1
|
Protein Supplementation Enhances the Effects of Intermittent Loading on Skeletal Muscles by Activating the mTORC1 Signaling Pathway in a Rat Model of Disuse Atrophy. Nutrients 2020; 12:nu12092729. [PMID: 32906669 PMCID: PMC7551819 DOI: 10.3390/nu12092729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/07/2023] Open
Abstract
Inactivity leads to skeletal muscle atrophy, whereas intermittent loading (IL) during hind limb unloading (HU) attenuates muscle atrophy. However, the combined effects of IL and protein supplementation on disuse muscle atrophy are unclear. Therefore, we investigated the effects of IL and a high-protein oral nutritional supplement (HP) during HU on skeletal muscle mass and protein synthesis/breakdown. Male F344 rats were assigned to the control (CON), 14-day HU (HU), IL during HU (HU + IL), and IL during HU followed by HP administration (2.6 g protein/kg/day; HU + IL + HP) groups. Soleus and gastrocnemius muscles were sampled 30 min after the last IL and HP supplementation. HU decreased relative soleus and gastrocnemius muscle masses. Relative muscle masses and p70 ribosomal protein S6 kinase/ribosomal protein S6 phosphorylation in soleus and gastrocnemius muscles were higher in the HU + IL group than the HU group and further higher in the HU + IL + HP group than the HU + IL group in gastrocnemius muscle. Therefore, protein administration plus IL effectively prevented skeletal muscle atrophy induced by disuse, potentially via enhanced activation of targets downstream of mammalian target of rapamycin complex 1 (mTORC1) signaling pathway.
Collapse
|
2
|
Saneyasu T, Nakano Y, Tsuchii N, Kitashiro A, Tsuchihashi T, Kimura S, Honda K, Kamisoyama H. Differential regulation of protein synthesis by skeletal muscle type in chickens. Gen Comp Endocrinol 2019; 284:113246. [PMID: 31415729 DOI: 10.1016/j.ygcen.2019.113246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/16/2019] [Accepted: 08/10/2019] [Indexed: 01/03/2023]
Abstract
In mammalian skeletal muscles, protein synthesis rates vary according to fiber types. We herein demonstrated differences in the regulatory mechanism underlying the protein synthesis in the pectoralis major (a glycolytic twitch muscle), adductor superficialis (an oxidative twitch muscle), and adductor profound (a tonic muscle) muscles of 14-day-old chickens. Under ad libitum feeding conditions, protein synthesis is significantly higher in the adductor superficialis muscle than in the pectoralis major muscle, suggesting that protein synthesis is upregulated in oxidative muscles in chickens, similar to that in mammals. In the pectoralis major muscle, fasting significantly inhibited the Akt/S6 pathway and protein synthesis with a corresponding decrease in plasma insulin concentration. Conversely, the insulin like growth factor-1 (IGF-1) mRNA levels significantly increased. These findings suggest that the insulin/Akt/S6 pathway plays an important role in the regulation of protein synthesis in the pectoralis major muscle. Interestingly, protein synthesis in the adductor superficialis muscle appears to be regulated in an Akt-independent manner, because fasting significantly decreased S6 phosphorylation and protein synthesis without affecting Akt phosphorylation. In the adductor profound muscle, IGF-1 expression, phosphorylation of Akt and S6, and protein synthesis were decreased by fasting, suggesting that insulin and/or skeletal IGF-1 appear contribute to protein synthesis via the Akt/S6 pathway. These findings revealed the differential regulation of protein synthesis depending on skeletal muscle types in chickens.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Yuma Nakano
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Nami Tsuchii
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ayana Kitashiro
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Sayaka Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | |
Collapse
|
3
|
Edman S, Söderlund K, Moberg M, Apró W, Blomstrand E. mTORC1 Signaling in Individual Human Muscle Fibers Following Resistance Exercise in Combination With Intake of Essential Amino Acids. Front Nutr 2019; 6:96. [PMID: 31294029 PMCID: PMC6603157 DOI: 10.3389/fnut.2019.00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
Human muscles contain a mixture of type I and type II fibers with different contractile and metabolic properties. Little is presently known about the effect of anabolic stimuli, in particular nutrition, on the molecular responses of these different fiber types. Here, we examine the effect of resistance exercise in combination with intake of essential amino acids (EAA) on mTORC1 signaling in individual type I and type II human muscle fibers. Five strength-trained men performed two sessions of heavy leg press exercise. During exercise and recovery, the subjects ingested an aqueous solution of EAA (290 mg/kg) or flavored water (placebo). Muscle biopsies were taken from the vastus lateralis before and 90 min after exercise. The biopsies were freeze-dried and single fibers dissected out and weighed (range 0.95-8.1 μg). The fibers were homogenized individually and identified as type I or II by incubation with antibodies against the different isoforms of myosin. They were also analyzed for both the levels of protein as well as phosphorylation of proteins in the mTORC1 pathway using Western blotting. The levels of the S6K1 and eEF2 proteins were ~50% higher in type II than in type I fibers (P < 0.05), but no difference was found between fiber types with respect to the level of mTOR protein. Resistance exercise led to non-significant increases (2-3-fold) in mTOR and S6K1 phosphorylation as well as a 50% decrease (P < 0.05) in eEF2 phosphorylation in both fiber types. Intake of EAA caused a 2 and 6-fold higher (P < 0.05) elevation of mTOR and S6K1 phosphorylation, respectively, in both type I and type II fibers compared to placebo, with no effect on phosphorylation of eEF2. In conclusion, protein levels of S6K1 and eEF2 were significantly higher in type II than type I fibers suggesting higher capacity of the mTOR pathway in type II fibers. Ingestion of EAA enhanced the effect of resistance exercise on phosphorylation of mTOR and S6K1 in both fiber types, but with considerable variation between single fibers of both types.
Collapse
Affiliation(s)
- Sebastian Edman
- The Åstrand Laboratory, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Karin Söderlund
- The Åstrand Laboratory, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marcus Moberg
- The Åstrand Laboratory, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- The Åstrand Laboratory, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Eva Blomstrand
- The Åstrand Laboratory, the Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Age and sex differences in human skeletal muscle fibrosis markers and transforming growth factor-β signaling. Eur J Appl Physiol 2017; 117:1463-1472. [PMID: 28493029 DOI: 10.1007/s00421-017-3639-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of the study was to determine whether higher fibrosis markers in skeletal muscle of older adults are accompanied by increased expression of components of the canonical TGF-β signal transduction pathway. METHODS Fourteen healthy young (21-35 years; 9 males and 5 females) and seventeen older (55-75 years; 9 males and 8 females) participants underwent vastus lateralis biopsies to determine intramuscular mRNA and protein expression of fibrogenic markers and TGF-β signaling molecules related to TGF-β1 and myostatin. RESULTS Expression of mRNA encoding the pro-fibrotic factors; axin 2, collagen III, β-catenin and fibronectin, were all significantly higher (all p < 0.05) in the older participants (350, 170, 298, and 641%, respectively). Furthermore, axin 2 and β-catenin mRNA were significantly higher in older females than older males (p < 0.05). Gene expression of ActRIIB, myostatin, and TGF-β1 were higher in older adults compared to younger adults (all p < 0.05). There was, however, no difference in the total protein content of myostatin, myoD or myogenin (all p > 0.05), whereas Smad3 protein phosphorylation was 48% lower (p < 0.05) in muscle from older adults. CONCLUSIONS Increased abundance of mRNA of fibrotic markers was observed in muscle from older adults and was partly accompanied by altered abundance of pro-fibrotic ligands in a sex specific manner.
Collapse
|
5
|
Estrogen Effects on Skeletal Muscle Insulin-Like Growth Factor–1 and Myostatin in Ovariectomized Rats. Exp Biol Med (Maywood) 2016; 232:1314-25. [DOI: 10.3181/0704-rm-92] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous work showed that estrogen replacement attenuates muscle growth in immature rats. The present study examined muscle insulin-like growth factor–1 (IGF-1) and myostatin expression to determine whether these growth regulators might be involved in mediating estrogen’s effects on muscle growth. IGF-1 and myostatin message and protein expression in selected skeletal muscles from 7-week-old sham-ovariectomized (SHAM) and ovariectomized rats that received continuous estrogen (OVX/E2) or solvent vehicle (OVX/CO) from an implant for 1 week or 5 weeks was measured. In the 1-week study, ovariectomy increased IGF-1 mRNA expression in fast extensor digitorum longus and gastrocnemius muscles; the increase was reversed by estrogen replacement. A similar trend was observed in the slow soleus muscle, although the change was not statistically significant. In contrast to mRNA, muscle IGF-1 protein expression was not different between SHAM and OVX/ CO animals in the 1-week study. One week of estrogen replacement significantly decreased IGF-1 protein level in all muscles examined. Myostatin mRNA expression was not different among the 1-week treatment groups. One week of estrogen replacement significantly increased myostatin protein in the slow soleus muscle but not the fast extensor digitorum longus and gastrocnemius muscles. There was no treatment effect on IGF-1 and myostatin expression in the 5-week study; this finding suggested a transient estrogen effect or upregulation of a compensatory mechanism to counteract the estrogen effect observed at the earlier time point. This investigation is the first to explore ovariectomy and estrogen effects on skeletal muscle IGF-1 and myostatin expression. Results suggest that reduced levels of muscle IGF-1 protein may mediate estrogen’s effect on growth in immature, ovariectomized rats. Increased levels of muscle myostatin protein may also have a role in mediating estrogen’s effects on growth in slow but not fast skeletal muscle.
Collapse
|
6
|
Abstract
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox regulation of muscle adaptation and oxidant-mediated muscle fatigue.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
7
|
Liao B, Xu Y. Exercise improves skeletal muscle insulin resistance without reduced basal mTOR/S6K1 signaling in rats fed a high-fat diet. Eur J Appl Physiol 2011; 111:2743-52. [PMID: 21404070 DOI: 10.1007/s00421-011-1892-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 02/25/2011] [Indexed: 11/26/2022]
Abstract
Exercise improves high-fat diet (HFD)-induced skeletal muscle insulin resistance, but the mechanism is unresolved. This study aims to explore whether the improvement in response to exercise is associated with mTOR/S6K1 signaling and whether the signaling changes are muscle-specific. Male SD rats (150-180 g) were used for this study. After the experimental period, 6 weeks of exercise improved HFD-impaired intraperitoneal glucose tolerance and insulin-stimulated 2-deoxyglucose uptake in soleus (SOL) and extensor digitorum longus (EDL) muscles. Furthermore, 6 weeks of the HFD resulted in a reduced type I fiber ratio of SOL, an increased type I ratio of EDL, and a reduced fiber size of EDL, whereas exercise increased type I fiber ratio of SOL as well as type I fiber cross-sectional areas of EDL. However, the HFD had a main effect on basal cytosolic phosphorylation of S6K1 on Thr(389) content in SOL, which was also influenced by a significant interaction between the diet and exercise in EDL. Exercise had no direct effect on the basal phosphorylation of Akt on Ser(473), mTOR on Ser(2448), S6K1 on Thr(389) content in SOL. On the contrary, exercise prevented HFD-induced decrease in basal phosphorylation of S6K1 on Thr(389) content in EDL. These results indicate that 6 weeks of HFD and exercise lead to alterations in fiber type shift, fiber size, and basal phosphorylation of S6K1 on Thr(389) content in a muscle-specific pattern. Exercise prevents HFD-induced skeletal muscle insulin resistance, which is not associated with a reduced basal phosphorylation of mTOR/S6K1 alteration in the muscles.
Collapse
Affiliation(s)
- Bagen Liao
- Department of Sports Medicine, Guangzhou Sports University, Guangzhou Dadao 1268, Guangzhou, 510076, China.
| | | |
Collapse
|
8
|
van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 2010; 110:665-94. [PMID: 20602111 PMCID: PMC2957584 DOI: 10.1007/s00421-010-1545-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2010] [Indexed: 12/11/2022]
Abstract
An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type-fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine.
Collapse
Affiliation(s)
- T. van Wessel
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | - A. de Haan
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK
| | - W. J. van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - R. T. Jaspers
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
9
|
Karagounis LG, Yaspelkis BB, Reeder DW, Lancaster GI, Hawley JA, Coffey VG. Contraction-induced changes in TNFalpha and Akt-mediated signalling are associated with increased myofibrillar protein in rat skeletal muscle. Eur J Appl Physiol 2010; 109:839-48. [PMID: 20229019 DOI: 10.1007/s00421-010-1427-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2010] [Indexed: 12/28/2022]
Abstract
Resistance training results in skeletal muscle hypertrophy, but the molecular signalling mechanisms responsible for this altered phenotype are incompletely understood. We used a resistance training (RT) protocol consisting of three sessions [day 1 (d1), day 3 (d3), day 5 (d5)] separated by 48 h recovery (squat exercise, 4 sets x 10 repetitions, 3 min recovery) to determine early signalling responses to RT in rodent skeletal muscle. Six animals per group were killed 3 h after each resistance training session and 24 and 48 h after the last training session (d5). There was a robust increase in TNFalpha protein expression, and IKK(Ser180/181) and p38MAPK(Thr180/Tyr182) phosphorylation on d1 (P < 0.05), which abated with subsequent RT, returning to control levels by d5 for TNFalpha and IKK(Ser180/181). There was a trend for a decrease in MuRF-1 protein expression, 48 h following d5 of training (P = 0.08). Notably, muscle myofibrillar protein concentration was elevated compared to control 24 and 48 h following RT (P < 0.05). Akt(Ser473) and mTOR(Ser2448) phosphorylation were unchanged throughout RT. Phosphorylation of p70S6k(Thr389) increased 3 h post-exercise on d1, d3 and d5 (P < 0.05), whilst phosphorylation of S6(Ser235/236) increased on d1 and d3 (P < 0.05). Our results show a rapid attenuation of inflammatory signalling with repeated bouts of resistance exercise, concomitant with summation in translation initiation signalling in skeletal muscle. Indeed, the cumulative effect of these signalling events was associated with myofibrillar protein accretion, which likely contributes to the early adaptations in response to resistance training overload in the skeletal muscle.
Collapse
Affiliation(s)
- Leonidas G Karagounis
- Health Innovations Research Institute, School of Medical Science, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | | | | | | | | | | |
Collapse
|
10
|
MUROYA S, WATANABE K, HAYASHI S, MIYAKE M, KONASHI S, SATO Y, TAKAHASHI M, KAWAHATA S, YOSHIKAWA Y, ASO H, CHIKUNI K, YAMAGUCHI T. Muscle type-specific effect of myostatin deficiency on myogenic regulatory factor expression in adult double-muscled Japanese Shorthorn cattle. Anim Sci J 2009; 80:678-85. [DOI: 10.1111/j.1740-0929.2009.00684.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Stadlbauer K, Brunmair B, Szöcs Z, Krebs M, Luger A, Fürnsinn C. The effects of amino acids on glucose metabolism of isolated rat skeletal muscle are independent of insulin and the mTOR/S6K pathway. Am J Physiol Endocrinol Metab 2009; 297:E785-92. [PMID: 19622787 DOI: 10.1152/ajpendo.00061.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two mechanisms have been proposed for the modulation of skeletal muscle glucose metabolism by amino acids. Whereas studies on humans and cultured cells suggested acute insulin desensitization via mammalian target of rapamycin (mTOR) and its downstream target p70 S6 kinase (S6K), investigations using native specimens of rat muscle hinted at impairment of glucose oxidation by competition for mitochondrial oxidation. To better understand these seemingly contradictory findings, we explored the effects of high concentrations of mixed amino acids on fuel metabolism and S6K activity in freshly isolated specimens of rat skeletal muscle. In this setting, increasing concentrations of amino acids dose-dependently reduced the insulin-stimulated rates of CO(2) production from glucose and palmitate (decrease in glucose oxidation induced by addition of 5.5, 11, 22, and 44 mmol/l amino acids:--16 +/- 3, -25 +/- 7, -44 +/- 4, -62 +/- 4%; P < 0.02 each). This effect could not be attributed to insulin desensitization, because it was not accompanied by any reduction of insulin-stimulated glucose transport [+12 +/- 16, +17 +/- 22, +21 +/- 33, +13 +/- 12%; all nonsignificant (NS)] or glycogen synthesis (+1 +/- 6, -5 +/- 6, -9 +/- 8, +6 +/- 5%; all NS) and because it persisted without insulin stimulation. Abrogation of S6K activity by the mTOR blocker rapamycin failed to counteract amino acid-induced inhibition of glucose and palmitate oxidation, which therefore was obviously independent of mTOR/S6K signaling (decrease in glucose oxidation by addition of 44 mmol/l amino acids: without rapamycin, -60 +/- 4%; with rapamycin, -50 +/- 13%; NS). We conclude that amino acids can directly affect muscle glucose metabolism via two mechanisms, mTOR/S6K-mediated insulin desensitization and mitochondrial substrate competition, with the latter predominating in isolated rat muscle.
Collapse
Affiliation(s)
- Karin Stadlbauer
- Dept. of Medicine III, Div. of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
12
|
Gupte AA, Bomhoff GL, Geiger PC. Age-related differences in skeletal muscle insulin signaling: the role of stress kinases and heat shock proteins. J Appl Physiol (1985) 2008; 105:839-48. [PMID: 18599680 DOI: 10.1152/japplphysiol.00148.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with an increase in insulin resistance in skeletal muscle, yet the underlying mechanism is not well established. We hypothesize that with aging, a chronic increase in stress kinase activation, coupled with a decrease in oxidative capacity, leads to insulin resistance in skeletal muscle. In aged (24 mo old) and young (3 mo old) Fischer 344 rats, 2-deoxyglucose uptake and insulin signaling [as measured by phosphorylation of insulin receptor substrate-1 (IRS-1), Akt (protein kinase B), and Akt substrate of 160 kDa (AS160)] decreased significantly with age. Activation of, c-Jun NH(2)-terminal kinase (JNK), glycogen serine kinase-3beta (GSK-3beta), and degradation of IkappaBalpha by the upstream inhibitor of kappa B kinase (IKKbeta), as measured by Western blot analysis, were increased with age in both soleus and epitrochlearis (Epi) muscles. However, much higher activation of these kinases in Epi muscles from young rats compared with soleus results in a greater effect of these kinases on insulin signaling in fast-twitch muscle with age. Heat shock protein (HSP) 72 expression and phosphorylation of HSP25 were higher in soleus compared with Epi muscles, and both parameters decreased with age. Age and fiber type differences in cytochrome oxidase activity are consistent with observed changes in HSP expression and activation. Our results demonstrate a significant difference in the ability of slow-twitch and fast-twitch muscles to respond to insulin and regulate glucose with age. A greater constitutive HSP expression and lower stress kinase activation may account for the ability of slow-twitch muscles to preserve the capacity to respond to insulin and maintain glucose homeostasis with age.
Collapse
Affiliation(s)
- Anisha A Gupte
- Dept. of Molecular and Integrative Physiology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
13
|
Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med 2008; 44:142-52. [PMID: 18191750 DOI: 10.1016/j.freeradbiomed.2007.02.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/16/2007] [Accepted: 02/17/2007] [Indexed: 01/19/2023]
Abstract
Contraction-induced production of reactive oxygen species has been shown to cause oxidative stress to skeletal muscle. As an adaptive response, muscle antioxidant defense systems are upregulated in response to exercise. Nuclear factor kappaB and mitogen-activated protein kinase are two major oxidative-stress-sensitive signal transduction pathways that have been shown to activate the gene expression of a number of enzymes and proteins that play important roles in maintenance of intracellular oxidant-antioxidant homeostasis. This mini-review will discuss the main mechanisms and gene targets for these signaling pathways during exercise and the biological significance of the adaptation.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, 2000 Observatory Drive, Madison, WI 53706, USA.
| |
Collapse
|