1
|
Hurst DF, Oltmans SJ, Vömel H, Rosenlof KH, Davis SM, Ray EA, Hall EG, Jordan AF. Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015065] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Constant P, Poissant L, Villemur R. Tropospheric H(2) budget and the response of its soil uptake under the changing environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:1809-1823. [PMID: 19155054 DOI: 10.1016/j.scitotenv.2008.10.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 10/06/2008] [Accepted: 10/26/2008] [Indexed: 05/27/2023]
Abstract
Molecular hydrogen (H(2)) is an indirect greenhouse gas present at the trace level in the atmosphere. So far, the sum of its sources and sinks is close to equilibrium, but its large-scale utilization as an alternative energy carrier would alter its atmospheric burden. The magnitude of the emissions associated with a future H(2)-based economy is difficult to predict and remains a matter of debate. Previous attempts to predict the impact that a future H(2)-based economy would exert on tropospheric chemistry were realized by considering a steady rate of microbial-mediated soil uptake, which is currently responsible of ~80% of the tropospheric H(2) losses. Although soil uptake, also known as dry deposition is the most important sink for tropospheric H(2), microorganisms involved in the activity remain elusive. Given that microbial-mediated H(2) soil uptake is influenced by several environmental factors, global change should exert a significant effect on the activity and then, assuming a steady H(2) soil uptake rate for the future may be mistaken. Here, we present an overview of tropospheric H(2) sources and sinks with an emphasis on microbial-mediated soil uptake process. Future researches are proposed to investigate the influence that global change would exert on H(2) dry deposition and to identify microorganisms involved H(2) soil uptake activity.
Collapse
Affiliation(s)
- Philippe Constant
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Québec, Canada H7V 1B7.
| | | | | |
Collapse
|
3
|
Rohs S, Schiller C, Riese M, Engel A, Schmidt U, Wetter T, Levin I, Nakazawa T, Aoki S. Long-term changes of methane and hydrogen in the stratosphere in the period 1978–2003 and their impact on the abundance of stratospheric water vapor. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006877] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Fueglistaler S, Haynes PH. Control of interannual and longer-term variability of stratospheric water vapor. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jd006019] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Gurlit W, Zimmermann R, Giesemann C, Fernholz T, Ebert V, Wolfrum J, Platt U, Burrows JP. Lightweight diode laser spectrometer CHILD (Compact High-altitude iN-situ Laser Diode) for balloonborne measurements of water vapor and methane. APPLIED OPTICS 2005; 44:91-102. [PMID: 15662890 DOI: 10.1364/ao.44.000091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A new lightweight near-infrared tunable diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode spectrometer) was developed for flights to the stratosphere as an additional in situ sensor on existing balloonborne payloads. Free-air absorption measurements in the near infrared are made with an open-path Herriott cell with new design features. It offers two individual absorption path lengths optimized for CH4 with 74 m (136 pass) and H2O with 36 m (66 pass). New electronic features include a real-time gain control loop that provides an autocalibration function. In flight-ready configuration the instrument mass is approximately 20 kg, including batteries. It successfully measured stratospheric CH4 and H2O profiles on high-altitude balloons on four balloon campaigns (Environmental Satellite validation) between October 2001 and June 2003. On these first flights, in situ spectra were recorded from ground level to 32,000-m altitude with a sensitivity of 0.1 ppm [(parts per million), ground] to 0.4 ppm (32,000 m) for methane and 0.15-0.5 ppm for water.
Collapse
Affiliation(s)
- Wolfgang Gurlit
- Institute of Environmental Physics, University of Bremen, 28201 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fueglistaler S. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jd005516] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Durry G, Amarouche N, Zéninari V, Parvitte B, Lebarbu T, Ovarlez J. In situ sensing of the middle atmosphere with balloonborne near-infrared laser diodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2004; 60:3371-3379. [PMID: 15561622 DOI: 10.1016/j.saa.2003.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 11/12/2003] [Indexed: 05/24/2023]
Abstract
Since 1997, two near-infrared laser diode sensors have been developed with the support of the CNES, the French space agency, to provide in situ data of H(2)O, CH(4) and CO(2) in the middle atmosphere. The realized instruments were flown from stratospheric balloons within the framework of European campaigns for the study of stratospheric ozone and water vapor and were involved in the validation of the ODIN and ENVISAT satellites. In this paper, we describe the developed laser probing technique, we report atmospheric measurements and finally we discuss future perspectives, particularly the in situ laser sensing of the lower atmosphere of Mars and the implication of the laser hygrometers in balloon campaigns at mid-latitudes and tropical regions to investigate the sources and sinks of stratospheric H(2)O.
Collapse
Affiliation(s)
- G Durry
- IPSL, Service d'Aéronomie, UMR 7620, CNRS-Réduit de Verrières, B.P. 3, 91371 Verrières-le-Buisson Cédex, France.
| | | | | | | | | | | |
Collapse
|
8
|
McCarthy MC. The hydrogen isotopic composition of water vapor entering the stratosphere inferred from high-precision measurements of δD-CH4and δD-H2. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Herman RL, Drdla K, Spackman JR, Hurst DF, Popp PJ, Webster CR, Romashkin PA, Elkins JW, Weinstock EM, Gandrud BW, Toon GC, Schoeberl MR, Jost H, Atlas EL, Bui TP. Hydration, dehydration, and the total hydrogen budget of the 1999/2000 winter Arctic stratosphere. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd001257] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. L. Herman
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - K. Drdla
- NASA Ames Research Center; Moffett Field California USA
| | - J. R. Spackman
- Department of Earth and Planetary Sciences; Harvard University; Cambridge Massachusetts USA
| | - D. F. Hurst
- Climate Monitoring and Diagnostics Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - P. J. Popp
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - C. R. Webster
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - P. A. Romashkin
- Climate Monitoring and Diagnostics Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - J. W. Elkins
- Climate Monitoring and Diagnostics Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - E. M. Weinstock
- Department of Chemistry and Chemical Biology; Harvard University; Cambridge Massachusetts USA
| | - B. W. Gandrud
- National Center for Atmospheric Research; Boulder Colorado USA
| | - G. C. Toon
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | | | - H. Jost
- NASA Ames Research Center; Moffett Field California USA
- Bay Area Environmental Research Institute; Sonoma California USA
| | - E. L. Atlas
- National Center for Atmospheric Research; Boulder Colorado USA
| | - T. P. Bui
- NASA Ames Research Center; Moffett Field California USA
| |
Collapse
|
10
|
Michelsen HA. ATMOS version 3 water vapor measurements: Comparisons with observations from two ER-2 Lyman-α hygrometers, MkIV, HALOE, SAGE II, MAS, and MLS. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Zhou XL, Geller MA, Zhang M. Cooling trend of the tropical cold point tropopause temperatures and its implications. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900472] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Michelsen HA, Irion FW, Manney GL, Toon GC, Gunson MR. Features and trends in Atmospheric Trace Molecule Spectroscopy (ATMOS) version 3 stratospheric water vapor and methane measurements. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jd900336] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Dessler AE, Kim H. Determination of the amount of water vapor entering the stratosphere based on Halogen Occultation Experiment (HALOE) data. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999jd900912] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Hurst DF, Dutton GS, Romashkin PA, Wamsley PR, Moore FL, Elkins JW, Hintsa EJ, Weinstock EM, Herman RL, Moyer EJ, Scott DC, May RD, Webster CR. Closure of the total hydrogen budget of the northern extratropical lower stratosphere. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998jd100092] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Zöger M, Afchine A, Eicke N, Gerhards MT, Klein E, McKenna DS, Mörschel U, Schmidt U, Tan V, Tuitjer F, Woyke T, Schiller C. Fast in situ stratospheric hygrometers: A new family of balloon-borne and airborne Lyman α photofragment fluorescence hygrometers. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998jd100025] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|