metabolites were identified by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, including tetra- and tri-chlorohydroquinones and phase II-conjugated metabolites. Amongst the latter are the previously reported glucose, sulfate and ribose conjugates, and identified for the first time in fungi sulfate-glucose conjugates. A PCP transformation pathway for M. plumbeus is proposed, which excludes the involvement of cytochrome P-450 and extracellular ligninolytic enzymes.
Collapse
Affiliation(s)
- Mariana B Carvalho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cloning and expression of a tyrosinase from Aspergillus oryzae in Yarrowia lipolytica: application in l-DOPA biotransformation. Appl Microbiol Biotechnol 2011; 92:951-9. [DOI: 10.1007/s00253-011-3400-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/22/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
12
|
Soares I, Flores A, Mendonça M, Barcelos R, Baroni S. FUNGOS NA BIORREMEDIAÇÃO DE ÁREAS DEGRADADAS. ARQUIVOS DO INSTITUTO BIOLÓGICO 2011. [DOI: 10.1590/1808-1657v78p3412011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO O aumento das atividades industriais tem intensificado a poluição ambiental, promovendo a disposição inadequada de resíduos domésticos e industriais, principalmente resíduos perniciosos, implicando na contaminação do solo, ar, recursos hídricos superficiais e subterrâneos. Dentre as tecnologias mais utilizadas na recuperação dessas áreas degradadas, destaca-se a biorremediação, que tem, como agentes recuperadores, os micro-organismos. Portanto, o presente trabalho de revisão tem por objetivo abordar os principais aspectos da biorremediação por fungos – micorremediação de solos contaminados baseados nas diversas pesquisas já publicadas e disponíveis nos principais bancos de dados, tais como SciELO, LILACS, HighWire e PubMed. Essa biotecnologia vem sendo utilizada há vários anos em outros países e, em certos casos, apresenta menor custo e maior eficiência na remoção dos contaminantes do que as técnicas físicas e químicas que são atualmente utilizadas em escala comercial no tratamento de diversos resíduos e na remediação de áreas degradadas. Diante disso, é necessário que sejam realizados mais estudos para compreender os mecanismos de biorremediação mediada por micro-organismos, como ferramenta biológica no combate a poluição.
Collapse
Affiliation(s)
- I.A. Soares
- Universidade Federal do Recôncavo da Bahia, Brasil
| | | | | | | | | |
Collapse
|
13
|
Cea M, Jorquera M, Rubilar O, Langer H, Tortella G, Diez MC. Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2010; 181:315-323. [PMID: 20605683 DOI: 10.1016/j.jhazmat.2010.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 05/29/2023]
Abstract
Bioaugmentation is a promising technology to clean up sites contaminated with recalcitrant chemicals. White-rot fungi have proven to be effective in the degradation of pentachlorophenol. Here, we report the bioremediation of soil contaminated with pentachlorophenol (PCP) by Anthracophyllum discolor and its impact on the soil microbial community. In this study three types of microcosms were established: fresh soil (C(0)), fresh soil plus wheat straw (WS(0)) and, fresh soil plus wheat straw inoculated with A. discolor (WSAD(0)). Additionally, similar treatments and a control of sterile soil spiked with PCP (C(250), WS(250) and WSAD(250)) were used to evaluate the remediation and adsorption of PCP. The PCP removal, total microbial activity, and enzymatic activities were evaluated. This study also investigated the structure of soil microbial community by denaturing gradient gel electrophoresis (DGGE), identifying some of the dominant bacterial and fungal species. The results showed that PCP was effectively degraded in soils by A. discolor and by indigenous soil microorganisms. The addition of wheat straw increased the PCP degradation and enzymatic activities. Only laccase activity was negatively affected by PCP contamination. The PCP degradation was associated with changes in microbial communities, mainly stimulation of members of bacterial phylum Proteobacteria (Xanthomonadaceae, Burkholderiaceae and Enterobacteriaceae), and fungal phylum Ascomycota and Basidiomycota. This study shows the ability of A. discolor to degrade PCP from contaminated soil, and demonstrates that agricultural residues, such as wheat straw, can be used as growth substrate by microorganisms in PCP-contaminated soil, demonstrating a great potential of autochthonous microorganisms for soil remediation.
Collapse
Affiliation(s)
- M Cea
- Scientific and Technological Bioresources Nucleus, Universidad de La Frontera, Casilla, Temuco, Chile.
| | | | | | | | | | | |
Collapse
|
14
|
Pozdnyakova NN, Nikiforova SV, Makarov OE, Chernyshova MP, Pankin KE, Turkovskaya OV. Influence of cultivation conditions on pyrene degradation by the fungus Pleurotus Ostreatus D1. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0161-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway. Appl Microbiol Biotechnol 2009; 84:335-40. [DOI: 10.1007/s00253-009-1981-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
|
16
|
Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9810-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Rubilar O, Feijoo G, Diez C, Lu-Chau TA, Moreira MT, Lema JM. Biodegradation of Pentachlorophenol in Soil Slurry Cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 2007. [DOI: 10.1021/ie061678b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- O. Rubilar
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - G. Feijoo
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - C. Diez
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - T. A. Lu-Chau
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - M. T. Moreira
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - J. M. Lema
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 2006; 100:219-32. [PMID: 16430498 DOI: 10.1111/j.1365-2672.2006.02866.x] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tyrosinases are type-3 copper proteins involved in the initial step of melanin synthesis. These enzymes catalyse both the o-hydroxylation of monophenols and the subsequent oxidation of the resulting o-diphenols into reactive o-quinones, which evolve spontaneously to produce intermediates, which associate in dark brown pigments. In fungi, tyrosinases are generally associated with the formation and stability of spores, in defence and virulence mechanisms, and in browning and pigmentation. First characterized from the edible mushroom Agaricus bisporus because of undesirable enzymatic browning problems during postharvest storage, tyrosinases were found, more recently, in several other fungi with relevant insights into molecular and genetic characteristics and into reaction mechanisms, highlighting their very promising properties for biotechnological applications. The limit of these applications remains in the fact that native fungal tyrosinases are generally intracellular and produced in low quantity. This review compiles the recent data on biochemical and molecular properties of fungal tyrosinases, underlining their importance in the biotechnological use of these enzymes. Next, their most promising applications in food, pharmaceutical and environmental fields are presented and the bioengineering approaches used for the development of tyrosinase-overproducing fungal strains are discussed.
Collapse
Affiliation(s)
- S Halaouli
- UMR 1163 INRA-Université de Provence de Biotechnologie des Champignons Filamenteux, IFR 86 de Biotechnologie Agro-Industrielle de Marseille, Marseille Cedex, France
| | | | | | | | | |
Collapse
|
19
|
|