1
|
Lei S, Ju T, Li B, Wang J, Xia X, Niu X, Peng S. Study on O 3-NO x-VOCs combined air pollution and ozone health effects in the Hexi Corridor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49837-49854. [PMID: 39085692 DOI: 10.1007/s11356-024-34502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
In order to study the ecological and atmospheric recovery of the Hexi Corridor region, this paper analyzes the migration changes of land use characteristics and utilizes multivariate data and BenMAP-CE software to study the pollution characteristics of ozone and its precursors and the impact on human health in the Hexi Corridor region. The results showed that the increase of cultivated land area in the Hexi Corridor mainly originated from grassland. The MDA8-O3 concentrations met the primary and secondary standards of the Ambient Air Quality Standards on 43% and 99% of the days, respectively. NO2 showed a negative weekend effect with O3, and HCHO was opposite to it. Temperature, barometric pressure, and vegetation were highly correlated with O3-NO2-HCHO. Ozone pollution in the study area caused about 60% of all-cause premature deaths due to cardiovascular diseases. The study suggests that controlling exogenous transport in Wuwei City during the high ozone period (except August) is mainly dominated by the west and northwest, and that synergistic management of VOCs and NOx emissions can reduce O3 pollution and, consequently, reduce the risk to human health.
Collapse
Affiliation(s)
- Shengtong Lei
- The Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730000, Gansu Province, China
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Tianzhen Ju
- The Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730000, Gansu Province, China.
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Bingnan Li
- Faculty of Atmospheric Remote Sensing, Shaanxi Normal University, Xi'an, 710062, China
| | - Jinyang Wang
- The Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730000, Gansu Province, China
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xuhui Xia
- The Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730000, Gansu Province, China
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaowen Niu
- The Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730000, Gansu Province, China
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Shuai Peng
- The Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730000, Gansu Province, China
- College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Wang W, Xiao Y, Han S, Zhang Y, Gong D, Wang H, Wang B. A vehicle-mounted dual-smog chamber: Characterization and its preliminary application to evolutionary simulation of photochemical processes in a quasi-realistic atmosphere. J Environ Sci (China) 2023; 132:98-108. [PMID: 37336613 DOI: 10.1016/j.jes.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 06/21/2023]
Abstract
Smog chambers are the effective tools for studying formation mechanisms of air pollution. Simulations by traditional smog chambers differ to a large extent from real atmospheric conditions, including light, temperature and atmospheric composition. However, the existing parameters for mechanism interpretation are derived from the traditional smog chambers. To address the gap between the traditional laboratory simulations and the photochemistry in the real atmosphere, a vehicle-mounted indoor-outdoor dual-smog chamber (JNU-VMDSC) was developed, which can be quickly transferred to the desired sites to simulate quasi-realistic atmosphere simultaneously in both chambers using "local air". Multiple key parameters of the smog chamber were characterized in the study, demonstrating that JNU-VMDSC meets the requirements of general atmospheric chemistry simulation studies. Additionally, the preliminary results for the photochemical simulations of quasi-realistic atmospheres in Pearl River Delta region and Nanling Mountains are consistent with literature reports on the photochemistry in this region. JNU-VMDSC provides a convenient and reliable experimental device and means to study the mechanism of atmospheric photochemical reactions to obtain near-real results, and will make a great contribution to the control of composite air pollution.
Collapse
Affiliation(s)
- Wenlu Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yang Xiao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Shijie Han
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Yang Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| |
Collapse
|
3
|
Liang M, Dai S, Cheng H, Yu C, Li W, Lai F, Yang K, Ma L, Liu X. Oxidation characteristic and thermal runaway of isoprene. BMC Chem 2023; 17:110. [PMID: 37660031 PMCID: PMC10475201 DOI: 10.1186/s13065-023-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023] Open
Abstract
In this study, the oxidation characteristics of isoprene were investigated using a custom-designed mini closed pressure vessel test (MCPVT). The results show that isoprene is unstable and polymerization occurs under a nitrogen atmosphere. Under an oxygen atmosphere, the oxidation process of isoprene was divided into three stages: (1) isoprene reacts with oxygen to produce peroxide; (2) Peroxides produce free radicals through thermal decomposition; (3) Free radicals cause complex oxidation and thermal runaway reactions. The oxidation of isoprene conforms to the second-order reaction kinetics, and the activation energy was 86.88 kJ·mol-1. The thermal decomposition characteristics of the total oxidation product and purified peroxide mixture were determined by differential scanning calorimetry (DSC). The initial exothermic temperatures Ton were 371.17 K and 365.84 K, respectively. And the decomposition heat QDSC were 816.66 J·g-1 and 991.08 J·g-1, respectively. It indicates that high concentration of isoprene peroxide has a high risk of thermal runaway. The results of thermal runaway experiment showed that the temperature and pressure of isoprene oxidation were prone to rise rapidly, which indicates that the oxidation reaction was dangerous. The reaction products of isoprene were analyzed by gas chromatography-mass spectrometry (GC-MS). The main oxidation products were methyl vinyl ketone, methacrolein, 3-methylfuran, etc. The main thermal runaway products were dimethoxymethane, 2,3-pentanedione, naphthalene, etc. Based on the reaction products, the possible reaction pathway of isoprene was proposed.
Collapse
Affiliation(s)
- Min Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Suyi Dai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Haijun Cheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Chang Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Weiguang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Fang Lai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Xiongmin Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
5
|
Park SJ, Moon YK, Park SW, Lee SM, Kim TH, Kim SY, Lee JH, Jo YM. Highly Sensitive and Selective Real-Time Breath Isoprene Detection using the Gas Reforming Reaction of MOF-Derived Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7102-7111. [PMID: 36700612 DOI: 10.1021/acsami.2c20416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Real-time breath isoprene sensing provides noninvasive methods for monitoring human metabolism and early diagnosis of cardiovascular diseases. Nonetheless, the stable alkene structure and high humidity of the breath hinder sensitive and selective isoprene detection. In this work, we derived well-defined Co3O4@polyoxometalate yolk-shell structures using a metal-organic framework template. The inner space, including highly catalytic Co3O4 yolks surrounded by a semipermeable polyoxometalate shell, enables stable isoprene to be reformed to reactive intermediate species by increasing the gas residence time and the reaction with the inner catalyst. This sensor exhibited selective isoprene detection with an extremely high chemiresistive response (180.6) and low detection limit (0.58 ppb). The high sensing performance can be attributed to electronic sensitization and catalytic promotion effects. In addition, the reforming reaction of isoprene is further confirmed by the proton transfer reaction-quadrupole mass spectrometry analysis. The practical feasibility of this sensor in smart healthcare applications is exhibited by monitoring muscle activity during the workout.
Collapse
Affiliation(s)
- Seon Ju Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sei-Woong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Hyun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Current address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Probing isoprene photochemistry at atmospherically relevant nitric oxide levels. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Li Y, Dai J, Tran LN, Pinkerton KE, Spindel ER, Nguyen TB. Vaping Aerosols from Vitamin E Acetate and Tetrahydrocannabinol Oil: Chemistry and Composition. Chem Res Toxicol 2022; 35:1095-1109. [PMID: 35559605 DOI: 10.1021/acs.chemrestox.2c00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The popularity of vaping cannabis products has increased sharply in recent years. In 2019, a sudden onset of electronic cigarette/vaping-associated lung injury (EVALI) was reported, leading to thousands of cases of lung illness and dozens of deaths due to the vaping of tetrahydrocannabinol (THC)-containing e-liquids that were obtained on the black market. A potential cause of EVALI has been hypothesized due to the illicit use of vitamin E acetate (VEA) in cannabis vape cartridges. However, the chemistry that modifies VEA and THC oil, to potentially produce toxic byproducts, is not well understood under different scenarios of use. In this work, we quantified carbonyls, organic acids, cannabinoids, and terpenes in the vaping aerosol of pure VEA, purified THC oil, and an equal volume mixture of VEA and THC oil at various coil temperatures (100-300 °C). It was found under the conditions of our study that degradation of VEA and cannabinoids, including Δ9-THC and cannabigerol (CBG), occurred via radical oxidation and direct thermal decomposition pathways. Evidence of terpene degradation was also observed. The bond cleavage of aliphatic side chains in both VEA and cannabinoids formed a variety of smaller carbonyls. Oxidation at the ring positions of cannabinoids formed various functionalized products. We show that THC oil has a stronger tendency to aerosolize and degrade compared to VEA at a given temperature. The addition of VEA to the e-liquid nonlinearly suppressed the formation of vape aerosol compared to THC oil. At the same time, toxic carbonyls including formaldehyde, 4-methylpentanal, glyoxal, or diacetyl and its isomers were highly enhanced in VEA e-liquid when normalized to particle mass.
Collapse
Affiliation(s)
- Yichen Li
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Jiayin Dai
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Lillian N Tran
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California Davis, Davis, California 95616, United States
| | - Eliot R Spindel
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
8
|
Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14092191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study evaluates formaldehyde (HCHO) over the U.S. from 2006 to 2015 by comparing ground monitor data from the Air Quality System (AQS) and a satellite retrieval from the Ozone Monitoring Instrument (OMI). Our comparison focuses on the utility of satellite data to inform patterns, trends, and processes of ground-based HCHO across the U.S. We find that cities with higher levels of biogenic volatile organic compound (BVOC) emissions, including primary HCHO, exhibit larger HCHO diurnal amplitudes in surface observations. These differences in hour-to-hour variability in surface HCHO suggests that satellite agreement with ground-based data may depend on the distribution of emission sources. On a seasonal basis, OMI exhibits the highest correlation with AQS in summer and the lowest correlation in winter. The ratios of HCHO in summer versus other seasons show pronounced seasonal variability in OMI, likely due to seasonal changes in the vertical HCHO distribution. The seasonal variability in HCHO from satellite is more pronounced than at the surface, with seasonal variability 20–100% larger in satellite than surface observations. The seasonal variability also has a latitude dependency, with more variability in higher latitude regions. OMI agrees with AQS on the interannual variability in certain periods, whereas AQS and OMI do not show a consistent decadal trend. This is possibly due to a rather large interannual variability in HCHO, which makes the small decadal drift less significant. Temperature also explains part of the interannual variabilities. Small temperature variations in the western U.S. are reflected with more quiescent HCHO interannual variability in that region. The decrease in summertime HCHO in the southeast U.S. could also be partially explained by a small and negative trend in local temperatures.
Collapse
|
9
|
Park SW, Jeong SY, Moon YK, Kim K, Yoon JW, Lee JH. Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO 3 Spheres and Au Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11587-11596. [PMID: 35174700 DOI: 10.1021/acsami.1c19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise detection of breath isoprene can provide valuable information for monitoring the physical and physiological status of human beings or for the early diagnosis of cardiovascular diseases. However, the extremely low concentration and low chemical reactivity of breath isoprene hamper the selective and sensitive detection of isoprene using oxide semiconductor chemiresistors. Herein, we report that macroporous WO3 microspheres whose inner macropores are surrounded by Au nanoparticles exhibit a high response (resistance ratio = 11.3) to 0.1 ppm isoprene under highly humid conditions at 275 °C and an extremely low detection limit (0.2 ppb). Furthermore, the sensor showed excellent selectivity to isoprene over five interferants that could be exhaled by humans. Notably, the selectivity to isoprene is critically dependent on the location of Au nanocatalysts and macroporosity. The mechanism underlying the selective isoprene detection is investigated in relation to the reforming of less reactive isoprene into more reactive intermediate species promoted by macroporous catalytic reactors, which is confirmed by the analysis using a proton transfer reaction quadrupole mass spectrometer. The sensor for breath analysis has high potential for simple physical and physiological monitoring as well as disease diagnosis.
Collapse
Affiliation(s)
- Sei-Woong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Yong Jeong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - KiBeom Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Mishra AK, Sinha V. Emission drivers and variability of ambient isoprene, formaldehyde and acetaldehyde in north-west India during monsoon season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115538. [PMID: 33254592 DOI: 10.1016/j.envpol.2020.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Isoprene, formaldehyde and acetaldehyde are important reactive organic compounds which strongly impact atmospheric oxidation processes and formation of tropospheric ozone. Monsoon meteorology and the topography of Himalayan foothills cause surface emissions to get rapidly transported both horizontally and vertically, thereby influencing atmospheric processes in distant regions. Further in monsoon, Indo-Gangetic Plain is a major rice growing region of the world and daytime hourly ozone can frequently exceed phytotoxic dose of 40 ppb O3. However, the sources and ambient variability of these compounds which are potent ozone precursors are unknown. Here, we investigate the sources and photochemical processes driving their emission/formation during monsoon season from a sub-urban site at the foothills of the Himalayas. The measurements were performed in July, August and September using a high sensitivity mass spectrometer. Average ambient mixing ratios (±1σ variability) of isoprene, formaldehyde, acetaldehyde, and the sum of methyl vinyl ketone and methacrolein (MVK+MACR), were 1.4 ± 0.3 ppb, 5.7 ± 0.9 ppb, 4.5 ± 2.0 ppb, 0.75 ± 0.3 ppb, respectively, and much higher than summertime values in May. For isoprene these values were comparable to mixing ratios observed over tropical forests. Surprisingly, despite occurrence of anthropogenic emissions, biogenic emissions were found to be the major source of isoprene with peak daytime isoprene driven by temperature (r ≥ 0.8) and solar radiation. Photo-oxidation of precursor hydrocarbons were the main sources of acetaldehyde, formaldehyde and MVK+MACR. Ambient mixing ratios of all the compounds correlated poorly with acetonitrile (r ≤ 0.2), a chemical tracer for biomass burning suggesting negligible influence of biomass burning during monsoon season. Our results suggest that during monsoon season when radiation and rain are no longer limiting factors and convective activity causes surface emissions to be transported to upper atmosphere, biogenic emissions can significantly impact the remote upper atmosphere, climate and ozone affecting rice yields.
Collapse
Affiliation(s)
- A K Mishra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - V Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India.
| |
Collapse
|
11
|
Whelan CA, Eble J, Mir ZS, Blitz MA, Seakins PW, Olzmann M, Stone D. Kinetics of the Reactions of Hydroxyl Radicals with Furan and Its Alkylated Derivatives 2-Methyl Furan and 2,5-Dimethyl Furan. J Phys Chem A 2020; 124:7416-7426. [PMID: 32816480 DOI: 10.1021/acs.jpca.0c06321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Furans are promising second generation biofuels with comparable energy densities to conventional fossil fuels. Combustion of furans is initiated and controlled to a large part by reactions with OH radicals, the kinetics of which are critical to understand the processes occurring under conditions relevant to low-temperature combustion. The reactions of OH radicals with furan (OH + F, R1), 2-methyl furan (OH + 2-MF, R2), and 2,5-dimethyl furan (OH + 2,5-DMF, R3) have been studied in this work over the temperature range 294-668 K at pressures between 5 mbar and 10 bar using laser flash photolysis coupled with laser-induced fluorescence (LIF) spectroscopy to generate and monitor OH radicals under pseudo-first-order conditions. Measurements at p ≤ 200 mbar were made in N2, using H2O2 or (CH3)3COOH radical precursors, while those at p ≥ 2 bar were made in He, using HNO3 as the radical precursor. The kinetics of reactions R1-R3 were observed to display a negative dependence on temperature over the range investigated, indicating the dominance of addition reactions under such conditions, with no significant dependence on pressure observed. Master equation calculations are in good agreement with the observed kinetics, and a combined parametrization of addition channels and abstraction channels for R1-R3 is provided on the basis of this work and previous shock tube measurements at higher temperatures. This work significantly extends the temperature range previously investigated for R1 and represents the first temperature-dependent measurements of R2 and R3 at temperatures relevant for atmospheric chemistry and low-temperature combustion.
Collapse
Affiliation(s)
| | - Julia Eble
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Zara S Mir
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark A Blitz
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom.,National Centre for Atmospheric Science, School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Paul W Seakins
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Matthias Olzmann
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Daniel Stone
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
12
|
Wang Q, Li Q, Wei D, Su G, Wu M, Li C, Sun B, Dai L. Photochemical reactions of 1,3-butadiene with nitrogen oxide in different matrices: Kinetic behavior, humidity effect, product and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137747. [PMID: 32179348 DOI: 10.1016/j.scitotenv.2020.137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Understanding the photochemical reaction process between VOCs and co-pollutants in the troposphere is crucial for controlling the haze. The photochemical reactions of 1,3-butadiene (1,3-BD) with NO were carried out at 308 K for up to 96 h in clean air with various relative humidity (RH) values, and actual haze atmosphere. In the haze, the representative pseudo-first-order kinetic rate constants of the 1,3-BD-NO system was 1.53 time higher than those in dry clean air. The effect of the RH (0%-80%) on the conversion behavior of the 1,3-BD-NO system in clean air was studied, revealing that increasing RH promoted the photochemical reaction in the low range of 0%-40% but retarded it in the high range of 40%-80%. Interestingly, OH radicals were directly detected under different RH values, and the strongest OH signal was obtained at an RH of 40%. Multiple macromolecular products with carbon numbers of 10-36 were identified. Unexpectedly, richer products and extended unsaturation range were detected at an RH of 40% than 0%. The photochemical products were also analyzed using ion chromatography. A reaction mechanism was proposed from the detected NO2, O3, OH, HNO2, HNO3, organic acids and macromolecular products.
Collapse
Affiliation(s)
- Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Wei
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Wang S, Du L, Tsona NT, Jiang X, You B, Xu L, Yang Z, Wang W. Effect of NOx and SO 2 on the photooxidation of methylglyoxal: Implications in secondary aerosol formation. J Environ Sci (China) 2020; 92:151-162. [PMID: 32430118 DOI: 10.1016/j.jes.2020.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 02/09/2020] [Indexed: 05/24/2023]
Abstract
Methylglyoxal (CH3COCHO, MG), which is one of the most abundant α-dicarbonyl compounds in the atmosphere, has been reported as a major source of secondary organic aerosol (SOA). In this work, the reaction of MG with hydroxyl radicals was studied in a 500 L smog chamber at (293 ± 3) K, atmospheric pressure, (18 ± 2)% relative humidity, and under different NOx and SO2. Particle size distribution was measured by using a scanning mobility particle sizer (SMPS) and the results showed that the addition of SO2 can promote SOA formation, while different NOx concentrations have different influences on SOA production. High NOx suppressed the SOA formation, whereas the particle mass concentration, particle number concentration and particle geometric mean diameter increased with the increasing NOx concentration at low NOx concentration in the presence of SO2. In addition, the products of the OH-initiated oxidation of MG and the functional groups of the particle phase in the MG/OH/SO2 and MG/OH/NOx/SO2 reaction systems were detected by gas chromatography mass spectrometry (GC-MS) and attenuated total reflection fourier transformed infrared spectroscopy (ATR-FTIR) analysis. Two products, glyoxylic acid and oxalic acid, were detected by GC-MS. The mechanism of the reaction of MG and OH radicals that follows two main pathways, H atom abstraction and hydration, is proposed. Evidence is provided for the formation of organic nitrates and organic sulfate in particle phase from IR spectra. Incorporation of NOx and SO2 influence suggested that SOA formation from anthropogenic hydrocarbons may be more efficient in polluted environment.
Collapse
Affiliation(s)
- Shuyan Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Narcisse T Tsona
- School of Life Science, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xiaotong Jiang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Bo You
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Li Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Zhaomin Yang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| |
Collapse
|
14
|
Xu Y, Miyazaki Y, Tachibana E, Sato K, Ramasamy S, Mochizuki T, Sadanaga Y, Nakashima Y, Sakamoto Y, Matsuda K, Kajii Y. Aerosol Liquid Water Promotes the Formation of Water-Soluble Organic Nitrogen in Submicrometer Aerosols in a Suburban Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1406-1414. [PMID: 31913023 DOI: 10.1021/acs.est.9b05849] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water-soluble organic nitrogen (WSON) affects the formation, chemical transformations, hygroscopicity, and acidity of organic aerosols as well as biogeochemical cycles of nitrogen. However, large uncertainties exist in the origins and formation processes of WSON. Submicrometer aerosol particles were collected at a suburban forest site in Tokyo in summer 2015 to investigate the relative impacts of anthropogenic and biogenic sources on WSON formations and their linkages with aerosol liquid water (ALW). The concentrations of WSON (ave. 225 ± 100 ngN m-3) and ALW exhibited peaks during nighttime, which showed a significant positive correlation, suggesting that ALW significantly contributed to WSON formation. Further, the thermodynamic predictions by ISORROPIA-II suggest that ALW was primarily driven by anthropogenic sulfate. Our analysis, including positive matrix factorization, suggests that aqueous-phase reactions of ammonium and reactive nitrogen with biogenic volatile organic compounds (VOCs) play a key role in WSON formation in submicrometer particles, which is particularly significant in nighttime, at the suburban forest site. The formation of WSON associated with biogenic VOCs and ALW was partly supported by the molecular characterization of WSON. The overall result suggests that ALW is an important driver for the formation of aerosol WSON through a combination of anthropogenic and biogenic sources.
Collapse
Affiliation(s)
- Yu Xu
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Yuzo Miyazaki
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Eri Tachibana
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Kei Sato
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
| | - Sathiyamurthi Ramasamy
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
- Graduate School of Global Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
| | - Tomoki Mochizuki
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Yasuhiro Sadanaga
- Department of Applied Chemistry , Osaka Prefecture University , Sakai 599-8531 , Japan
| | - Yoshihiro Nakashima
- Department of Environmental Science on Biosphere , Tokyo University of Agriculture and Technology , Tokyo 183-8509 , Japan
| | - Yosuke Sakamoto
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
- Graduate School of Global Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
- Graduate School of Human and Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
| | - Kazuhide Matsuda
- Department of Environmental Science on Biosphere , Tokyo University of Agriculture and Technology , Tokyo 183-8509 , Japan
| | - Yoshizumi Kajii
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
- Graduate School of Global Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
- Graduate School of Human and Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
| |
Collapse
|
15
|
Peng Z, Jimenez JL. Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chem Soc Rev 2020; 49:2570-2616. [DOI: 10.1039/c9cs00766k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We summarize the studies on the chemistry in oxidation flow reactor and discuss its atmospheric relevance.
Collapse
Affiliation(s)
- Zhe Peng
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry
- University of Colorado
- Boulder
- USA
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry
- University of Colorado
- Boulder
- USA
| |
Collapse
|
16
|
Otto T, Schaefer T, Herrmann H. Aqueous-Phase Oxidation of cis-β-Isoprene Epoxydiol by Hydroxyl Radicals and Its Impact on Atmospheric Isoprene Processing. J Phys Chem A 2019; 123:10599-10608. [DOI: 10.1021/acs.jpca.9b08836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tobias Otto
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
| |
Collapse
|
17
|
Eskola AJ, Döntgen M, Rotavera B, Caravan RL, Welz O, Savee JD, Osborn DL, Shallcross DE, Percival CJ, Taatjes CA. Direct kinetics study of CH 2OO + methyl vinyl ketone and CH 2OO + methacrolein reactions and an upper limit determination for CH 2OO + CO reaction. Phys Chem Chem Phys 2018; 20:19373-19381. [PMID: 29999060 DOI: 10.1039/c8cp03606c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methyl vinyl ketone (MVK) and methacrolein (MACR) are important intermediate products in atmospheric degradation of volatile organic compounds, especially of isoprene. This work investigates the reactions of the smallest Criegee intermediate, CH2OO, with its co-products from isoprene ozonolysis, MVK and MACR, using multiplexed photoionization mass spectrometry (MPIMS), with either tunable synchrotron radiation from the Advanced Light Source or Lyman-α (10.2 eV) radiation for photoionization. CH2OO was produced via pulsed laser photolysis of CH2I2 in the presence of excess O2. Time-resolved measurements of reactant disappearance and of product formation were performed to monitor reaction progress; first order rate coefficients were obtained from exponential fits to the CH2OO decays. The bimolecular reaction rate coefficients at 300 K and 4 Torr are k(CH2OO + MVK) = (5.0 ± 0.4) × 10-13 cm3 s-1 and k(CH2OO + MACR) = (4.4 ± 1.0) × 10-13 cm3 s-1, where the stated ±2σ uncertainties are statistical uncertainties. Adduct formation is observed for both reactions and is attributed to the formation of a secondary ozonides (1,2,4-trioxolanes), supported by master equation calculations of the kinetics and the agreement between measured and calculated adiabatic ionization energies. Kinetics measurements were also performed for a possible bimolecular CH2OO + CO reaction and for the reaction of CH2OO with CF3CHCH2 at 300 K and 4 Torr. For CH2OO + CO, no reaction is observed and an upper limit is determined: k(CH2OO + CO) < 2 × 10-16 cm3 s-1. For CH2OO + CF3CHCH2, an upper limit of k(CH2OO + CF3CHCH2) < 2 × 10-14 cm3 s-1 is obtained.
Collapse
Affiliation(s)
- Arkke J Eskola
- Combustion Research Facility, Sandia National Laboratories, 7011 East Avenue, MS 9055, Livermore, California 94551, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wennberg PO, Bates KH, Crounse JD, Dodson LG, McVay RC, Mertens LA, Nguyen TB, Praske E, Schwantes RH, Smarte MD, St Clair JM, Teng AP, Zhang X, Seinfeld JH. Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chem Rev 2018. [PMID: 29522327 DOI: 10.1021/acs.chemrev.7b00439] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isoprene carries approximately half of the flux of non-methane volatile organic carbon emitted to the atmosphere by the biosphere. Accurate representation of its oxidation rate and products is essential for quantifying its influence on the abundance of the hydroxyl radical (OH), nitrogen oxide free radicals (NO x), ozone (O3), and, via the formation of highly oxygenated compounds, aerosol. We present a review of recent laboratory and theoretical studies of the oxidation pathways of isoprene initiated by addition of OH, O3, the nitrate radical (NO3), and the chlorine atom. From this review, a recommendation for a nearly complete gas-phase oxidation mechanism of isoprene and its major products is developed. The mechanism is compiled with the aims of providing an accurate representation of the flow of carbon while allowing quantification of the impact of isoprene emissions on HO x and NO x free radical concentrations and of the yields of products known to be involved in condensed-phase processes. Finally, a simplified (reduced) mechanism is developed for use in chemical transport models that retains the essential chemistry required to accurately simulate isoprene oxidation under conditions where it occurs in the atmosphere-above forested regions remote from large NO x emissions.
Collapse
|
19
|
Mao J, Carlton A, Cohen RC, Brune WH, Brown SS, Wolfe GM, Jimenez JL, Pye HOT, Ng NL, Xu L, McNeill VF, Tsigaridis K, McDonald BC, Warneke C, Guenther A, Alvarado MJ, de Gouw J, Mickley LJ, Leibensperger EM, Mathur R, Nolte CG, Portmann RW, Unger N, Tosca M, Horowitz LW. Southeast Atmosphere Studies: learning from model-observation syntheses. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:2615-2651. [PMID: 29963079 PMCID: PMC6020695 DOI: 10.5194/acp-18-2615-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Collapse
Affiliation(s)
- Jingqiu Mao
- Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Annmarie Carlton
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ronald C. Cohen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - William H. Brune
- Department of Meteorology, Pennsylvania State University, University Park, PA, USA
| | - Steven S. Brown
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Glenn M. Wolfe
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Jose L. Jimenez
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nga Lee Ng
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Xu
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY USA
| | - Kostas Tsigaridis
- Center for Climate Systems Research, Columbia University, New York, NY, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Brian C. McDonald
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | | | - Joost de Gouw
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Rohit Mathur
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher G. Nolte
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert W. Portmann
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Nadine Unger
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Mika Tosca
- School of the Art Institute of Chicago (SAIC), Chicago, IL 60603, USA
| | - Larry W. Horowitz
- Geophysical Fluid Dynamics Laboratory–National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| |
Collapse
|
20
|
Li M, Liu Y, Wang L. Gas-phase ozonolysis of furans, methylfurans, and dimethylfurans in the atmosphere. Phys Chem Chem Phys 2018; 20:24735-24743. [DOI: 10.1039/c8cp04947e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ozonolysis of methylfurans contributes significantly to their atmospheric degradation.
Collapse
Affiliation(s)
- Mengke Li
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yuhong Liu
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Liming Wang
- School of Chemistry & Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| |
Collapse
|
21
|
Yuan Y, Zhao X, Wang S, Wang L. Atmospheric Oxidation of Furan and Methyl-Substituted Furans Initiated by Hydroxyl Radicals. J Phys Chem A 2017; 121:9306-9319. [DOI: 10.1021/acs.jpca.7b09741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Yuan
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaocan Zhao
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Sainan Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Piletic IR, Edney EO, Bartolotti LJ. Barrierless Reactions with Loose Transition States Govern the Yields and Lifetimes of Organic Nitrates Derived from Isoprene. J Phys Chem A 2017; 121:8306-8321. [PMID: 28976756 PMCID: PMC6061928 DOI: 10.1021/acs.jpca.7b08229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical reaction mechanism of NO addition to two β and δ isoprene hydroxy-peroxy radical isomers is examined in detail using density functional theory, coupled cluster methods, and the energy resolved master equation formalism to provide estimates of rate constants and organic nitrate yields. At the M06-2x/aug-cc-pVTZ level, the potential energy surfaces of NO reacting with β-(1,2)-HO-IsopOO• and δ-Z-(1,4)-HO-IsopOO• possess barrierless reactions that produce alkoxy radicals/NO2 and organic nitrates. The nudged elastic band method was used to discover a loosely bound van der Waals (vdW) complex between NO2 and the alkoxy radical that is present in both exit reaction channels. Semiempirical master equation calculations show that the β organic nitrate yield is 8.5 ± 3.7%. Additionally, a relatively low barrier to C-C bond scission was discovered in the β-vdW complex that leads to direct HONO formation in the gas phase with a yield of 3.1 ± 1.3%. The δ isomer produces a looser vdW complex with a smaller dissociation barrier and a larger isomerization barrier, giving a 2.4 ± 0.8% organic nitrate yield that is relatively pressure and temperature insensitive. By considering all of these pathways, the first-generation NOx recycling efficiency from isoprene organic nitrates is estimated to be 21% and is expected to increase with decreasing NOx concentration.
Collapse
Affiliation(s)
- Ivan R. Piletic
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711
| | - Edward O. Edney
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711
| | | |
Collapse
|
23
|
Otto T, Stieger B, Mettke P, Herrmann H. Tropospheric Aqueous-Phase Oxidation of Isoprene-Derived Dihydroxycarbonyl Compounds. J Phys Chem A 2017; 121:6460-6470. [PMID: 28753026 DOI: 10.1021/acs.jpca.7b05879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias Otto
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bastian Stieger
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Peter Mettke
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
24
|
Vijayakumar S, Rajakumar B. Experimental and Theoretical Investigations on the Reaction of 1,3-Butadiene with Cl Atom in the Gas Phase. J Phys Chem A 2017; 121:1976-1984. [PMID: 28186753 DOI: 10.1021/acs.jpca.6b12227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Temperature dependent rate coefficients for the reaction of Cl atom with 1,3-butadiene were measured over the temperature range 269-363 K relative to its reaction with isoprene and 1-pentene. Theoretical calculations were performed for the title reaction using CVT/SCT in combination with CCSD(T)/6-31+G (d,p)//MP2/6-311+G(2df,2p) level of theory, to complement our experimental measurements. The test molecule would survive for 1 h in the atmosphere, and therefore, it can be considered as a very short-lived compound. 1,3-Butadience cannot contribute to global warming as it is very short-lived. However, 4 ppm of ozone is estimated to be formed by the test molecule, which can be considered to be reasonably significant.
Collapse
Affiliation(s)
- S Vijayakumar
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| | - B Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
25
|
Cash JM, Heal MR, Langford B, Drewer J. A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1369-1380. [PMID: 27762408 DOI: 10.1039/c6em00354k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The atmospheric reactions leading to the generation of secondary organic aerosol (SOA) from the oxidation of isoprene are generally assumed to produce only racemic mixtures, but aspects of the chemical reactions suggest this may not be the case. In this review, the stereochemical outcomes of published isoprene-degradation mechanisms contributing to high amounts of SOA are evaluated. Despite evidence suggesting isoprene first-generation oxidation products do not contribute to SOA directly, this review suggests the stereochemistry of first-generation products may be important because their stereochemical configurations may be retained through to the second-generation products which form SOA. Specifically, due to the stereochemistry of epoxide ring-opening mechanisms, the outcome of the reactions involving epoxydiols of isoprene (IEPOX), methacrylic acid epoxide (MAE) and hydroxymethylmethyl-α-lactone (HMML) are, in principle, stereospecific which indicates the stereochemistry is predefined from first-generation precursors. The products from these three epoxide intermediates oligomerise to form macromolecules which are proposed to form chiral structures within the aerosol and are considered to be the largest contributors to SOA. If conditions in the atmosphere such as pH, aerosol water content, relative humidity, pre-existing aerosol, aerosol coatings and aerosol cation/anion content (and other) variables acting on the reactions leading to SOA affect the tacticity (arrangement of chiral centres) in the SOA then they may influence its physical properties, for example its hygroscopicity. Chamber studies of SOA formation from isoprene encompass particular sets of controlled conditions of these variables. It may therefore be important to consider stereochemistry when upscaling from chamber study data to predictions of SOA yields across the range of ambient atmospheric conditions. Experiments analysing the stereochemistry of the reactions under varying conditions of the above variables would help elucidate whether there is stereoselectivity in SOA formation from isoprene and if the rates of SOA formation are affected.
Collapse
Affiliation(s)
- James M Cash
- NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK. and School of Chemistry, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Mathew R Heal
- School of Chemistry, The University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, UK
| | - Ben Langford
- NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK.
| | - Julia Drewer
- NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK.
| |
Collapse
|
26
|
Fisher JA, Jacob DJ, Travis KR, Kim PS, Marais EA, Miller CC, Yu K, Zhu L, Yantosca RM, Sulprizio MP, Mao J, Wennberg PO, Crounse JD, Teng AP, Nguyen TB, St Clair JM, Cohen RC, Romer P, Nault BA, Wooldridge PJ, Jimenez JL, Campuzano-Jost P, Day DA, Hu W, Shepson PB, Xiong F, Blake DR, Goldstein AH, Misztal PK, Hanisco TF, Wolfe GM, Ryerson TB, Wisthaler A, Mikoviny T. Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC 4RS) and ground-based (SOAS) observations in the Southeast US. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:5969-5991. [PMID: 29681921 PMCID: PMC5906813 DOI: 10.5194/acp-16-5969-2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ∼25 × 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50% of observed RONO2 in surface air, and we find that another 10% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10% of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60% of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20% by photolysis to recycle NOx and 15% by dry deposition. RONO2 production accounts for 20% of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.
Collapse
Affiliation(s)
- J A Fisher
- Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
- School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - D J Jacob
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - K R Travis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - P S Kim
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - E A Marais
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - C Chan Miller
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - K Yu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - L Zhu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - R M Yantosca
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - M P Sulprizio
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - J Mao
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - P O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - J D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - A P Teng
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - T B Nguyen
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Now at Department of Environmental Toxicology, University of California at Davis, Davis, CA, USA
| | - J M St Clair
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Now at Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA and Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - R C Cohen
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA, USA
| | - P Romer
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - B A Nault
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA, USA
- Now at Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - P J Wooldridge
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - J L Jimenez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - P Campuzano-Jost
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - D A Day
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - W Hu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - P B Shepson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - F Xiong
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D R Blake
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - A H Goldstein
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, USA
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - P K Misztal
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, USA
| | - T F Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - G M Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - T B Ryerson
- Chemical Sciences Division, Earth System Research Lab, National Oceanic and Atmospheric Administration, Boulder, CO, USA
| | - A Wisthaler
- Department of Chemistry, University of Oslo, Oslo, Norway
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - T Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Schwantes RH, Teng AP, Nguyen TB, Coggon MM, Crounse JD, St Clair JM, Zhang X, Schilling KA, Seinfeld JH, Wennberg PO. Isoprene NO3 Oxidation Products from the RO2 + HO2 Pathway. J Phys Chem A 2015; 119:10158-71. [PMID: 26335780 DOI: 10.1021/acs.jpca.5b06355] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the products of the reaction of the hydroperoxy radical (HO(2)) with the alkylperoxy radical formed following addition of the nitrate radical (NO(3)) and O(2) to isoprene. NO(3) adds preferentially to the C(1) position of isoprene (>6 times more favorably than addition to C(4)), followed by the addition of O(2) to produce a suite of nitrooxy alkylperoxy radicals (RO(2)). At an RO(2) lifetime of ∼30 s, δ-nitrooxy and β-nitrooxy alkylperoxy radicals are present in similar amounts. Gas-phase product yields from the RO(2) + HO(2) pathway are identified as 0.75-0.78 isoprene nitrooxy hydroperoxide (INP), 0.22 methyl vinyl ketone (MVK) + formaldehyde (CH(2)O) + hydroxyl radical (OH) + nitrogen dioxide (NO(2)), and 0-0.03 methacrolein (MACR) + CH(2)O + OH + NO(2). We further examined the photochemistry of INP and identified propanone nitrate (PROPNN) and isoprene nitrooxy hydroxyepoxide (INHE) as the main products. INHE undergoes similar heterogeneous chemistry as isoprene dihydroxy epoxide (IEPOX), likely contributing to atmospheric secondary organic aerosol formation.
Collapse
Affiliation(s)
- Rebecca H Schwantes
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Alexander P Teng
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Tran B Nguyen
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Matthew M Coggon
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - John D Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jason M St Clair
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center , Greenbelt, Maryland 20771, United States.,Joint Center for Earth Systems Technology, University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | - Xuan Zhang
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Katherine A Schilling
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States.,Division of Engineering and Applied Science, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States.,Division of Engineering and Applied Science, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Pusede SE, Steiner AL, Cohen RC. Temperature and recent trends in the chemistry of continental surface ozone. Chem Rev 2015; 115:3898-918. [PMID: 25950502 DOI: 10.1021/cr5006815] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Allison L Steiner
- §Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
29
|
Perring AE, Pusede SE, Cohen RC. An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chem Rev 2013; 113:5848-70. [DOI: 10.1021/cr300520x] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. E. Perring
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - S. E. Pusede
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - R. C. Cohen
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| |
Collapse
|
30
|
Troy TP, Nakajima M, Chalyavi N, Nauta K, Kable SH, Schmidt TW. Hydroxyl Addition to Aromatic Alkenes: Resonance-Stabilized Radical Intermediates. J Phys Chem A 2012; 116:7906-15. [DOI: 10.1021/jp304875r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tyler P. Troy
- School of
Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Masakazu Nakajima
- School of
Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nahid Chalyavi
- School of
Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Klaas Nauta
- School of
Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Scott H. Kable
- School of
Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Timothy W. Schmidt
- School of
Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
31
|
Borbon A, Ruiz M, Bechara J, Aumont B, Chong M, Huntrieser H, Mari C, Reeves CE, Scialom G, Hamburger T, Stark H, Afif C, Jambert C, Mills G, Schlager H, Perros PE. Transport and chemistry of formaldehyde by mesoscale convective systems in West Africa during AMMA 2006. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Lin YC, Schwab JJ, Demerjian KL, Bae MS, Chen WN, Sun Y, Zhang Q, Hung HM, Perry J. Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Fang W, Gong L, Zhang Q, Cao M, Li Y, Sheng L. Measurements of secondary organic aerosol formed from OH-initiated photo-oxidation of isoprene using online photoionization aerosol mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3898-904. [PMID: 22397593 DOI: 10.1021/es204669d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isoprene is a significant source of atmospheric organic aerosol; however, the secondary organic aerosol (SOA) formation and involved chemical reaction pathways have remained to be elucidated. Recent works have shown that the photo-oxidation of isoprene leads to form SOA. In this study, the chemical composition of SOA from the OH-initiated photo-oxidation of isoprene, in the absence of seed aerosols, was investigated through the controlled laboratory chamber experiments. Thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) was used in conjunction with the environmental chamber to study SOA formation. The mass spectra obtained at different photon energies and the photoionization efficiency (PIE) spectra of the SOA products can be obtained in real time. Aided by the ionization energies (IE) either from the ab initio calculations or the literatures, a number of SOA products were proposed. In addition to methacrolein, methyl vinyl ketone, and 3-methyl-furan, carbonyls, hydroxycarbonyls, nitrates, hydroxynitrates, and other oxygenated compounds in SOA formed in laboratory photo-oxiadation experiments were identified, some of them were investigated for the first time. Detailed chemical identification of SOA is crucial for understanding the photo-oxidation mechanisms of VOCs and the eventual formation of SOA. Possible reaction mechanisms will be discussed.
Collapse
Affiliation(s)
- Wenzheng Fang
- National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China.
| | | | | | | | | | | |
Collapse
|
34
|
Pan G, Hu C, Wang Z, Cheng Y, Zheng X, Gu X, Zhao W, Zhang W, Chen J, Liu F, Shan X, Sheng L. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:189-194. [PMID: 22173807 DOI: 10.1002/rcm.5295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report the combination of a vacuum ultraviolet photoionization mass spectrometer, operating on the basis of synchrotron radiation, with an environmental reaction smog chamber for the first time. The gas- and pseudo-particle-phase products of OH-initiated isoprene photooxidation reactions were measured on-line and off-line, respectively, by mass spectrometry. It was observed that aldehydes, methacrolein, methyl vinyl ketone, methelglyoxal, formic acid, and similar compounds are the predominant gas-phase photooxidation products, whereas some multifunctional carbonyls and acids mainly exist in the particle phase. This finding is reasonably consistent with results of studies conducted in other laboratories using different methods. The results indicate that synchrotron radiation photoionization mass spectrometry coupled with a smog chamber is a potentially powerful tool for the study of the mechanism of atmospheric oxidations and the formation of secondary organic aerosols.
Collapse
Affiliation(s)
- Gang Pan
- Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Orlando JJ, Tyndall GS. Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance. Chem Soc Rev 2012; 41:6294-317. [PMID: 22847633 DOI: 10.1039/c2cs35166h] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- John J Orlando
- National Center for Atmospheric Research, Earth System Laboratory, Atmospheric Chemistry Division, Boulder, USA.
| | | |
Collapse
|
36
|
Pan G, Hu C, Huang M, Wang Z, Cheng Y, Liu Z, Gu X, Zhao W, Zhang W, Chen J, Liu F, Shan X, Sheng L. A VUV photoionization mass spectrometric study on the OH-initiated photooxidation of isoprene with synchrotron radiation. J Environ Sci (China) 2012; 24:2075-2082. [PMID: 23534203 DOI: 10.1016/s1001-0742(11)61051-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The gas-phase organic compounds resulting from OH-initiated photooxidation of isoprene have been investigated on-line by VUV photoionization mass spectrometry based on synchrotron radiation for the first time. The photoionization efficiency curves of the corresponding gaseous products as well as the chosen standards have been deduced by gating the interested peaks in the photoionization mass spectra while scanning the photon energy simultaneously, which permits the identification of the pivotal gaseous products of the photooxidation of isoprene, such as formaldehyde (10.84 eV), formic acid (11.38 eV), acetone (9.68 eV), glyoxal (9.84 eV), acetic acid (10.75 eV), methacrolein (9.91 eV), and methyl vinyl ketone (9.66 eV). Proposed reaction mechanisms leading to the formation of these key products were discussed, which were completely consistent with the previous works of different groups. The capability of synchrotron radiation photoionization mass spectrometry to directly identify the chemical composition of the gaseous products in a simulation chamber has been demonstrated, and its potential application in related studies of atmospheric oxidation of ambient volatile organic compounds is anticipated.
Collapse
Affiliation(s)
- Gang Pan
- Key Laboratory of Atmospheric Composition and Optical Radiation, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nguyen TB, Laskin J, Laskin A, Nizkorodov SA. Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6908-6918. [PMID: 21732631 DOI: 10.1021/es201611n] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NO(x) conditions. Approximately 80-90% of the observed products are oligomers and up to 33% by number are nitrogen-containing organic compounds (NOC). We observe oligomers with maximum 8 monomer units in length. Tandem mass spectrometry (MS(n)) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C(2)-C(5) monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, and glycolaldehyde. Although the molar fraction of NOC in the high-NO(x) SOA is high, the majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NO(x) conditions and 0.83 under the high-NO(x) conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.
Collapse
Affiliation(s)
- Tran B Nguyen
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
38
|
Navarro MA, Dusanter S, Hites RA, Stevens PS. Radical dependence of the yields of methacrolein and methyl vinyl ketone from the OH-initiated oxidation of isoprene under NO(x)-free conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:923-929. [PMID: 21175163 DOI: 10.1021/es103147w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Formation yields of methacrolein (MAC), methyl vinyl ketone (MVK), and 3-methyl furan (3MF) from the hydroxyl radical (OH) initiated oxidation of isoprene were investigated under NO(x)-free conditions (NO(x) = NO + NO(2)) at 50 °C and 1 atm in a quartz reaction chamber coupled to a mass spectrometer. Yields of the primary products were measured at various OH and hydroperoxy (HO(2)) radical concentrations and were found to decrease as the HO(2)-to-isoprene-based peroxy radical (ISORO(2)) concentration ratio increases. This is likely the result of a competition between ISORO(2) self- and cross-reactions that lead to the formation of the primary products, with reactions between these peroxy radicals and HO(2) which can lead to the formation of peroxides. Under conditions with HO(2)/ISORO(2) ratios close to 0.1, yields of MVK (15.5% ± 1.4%) and MAC (13.0% ± 1.2%) were higher than the yields of MVK (8.9% ± 0.9%) and MAC (10.9% ± 1.1%) measured under conditions with HO(2)/ISORO(2) ratios close to 1. This radical dependence of the yields was reproduced reasonably well by an explicit model of isoprene oxidation, suggesting that the model is able to reproduce the observed products yields under a realistic range of atmospheric HO(2)/ISORO(2) ratios.
Collapse
Affiliation(s)
- Maria A Navarro
- Center for Research in Environmental Science, School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, United States
| | | | | | | |
Collapse
|
39
|
Ghosh B, Park J, Anderson KC, North SW. OH initiated oxidation of 1,3-butadiene in the presence of O2 and NO. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.05.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Ghosh B, Bugarin A, Connell BT, North SW. OH Radical Initiated Oxidation of 1,3-Butadiene: Isomeric Selective Study of the Dominant Addition Channel. J Phys Chem A 2010; 114:5299-305. [DOI: 10.1021/jp1006878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Buddhadeb Ghosh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842
| | - Alejandro Bugarin
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842
| | - Brian T. Connell
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842
| | - Simon W. North
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842
| |
Collapse
|
41
|
|
42
|
Ito A, Sillman S, Penner JE. Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011254] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Vimal D, Pacheco AB, Iyengar SS, Stevens PS. Experimental and ab initio dynamical investigations of the kinetics and intramolecular energy transfer mechanisms for the OH + 1,3-butadiene reaction between 263 and 423 K at low pressure. J Phys Chem A 2008; 112:7227-37. [PMID: 18636694 DOI: 10.1021/jp8003882] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rate constants for the reaction of the OH radical with 1,3-butadiene and its deuterated isotopomer has been measured at 1-6 Torr total pressure over the temperature range of 263-423 K using the discharge flow system coupled with resonance fluorescence/laser-induced fluorescence detection of OH. The measured rate constants for the OH + 1,3-butadiene and OH + 1,3-butadiene- d 6 reactions at room temperature were found to be (6.98 +/- 0.28) x 10 (-11) and (6.94 +/- 0.38) x 10 (-11) cm (3) molecule (-1) s (-1), respectively, in good agreement with previous measurements at higher pressures. An Arrhenius expression for this reaction was determined to be k 1 (II)( T) = (7.23 +/- 1.2) x10 (-11)exp[(664 +/- 49)/ T] cm (3) molecule (-1) s (-1) at 263-423 K. The reaction was found to be independent of pressure between 1 and 6 Torr and over the temperature range of 262- 423 K, in contrast to previous results for the OH + isoprene reaction under similar conditions. To help interpret these results, ab initio molecular dynamics results are presented where the intramolecular energy redistribution is analyzed for the product adducts formed in the OH + isoprene and OH + butadiene reactions.
Collapse
Affiliation(s)
- Deepali Vimal
- Center for Research in Environmental Science, School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
44
|
Fiore AM, West JJ, Horowitz LW, Naik V, Schwarzkopf MD. Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009162] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Pfister GG, Emmons LK, Hess PG, Lamarque JF, Orlando JJ, Walters S, Guenther A, Palmer PI, Lawrence PJ. Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008948] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- G. G. Pfister
- National Center for Atmospheric Research; Boulder Colorado USA
| | - L. K. Emmons
- National Center for Atmospheric Research; Boulder Colorado USA
| | - P. G. Hess
- National Center for Atmospheric Research; Boulder Colorado USA
| | - J.-F. Lamarque
- National Center for Atmospheric Research; Boulder Colorado USA
| | - J. J. Orlando
- National Center for Atmospheric Research; Boulder Colorado USA
| | - S. Walters
- National Center for Atmospheric Research; Boulder Colorado USA
| | - A. Guenther
- National Center for Atmospheric Research; Boulder Colorado USA
| | - P. I. Palmer
- School of GeoSciences; University of Edinburgh; Edinburgh UK
| | - P. J. Lawrence
- Cooperative Institute for Research in Environmental Sciences (CIRES); University of Colorado; Boulder Colorado USA
| |
Collapse
|
46
|
Berndt T, Böge O. Atmospheric Reaction of OH Radicals with 1,3-Butadiene and 4-Hydroxy-2-butenal. J Phys Chem A 2007; 111:12099-105. [DOI: 10.1021/jp075349o] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Berndt
- Leibniz-Institut für Troposphärenforschung e.V., Permoserstr. 15, 04318 Leipzig, Germany
| | - Olaf Böge
- Leibniz-Institut für Troposphärenforschung e.V., Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
47
|
|
48
|
Horowitz LW, Fiore AM, Milly GP, Cohen RC, Perring A, Wooldridge PJ, Hess PG, Emmons LK, Lamarque JF. Observational constraints on the chemistry of isoprene nitrates over the eastern United States. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007747] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Wu S, Mickley LJ, Jacob DJ, Logan JA, Yantosca RM, Rind D. Why are there large differences between models in global budgets of tropospheric ozone? ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007801] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Herndon SC, Zahniser MS, Nelson DD, Shorter J, McManus JB, Jiménez R, Warneke C, de Gouw JA. Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007600] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | - Rodrigo Jiménez
- Department of Earth and Planetary Sciences; Harvard University; Cambridge Massachusetts USA
| | - Carsten Warneke
- Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | | |
Collapse
|