1
|
Unveil the transcriptional landscape at the Cryptococcus-host axis in mice and nonhuman primates. PLoS Negl Trop Dis 2019; 13:e0007566. [PMID: 31329596 PMCID: PMC6675133 DOI: 10.1371/journal.pntd.0007566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/01/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Pathogens and hosts require rapid modulation of virulence and defense mechanisms at the infection axis, but monitoring such modulations is challenging. In studying the human fungal pathogen Cryptococcus neoformans, mouse and rabbit infection models are often employed to shed light on the disease mechanisms but that may not be clinically relevant. In this study, we developed an animal infection model using the non-human primate cynomolgus monkey Macaca fascicularis. In addition, we systematically profiled and compared transcriptional responses between the infected mice and the cynomolgus monkey, using simultaneous or dual RNA next-generation sequencing. We demonstrated that there are shared but distinct transcriptional profiles between the two models following C. neoformans infection. Specifically, genes involved in immune and inflammatory responses are all upregulated. Osteoclastogenesis and insulin signaling are also significantly co-regulated in both models and disrupting an osteoclastogenesis-associated gene (OC-STAMP) or the insulin-signaling process significantly altered the host tolerance to C. neoformans. Moreover, C. neoformans was shown to activate metal sequestration, dampen the sugar metabolism, and control cell morphology during infection. Taking together, we described the development of a non-human primate model of cryptococcosis that allowed us to perform an in-depth analysis and comparison of transcriptome profiles during infections of two animal models and conceptually identify host genes important in disease responses. This study provides new insights in understanding fungal pathogenesis mechanisms that potentially facilitate the identification of novel drug targets for the treatment of cryptococcal infection. The host-pathogen interaction is highly dynamic and tightly regulated, and yet is difficult to monitor. Traditional investigations provide valuable information for the understanding of pathogenic microbial biology but are time-consuming and often neglect the host immune responses. In addition, current animal models for studying pathogenic fungi are limited in mimicking the responses from humans. The development of a new Cryptococcus neoformans infection model using nonhuman primates and the utilization of simultaneous RNA sequencing analysis provide fast and clinically relevant research data allowing the identification of novel critical players from both the invading fungus and the host. The data from the current study would not only help to decipher disease mechanisms but also promote the discovery of novel antifungal drug targets.
Collapse
|
2
|
Rolin GL, Binda D, Tissot M, Viennet C, Saas P, Muret P, Humbert P. In vitro study of the impact of mechanical tension on the dermal fibroblast phenotype in the context of skin wound healing. J Biomech 2014; 47:3555-61. [PMID: 25267573 DOI: 10.1016/j.jbiomech.2014.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/26/2022]
Abstract
Skin wound healing is finely regulated by both matrix synthesis and degradation which are governed by dermal fibroblast activity. Actually, fibroblasts synthesize numerous extracellular matrix proteins (i.e., collagens), remodeling enzymes and their inhibitors. Moreover, they differentiate into myofibroblasts and are able to develop endogenous forces at the wound site. Such forces are crucial during skin wound healing and have been widely investigated. However, few studies have focused on the effect of exogenous mechanical tension on the dermal fibroblast phenotype, which is the objective of the present paper. To this end, an exogenous, defined, cyclic and uniaxial mechanical strain was applied to fibroblasts cultured as scratch-wounded monolayers. Results showed that fibroblasts' response was characterized by both an increase in procollagen type-I and TIMP-1 synthesis, and a decrease in MMP-1 synthesis. The monitoring of scratch-wounded monolayers did not show any decrease in kinetics of the filling up when mechanical tension was applied. Additional results obtained with proliferating fibroblasts and confluent monolayer indicated that mechanical tension-induced response of fibroblasts depends on their culture conditions. In conclusion, mechanical tension leads to the differentiation of dermal fibroblasts and may increase their wound-healing capacities. So, the exogenous uniaxial and cyclic mechanical tension reported in the present study may be considered in order to improve skin wound healing.
Collapse
Affiliation(s)
- Gwenae L Rolin
- University Hospital of Besançon, Clinical Investigation Center, 2 Place St. Jacques, Inserm 1431, Besançon 25000, France; Inserm UMR 1098, Engineering and Cutaneous Biology team, Besançon, France; Université de Franche-Comté, Besançon, France; EFS Bourgogne Franche-Comté, Besançon, France; SFR FED 4234, France.
| | - Delphine Binda
- University Hospital of Besançon, Clinical Investigation Center, 2 Place St. Jacques, Inserm 1431, Besançon 25000, France; EFS Bourgogne Franche-Comté, Besançon, France; SFR FED 4234, France
| | - Marion Tissot
- Inserm UMR 1098, Engineering and Cutaneous Biology team, Besançon, France; Université de Franche-Comté, Besançon, France; EFS Bourgogne Franche-Comté, Besançon, France; SFR FED 4234, France
| | - Céline Viennet
- Inserm UMR 1098, Engineering and Cutaneous Biology team, Besançon, France; Université de Franche-Comté, Besançon, France; EFS Bourgogne Franche-Comté, Besançon, France; SFR FED 4234, France
| | - Philippe Saas
- University Hospital of Besançon, Clinical Investigation Center, 2 Place St. Jacques, Inserm 1431, Besançon 25000, France; Inserm UMR 1098, Engineering and Cutaneous Biology team, Besançon, France; Université de Franche-Comté, Besançon, France; University Hospital of Besançon, Department of Dermatology, Besançon, France; EFS Bourgogne Franche-Comté, Besançon, France; SFR FED 4234, France
| | - Patrice Muret
- Inserm UMR 1098, Engineering and Cutaneous Biology team, Besançon, France; Université de Franche-Comté, Besançon, France; EFS Bourgogne Franche-Comté, Besançon, France; SFR FED 4234, France
| | - Philippe Humbert
- Inserm UMR 1098, Engineering and Cutaneous Biology team, Besançon, France; Université de Franche-Comté, Besançon, France; University Hospital of Besançon, Department of Dermatology, Besançon, France; EFS Bourgogne Franche-Comté, Besançon, France; SFR FED 4234, France
| |
Collapse
|
3
|
The molecular mechanism of hypertrophic scar. J Cell Commun Signal 2013; 7:239-52. [PMID: 23504443 DOI: 10.1007/s12079-013-0195-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/06/2013] [Indexed: 10/27/2022] Open
Abstract
Hypertrophic scar (HTS) is a dermal form of fibroproliferative disorder which often develops after thermal or traumatic injury to the deep regions of the skin and is characterized by excessive deposition and alterations in morphology of collagen and other extracellular matrix (ECM) proteins. HTS are cosmetically disfiguring and can cause functional problems that often recur despite surgical attempts to remove or improve the scars. In this review, the roles of various fibrotic and anti-fibrotic molecules are discussed in order to improve our understanding of the molecular mechanism of the pathogenesis of HTS. These molecules include growth factors, cytokines, ECM molecules, and proteolytic enzymes. By exploring the mechanisms of this form of dermal fibrosis, we seek to provide some insight into this form of dermal fibrosis that may allow clinicians to improve treatment and prevention in the future.
Collapse
|
4
|
Mohajerani A, Ghahary A, Khuramizadeh M, Larijani B. Serum 14-3-3; matrix metalloproteinases and their inhibitors' levels before and after cardiovascular surgery in diabetic and non-diabetic patients. Diabetes Res Clin Pract 2010; 90:305-11. [PMID: 20950886 DOI: 10.1016/j.diabres.2010.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/26/2010] [Accepted: 09/02/2010] [Indexed: 01/13/2023]
Abstract
AIMS We sought to assess the serum levels of the main extracellular matrix components before and after surgery in order to differentiate the response of diabetic patients to acute wounds from that of non-diabetic patients. METHODS The serum levels of 14-3-3, Pro-MMP-1, MMP-3, and TIMP-1 were measured in diabetics (18 patients) and non-diabetics (22 patients) in samples obtained before a coronary artery bypass grafting operation and on the 1st, 3rd, and 5th postoperative days. RESULTS The diabetics had higher serum levels of 14-3-3 both in the pre- and postoperative phases. Nevertheless, there was a postoperative drop in these amounts in all the patients. There was no difference in the serum levels of Pro-MMP-1 between the two groups. In addition, the serum levels of MMP-3 on the 3rd and 5th postoperative days and also TIMP-1 (inhibitor of both MMPs) on all postoperative days were higher in the diabetics. CONCLUSIONS There was perfect synchronicity between the changes in the serum levels of these proteins and their functional nature in the injured tissue. Furthermore, the diabetic patients exhibited more changes in the levels of some of their extracellular enzymes in the wake of acute wounds; these changes were also traceable in the serum.
Collapse
Affiliation(s)
- Alireza Mohajerani
- Endocrinology and Metabolism Research center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
5
|
Armour A, Scott PG, Tredget EE. Cellular and molecular pathology of HTS: basis for treatment. Wound Repair Regen 2007; 15 Suppl 1:S6-17. [PMID: 17727469 DOI: 10.1111/j.1524-475x.2007.00219.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypertrophic scar and keloids are fibroproliferative disorders of the skin which occur often unpredictably, following trauma and inflammation that compromise cosmesis and function and commonly recur following surgical attempts for improvement. Despite decades of research in these fibrotic conditions, current non-surgical methods of treatment are slow, inconvenient and often only partially effective. Fibroblasts from these conditions are activated to produce extracellular matrix proteins such as collagen I and III, proteoglycans such as versican and biglycan and growth factors, including transforming growth factor-beta and insulin like growth factor I. However, more consistently these cells produce less remodeling enzymes including collagenase and other matrix metalloproteinases, as well as the small proteoglycan decorin which is important for normal collagen fibrillogenesis. Recently, the systemic response to injury appears to influence the local healing process whereby increases in Th2 and possibly Th3 cytokines such as IL-2, IL-4 and IL-10 and TGF-beta are present in the circulating lymphocytes in these fibrotic conditions. Finally, unique bone marrow derived cells including mesenchymal and endothelial stem cells as well as fibrocytes appear to traffic into healing wounds and influence the healing tissue. On this background, clinicians are faced with patients who require treatment and the pathophysiologic basis as currently understood is reviewed for a number of emerging modalities.
Collapse
Affiliation(s)
- Alexis Armour
- Department of Surgery, University of Alberta Hospital, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
6
|
Medina A, Ghaffari A, Kilani RT, Ghahary A. The role of stratifin in fibroblast-keratinocyte interaction. Mol Cell Biochem 2007; 305:255-64. [PMID: 17646930 DOI: 10.1007/s11010-007-9538-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Stratifin is a member of 14-3-3 protein family, a highly conserved group of proteins constituted by seven isoforms. They are involved in numerous crucial intracellular functions such as cell cycle and apoptosis, regulation of signal transduction pathways, cellular trafficking, cell proliferation and differentiation, cell survival, and protein folding and processing, among others. At epidermal level, stratifin (also called 14-3-3 sigma) has been described as molecule with relevant functions. For instance, this isoform is a marker associated with keratinocyte differentiation. In this maturation process, the presence of dominant negative molecules of p53 induces a "stemness condition" of keratinocyte precursor cells and suppression of stratifin expression. In addition, the recently described keratinocyte-releasable form of stratifin is involved in dermal fibroblast MMP-1 over-expression through c-Fos and c-Jun activity. This effect is mediated, at least in part, by p38 mitogen-activated protein kinase (MAPK). Other MMP family members such as stromelysin-1 (MMP-3), stromelysin-2 (MMP-10), neutrophil collagenase (MMP-8), and membrane-type MMP-24 (MT5-MMP) are also up-regulated by stratifin. Within fibroproliferative disorder of skin, hypertrophic scar and keloids exhibit a high content of collagen, proteoglycans, and fibronectin. Thus, the MMP profile induced by stratifin is an interesting starting point to establish new therapeutic tools to control the process of wound healing. In this review, we will focus on site of synthesis and mode of action of stratifin in skin and wound healing.
Collapse
Affiliation(s)
- Abelardo Medina
- BC Professional Fire Fighters' Burn and Wound Healing Laboratory, Division of Plastic Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|