1
|
Lieb HC, Maldonado M, Ruiz E, Torres C, Olmedo L, Walters WW, Faloona IC. Nitrogen isotopes reveal high NO x emissions from arid agricultural soils in the Salton Sea Air Basin. Sci Rep 2024; 14:28725. [PMID: 39567601 PMCID: PMC11579327 DOI: 10.1038/s41598-024-78361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Air quality management commonly aims to mitigate nitrogen oxide (NOx) emissions from combustion, reducing ozone (O3) and particulate matter (PM) pollution. Despite such ongoing efforts, regulations have recently proven ineffective in rural areas like the Salton Sea Air Basin of Southern California, which routinely violates O3 and PM air quality standards. With over $2 billion in annual agricultural sales and low population density, air quality in the region is likely influenced by the year-round farming activity. We conducted a source apportionment of NOx (an important precursor to both O3 and PM) using nitrogen stable isotopes of ambient NO2, which revealed a significant contribution from soil-emitted NOx to the regional budget. The soil source strength was estimated based on the mean δ15N-NOx from each emission category in the California Air Resources Board's NOx inventory. Our annual average soil emission estimate for the air basin was 11.4 ± 4 tons/d, representing ~ 30% of the extant NOx inventory, 10× larger than the state's inventory for soil emissions. Unconstrained environmental factors such as nutrient availability, soil moisture, and temperature have a first-order impact on soil NOx production in this agriculturally intensive region, with fertilization and irrigation practices likely driving most of the emissions variability. Without spatially and temporally accurate data on fertilizer application rates and irrigation schedules, it is difficult to determine the direct impacts that these variations have on our observations. Nevertheless, comparative analysis with previous studies indicates that soil NOx emissions in the Imperial Valley are likely underrepresented in current inventories, highlighting the need for more detailed and localized observational data to constrain the sizeable and variable emissions from these arid, agricultural soils.
Collapse
Affiliation(s)
- Heather C Lieb
- Department of Land, Air, and Water Resources/Air Quality Research Center, University of California, Davis, California, USA
| | | | - Edgar Ruiz
- Comité Cívico del Valle, Brawley, California, USA
| | | | - Luis Olmedo
- Comité Cívico del Valle, Brawley, California, USA
| | - Wendell W Walters
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Ian C Faloona
- Department of Land, Air, and Water Resources/Air Quality Research Center, University of California, Davis, California, USA.
| |
Collapse
|
2
|
Zhang ZE, Li J, Zhang R, Tian C, Sun Z, Li T, Han M, Yu K, Zhang G. Increase in Agricultural-Derived NH x and Decrease in Coal Combustion-Derived NO x Result in Atmospheric Particulate N-NH 4+ Surpassing N-NO 3- in the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6682-6692. [PMID: 38547356 DOI: 10.1021/acs.est.3c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The atmospheric deposition of anthropogenic active nitrogen significantly influences marine primary productivity and contributes to eutrophication. The form of nitrogen deposition has been evolving annually, alongside changes in human activities. A disparity arises between observation results and simulation conclusions due to the limited field observation and research in the ocean. To address this gap, our study undertook three field cruises in the South China Sea in 2021, the largest marginal sea of China. The objective was to investigate the latest atmospheric particulate inorganic nitrogen deposition pattern and changes in nitrogen sources, employing nitrogen-stable isotopes of nitrate (δ15N-NO3-) and ammonia (δ15N-NH4+) linked to a mixing model. The findings reveal that the N-NH4+ deposition generally surpasses N-NO3- deposition, attributed to a decline in the level of NOx emission from coal combustion and an upswing in the level of NHx emission from agricultural sources. The disparity in deposition between N-NH4+ and N-NO3- intensifies from the coast to the offshore, establishing N-NH4+ as the primary contributor to oceanic nitrogen deposition, particularly in ocean background regions. Fertilizer (33 ± 21%) and livestock (20 ± 6%) emerge as the primary sources of N-NH4+. While coal combustion continues to be a significant contributor to marine atmospheric N-NO3-, its proportion has diminished to 22 (Northern Coast)-35% (background area) due to effective NOx emission controls by the countries surrounding the South China Sea, especially the Chinese Government. As coal combustion's contribution dwindles, the significance of vessel and marine biogenic emissions grows. The daytime higher atmospheric N-NO3- concentration and lower δ15N-NO3- compared with nighttime further underscore the substantial role of marine biogenic emissions.
Collapse
Affiliation(s)
- Zheng-En Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, P. R. China
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Zeyu Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingting Li
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, P. R. China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, P. R. China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Lao IR, Feinberg A, Borduas-Dedekind N. Regional Sources and Sinks of Atmospheric Particulate Selenium in the United States Based on Seasonality Profiles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7401-7409. [PMID: 37146171 DOI: 10.1021/acs.est.2c08243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Selenium (Se) is an essential nutrient for humans and enters our food chain through bioavailable Se in soil. Atmospheric deposition is a major source of Se to soils, driving the need to investigate the sources and sinks of atmospheric Se. Here, we used Se concentrations from PM2.5 data at 82 sites from 1988 to 2010 from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network in the US to identify the sources and sinks of particulate Se. We identified 6 distinct seasonal profiles of atmospheric Se, grouped by geographical location: West, Southwest, Midwest, Southeast, Northeast, and North Northeast. Across most of the regions, coal combustion is the largest Se source, with a terrestrial source dominating in the West. We also found evidence for gas-to-particle partitioning in the wintertime in the Northeast. Wet deposition is an important sink of particulate Se, as determined by Se/PM2.5 ratios. The Se concentrations from the IMPROVE network compare well to modeled output from a global chemistry-climate model, SOCOL-AER, except in the Southeast US. Our analysis constrains the sources and sinks of atmospheric Se, thereby improving the predictions of Se distribution under climate change.
Collapse
Affiliation(s)
- Isabelle Renee Lao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, 50 Ames Street, Cambridge, Massachusetts 02142, United States
| | - Nadine Borduas-Dedekind
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Shi Y, Hu Y, Jin Z, Li J, Zhang J, Li F. Nitrate sources and its formation in precipitation during typhoons (In-fa and Chanthu) in multiple cities, East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155949. [PMID: 35588835 DOI: 10.1016/j.scitotenv.2022.155949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A clear understanding of the factors governing dual isotopes (δ15N-NO3- and δ18O-NO3-) in typhoons is essential for understanding their NO3- sources and its formation mechanisms. In this study, sequential precipitation samples during typhoons, including In-fa and Chanthu, were collected from Ningbo, Hangzhou and Huzhou. The chemical compositions, nitrogen and oxygen isotopes of NO3- and oxygen isotopes of H2O (δ18O-H2O) were measured. The results showed that the δ15N-NO3- and δ18O-NO3- values ranged from -6.3‰ to 6.0‰, and 38.0‰ to 66.5‰, respectively. The lower δ18O-NO3- values (less than 52‰) indicated the importance of peroxy radicals (RO2 or HO2) in NOx oxidation to NO3- formation pathways. By the Monte Carlo simulation of δ18O-NO3- values of typhoons, the calculated oxidation proportions of NO by RO2 (or HO2) during the OH· pathway ranged from 0% to 27% of In-fa and from 0% to 32% of Chanthu, respectively, in the three cities. More NOx emissions from marine microbial processes caused the lower δ15N-NO3- values of typhoons in Ningbo than those in Hangzhou and Huzhou. The variation in δ15N-NO3- values in sequential samples in In-fa reflected the decreased marine sources (lightning) and the increased anthropogenic sources in land (coal combustion and microbial N cycle) from Phrase I to Phrase II and III. Based on the improved Bayesian model with nitrogen isotopic fractionation, the contributions of lightning + biomass burning, coal combustion, mobile sources and the microbial N cycle were 35.7%, 22.5%, 27.1% and 14.7% in In-fa, and 28.3%, 32.3%, 28.0% and 11.4% in Chanthu, respectively, in the three cities, emphasizing the influence of marine NOx sources (lightning). The results highlight the importance of RO2 (or HO2) in NOx oxidation pathways in typhoons and provide valuable insight into the NOx sources of typhoons.
Collapse
Affiliation(s)
- Yasheng Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuming Hu
- Zhejiang Zone-King Environmental Sci & Tech Co., Ltd, Hanghzou 310004, China
| | - Zanfang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jiawen Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Junfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
5
|
Cárdenas-Castillo JE, Delatorre-Herrera J, Bascuñán-Godoy L, Rodriguez JP. Quinoa (Chenopodium quinoa Wild.) Seed Yield and Efficiency in Soils Deficient of Nitrogen in the Bolivian Altiplano: An Analytical Review. PLANTS 2021; 10:plants10112479. [PMID: 34834842 PMCID: PMC8624588 DOI: 10.3390/plants10112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Quinoa is a strategic crop due to its high N content and its adaptability to adverse conditions, where most of the soils are deficient of nitrogen (N). The central question in this review was the following: How can quinoa yield low levels of nitrogen in the soils of Altiplano? This question was unraveled based on different factors: (1) fertilization effect on productivity, (2) fertilization limits, (3) uptake and assimilation of nitrogen parameters, (4) monoculture practice effect, and (5) possible sources and strategies. One hundred eleven articles of different scientific platforms were revised and data were collected. Information from articles was used to calculate the partial factor productivity for nitrogen (PFPN), the apparent use efficiency of N (APUEN), available nitrogen (AN), and nitrogen content harvested in grains (HarvN). Quinoa responds positively to fertilization, but differences in yield were found among irrigated and rainfed conditions. Quinoa can produce 1850 kg grains ha−1 with 50 kg N ha−1 under irrigated conditions, and 670 kg grains ha−1 with 15 kg N ha−1 in rainfed conditions. Quinoa increases seed yield and HarvN increases N fertilization, but decreases nitrogen efficiency. In Altiplano, without nitrogen fertilizer, the quinoa yield relies on between 500 and 1000 kg ha−1, which shows that in the soil, there are other nitrogen sources.
Collapse
Affiliation(s)
- Jesús E. Cárdenas-Castillo
- Engineering Agriculture Department, Natural Sciences and Agriculture Faculty, Universidad Técnica de Oruro, Oruro 49, Bolivia;
- Doctoral Program in Agriculture for Arid-Desert Environments, Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile
| | - José Delatorre-Herrera
- Doctoral Program in Agriculture for Arid-Desert Environments, Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile
- Correspondence:
| | - Luisa Bascuñán-Godoy
- Botany Departament, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción 4030000, Chile;
| | - Juan Pablo Rodriguez
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Messeweg 11/12, 38104 Braunschweig, Germany;
| |
Collapse
|
6
|
Sha T, Ma X, Zhang H, Janechek N, Wang Y, Wang Y, Castro García L, Jenerette GD, Wang J. Impacts of Soil NO x Emission on O 3 Air Quality in Rural California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7113-7122. [PMID: 33576617 DOI: 10.1021/acs.est.0c06834] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrogen oxides (NOx) are a key precursor in O3 formation. Although stringent anthropogenic NOx emission controls have been implemented since the early 2000s in the United States, several rural regions of California still suffer from O3 pollution. Previous findings suggest that soils are a dominant source of NOx emissions in California; however, a statewide assessment of the impacts of soil NOx emission (SNOx) on air quality is still lacking. Here we quantified the contribution of SNOx to the NOx budget and the effects of SNOx on surface O3 in California during summer by using WRF-Chem with an updated SNOx scheme, the Berkeley Dalhousie Iowa Soil NO Parameterization (BDISNP). The model with BDISNP shows a better agreement with TROPOMI NO2 columns, giving confidence in the SNOx estimates. We estimate that 40.1% of the state's total NOx emissions in July 2018 are from soils, and SNOx could exceed anthropogenic sources over croplands, which accounts for 50.7% of NOx emissions. Such considerable amounts of SNOx enhance the monthly mean NO2 columns by 34.7% (53.3%) and surface NO2 concentrations by 176.5% (114.0%), leading to an additional 23.0% (23.2%) of surface O3 concentration in California (cropland). Our results highlight the cobenefits of limiting SNOx to help improve air quality and human health in rural California.
Collapse
Affiliation(s)
- Tong Sha
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Xiaoyan Ma
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Huanxin Zhang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Nathan Janechek
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yanyu Wang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Wang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - Lorena Castro García
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| | - G Darrel Jenerette
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, and Iowa Technology Institute, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Naimark JG, Fiore AM, Jin X, Wang Y, Klovenski E, Braneon C. Evaluating Drought Responses of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and Temperature. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2020GL091520. [PMID: 35860786 PMCID: PMC9285578 DOI: 10.1029/2020gl091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 06/15/2023]
Abstract
Prior work suggests drought exacerbates US air quality by increasing surface ozone concentrations. We analyze 2005-2015 tropospheric column concentrations of two trace gases that serve as proxies for surface ozone precursors retrieved from the OMI/Aura satellite: Nitrogen dioxide (ΩNO2; NOx proxy) and formaldehyde (ΩHCHO; VOC proxy). We find 3.5% and 7.7% summer drought enhancements (classified by SPEI) for ΩNO2 and ΩHCHO, respectively, corroborating signals previously extracted from ground-level observations. When we subset by land cover type, the strongest ΩHCHO drought enhancement (10%) occurs in the woody savannas of the Southeast US. By isolating the influences of precipitation and temperature, we infer that enhanced biogenic VOC emissions in this region increase ΩHCHO independently with both high temperature and low precipitation during drought. The strongest ΩNO2 drought enhancement (6.0%) occurs over Midwest US croplands and grasslands, which we infer to reflect the sensitivity of soil NOx emissions to temperature.
Collapse
Affiliation(s)
- Jacob G. Naimark
- Department of Earth and Environmental Sciences, Columbia CollegeColumbia UniversityNew YorkNYUSA
- Department of Earth and Environmental Sciences, Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNYUSA
| | - Arlene M. Fiore
- Department of Earth and Environmental Sciences, Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNYUSA
| | - Xiaomeng Jin
- Department of ChemistryUniversity of California BerkeleyBerkeleyNYUSA
| | - Yuxuan Wang
- Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonTXUSA
| | - Elizabeth Klovenski
- Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonTXUSA
| | - Christian Braneon
- NASA Goddard Institute for Space Studies (GISS)New YorkNYUSA
- SciSpaceLLCBethesdaMDUSA
| |
Collapse
|
8
|
Reductions in NO 2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017. Proc Natl Acad Sci U S A 2021; 118:2002579118. [PMID: 33558224 DOI: 10.1073/pnas.2002579118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Socioeconomic development in low- and middle-income countries has been accompanied by increased emissions of air pollutants, such as nitrogen oxides [NOx: nitrogen dioxide (NO2) + nitric oxide (NO)], which affect human health. In sub-Saharan Africa, fossil fuel combustion has nearly doubled since 2000. At the same time, landscape biomass burning-another important NOx source-has declined in north equatorial Africa, attributed to changes in climate and anthropogenic fire management. Here, we use satellite observations of tropospheric NO2 vertical column densities (VCDs) and burned area to identify NO2 trends and drivers over Africa. Across the northern ecosystems where biomass burning occurs-home to hundreds of millions of people-mean annual tropospheric NO2 VCDs decreased by 4.5% from 2005 through 2017 during the dry season of November through February. Reductions in burned area explained the majority of variation in NO2 VCDs, though changes in fossil fuel emissions also explained some variation. Over Africa's biomass burning regions, raising mean GDP density (USD⋅km-2) above its lowest levels is associated with lower NO2 VCDs during the dry season, suggesting that economic development mitigates net NO2 emissions during these highly polluted months. In contrast to the traditional notion that socioeconomic development increases air pollutant concentrations in low- and middle-income nations, our results suggest that countries in Africa's northern biomass-burning region are following a different pathway during the fire season, resulting in potential air quality benefits. However, these benefits may be lost with increasing fossil fuel use and are absent during the rainy season.
Collapse
|
9
|
Huber DE, Steiner AL, Kort EA. Daily Cropland Soil NO x Emissions Identified by TROPOMI and SMAP. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2020GL089949. [PMID: 33380760 PMCID: PMC7757188 DOI: 10.1029/2020gl089949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
We use TROPOMI (TROPOspheric Monitoring Instrument) tropospheric nitrogen dioxide (NO2) measurements to identify cropland soil nitrogen oxide (NOx = NO + NO2) emissions at daily to seasonal scales in the U.S. Southern Mississippi River Valley. Evaluating 1.5 years of TROPOMI observations with a box model, we observe seasonality in local NOx enhancements and estimate maximum cropland soil NOx emissions (15-34 ng N m-2 s-1) early in growing season (May-June). We observe soil NOx pulsing in response to daily decreases in volumetric soil moisture (VSM) as measured by the Soil Moisture Active Passive (SMAP) satellite. Daily NO2 enhancements reach up to 0.8 × 1015 molecules cm-2 4-8 days after precipitation when VSM decreases to ~30%, reflecting emissions behavior distinct from previously defined soil NOx pulse events. This demonstrates that TROPOMI NO2 observations, combined with observations of underlying process controls (e.g., soil moisture), can constrain soil NOx processes from space.
Collapse
Affiliation(s)
- Daniel E. Huber
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Allison L. Steiner
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Eric A. Kort
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
10
|
Zong Z, Tan Y, Wang X, Tian C, Li J, Fang Y, Chen Y, Cui S, Zhang G. Dual-modelling-based source apportionment of NO x in five Chinese megacities: Providing the isotopic footprint from 2013 to 2014. ENVIRONMENT INTERNATIONAL 2020; 137:105592. [PMID: 32106050 DOI: 10.1016/j.envint.2020.105592] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
In China, nitrate (NO3-) becomes the main contributor to fine particles (PM2.5) because the emissions of its precursor, nitrogen oxides (NOx), were not recognized and controlled well in recent years. In this work, sources, conversion, and geographical origin of NOx were interpreted combining the isotopic information (δ15N and δ18O) of NO3- and dual modelling at five Chinese megacities (Beijing, Shanghai, Guangzhou, Wuhan and Chengdu) during 2013-2014. Results showed that the δ15N-NO3- values (n = 512) ranged from -12.3‰ to +22.9‰, and the average δ18O-NO3- value was +83.4‰ ± 17.2‰. The isotopic compositions both had a rising tendency as ambient temperature dropped, attributing largely to the source changes. Bayesian model indicated the percentage for the OH pathway of NOx conversion had a clear seasonal variation with a higher value during summer (58.0% ± 9.82%) and a lower value during winter (11.1% ± 3.99%); it was also significantly correlated with latitude (p < 0.01). Coal combustion was the most important source of NOx (31.1%-41.0%), which was geographically derived from North China and other south-central developed regions implied by Potential Source Contribution Function (PSCF). Apart from Chengdu, mobile sources was the second largest contributor to NOx. This source was extensive but uniformly distributed all around the typical urban agglomerations of China. Biomass burning and microbial processes shared similar source areas, mostly originating from the North China Plain and Sichuan Basin. Based on the NOx features, we infer that residential coal combustion was the primary source of heavy PM2.5 pollution in Chinese megacities. Controlling the source categories of these regional priorities would help mitigate atmospheric pollution in these areas.
Collapse
Affiliation(s)
- Zheng Zong
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Yang Tan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China
| | - Xiao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200092, China
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Noreen A, Khokhar MF, Zeb N, Yasmin N, Hakeem KR. Spatio-temporal assessment and seasonal variation of tropospheric ozone in Pakistan during the last decade. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8441-8454. [PMID: 29307068 DOI: 10.1007/s11356-017-1010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
This study uses the tropospheric ozone data derived from combined observations of Ozone Monitoring Instrument/Microwave Limb Sounder instruments by using the tropospheric ozone residual method. The main objective was to study the spatial distribution and temporal evolution in the troposphere ozone columns over Pakistan during the time period of 2004 to 2014. Results showed an overall increase of 3.2 ± 1.1 DU in tropospheric ozone columns over Pakistan. Spatial distribution showed enhanced ozone columns in the Punjab and southern Sindh consistent to high population, urbanization, and extensive anthropogenic activities, and exhibited statistically significant temporal increase. Seasonal variations in tropospheric ozone columns are driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NOx and volatile organic compounds (caused by temperature dependent biogenic emission) and agricultural fire activities in Pakistan. A strong correlation of 96% (r = 0.96) was found between fire events and tropospheric ozone columns in Pakistan.
Collapse
Affiliation(s)
- Asma Noreen
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Muhammad Fahim Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| | - Naila Zeb
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Naila Yasmin
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
12
|
Hickman JE, Huang Y, Wu S, Diru W, Groffman PM, Tully KL, Palm CA. Nonlinear response of nitric oxide fluxes to fertilizer inputs and the impacts of agricultural intensification on tropospheric ozone pollution in Kenya. GLOBAL CHANGE BIOLOGY 2017; 23:3193-3204. [PMID: 28145106 DOI: 10.1111/gcb.13644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Crop yields in sub-Saharan Africa remain stagnant at 1 ton ha-1 , and 260 million people lack access to adequate food resources. Order-of-magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two-month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha-1 , NO emissions increased without a concomitant increase in yields. We used the geos-chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4-hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha-1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha-1 during the March-April-May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.
Collapse
Affiliation(s)
- Jonathan E Hickman
- The Earth Institute of Columbia University, 61 Route 9W, Lamont Hall, PO Box 1000, Palisades, NY, 10964, USA
| | - Yaoxian Huang
- Department of Geological & Mining Engineering & Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Now at the School of Forestry and Environmental Studies, Yale University, 195 Prospect St., New Haven, CT, 06511, USA
| | - Shiliang Wu
- Department of Geological & Mining Engineering & Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Willy Diru
- Millennium Village Project, Milimani Block 10/35, Busia Road, PO Box 2389-40100, Kisumu, Kenya
| | - Peter M Groffman
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, PO Box AB, Millbrook, NY, 12545, USA
- City University of New York Advanced Science Research Center and Brooklyn College Department of Earth and Environmental Sciences, 85 St. Nicholas Terrace, 5th Floor, New York, NY, 10031, USA
| | - Katherine L Tully
- University of Maryland, 2108 Plant Sciences Building, College Park, MD, 20742, USA
| | - Cheryl A Palm
- The Earth Institute of Columbia University, 61 Route 9W, Lamont Hall, PO Box 1000, Palisades, NY, 10964, USA
- Now at the University of Florida, P.O. Box 110180, Gainesville, FL, 32611, USA
| |
Collapse
|
13
|
Yu Z, Elliott EM. Novel Method for Nitrogen Isotopic Analysis of Soil-Emitted Nitric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6268-6278. [PMID: 28467082 DOI: 10.1021/acs.est.7b00592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The global inventory of NOx (NOx = NO + NO2) emissions is poorly constrained, with a large portion of the uncertainty attributed to soil NO emissions that result from soil abiotic and microbial processes. While natural abundance stable N isotopes (δ15N) in various soil N-containing compounds have proven to be a robust tracer of soil N cycling, soil δ15N-NO is rarely quantified due to the measurement difficulties. Here, we present a new method that collects soil-emitted NO through NO conversion to NO2 in excess ozone (O3) and subsequent NO2 collection in a 20% triethanolamine (TEA) solution as nitrite and nitrate for δ15N analysis using the denitrifier method. The precision and accuracy of the method were quantified through repeated collection of an analytical NO tank and intercalibration with a modified EPA NOx collection method. The results show that the efficiency of NO conversion to NO2 and subsequent NO2 collection in the TEA solution is >98% under a variety of controlled conditions. The method precision (1σ) and accuracy across the entire analytical procedure are ±1.1‰. We report the first analyses of soil δ15N-NO (-59.8‰ to -23.4‰) from wetting-induced NO pulses at both laboratory and field scales that have important implications for understanding soil NO dynamics.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Geology and Environmental Science, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Emily M Elliott
- Department of Geology and Environmental Science, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Thompson AM, Miller SK, Tilmes S, Kollonige DW, Witte JC, Oltmans SJ, Johnson BJ, Fujiwara M, Schmidlin FJ, Coetzee GJR, Komala N, Maata M, bt Mohamad M, Nguyo J, Mutai C, Ogino SY, Da Silva FR, Leme NMP, Posny F, Scheele R, Selkirk HB, Shiotani M, Stübi R, Levrat G, Calpini B, Thouret V, Tsuruta H, Canossa JV, Vömel H, Yonemura S, Diaz JA, Tan Thanh NT, Thuy Ha HT. Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016911] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Cheng M, Jiang H, Guo Z. Evaluation of long-term tropospheric NO2 columns and the effect of different ecosystem in Yangtze River Delta. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proenv.2012.01.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Lee C, Martin RV, van Donkelaar A, Lee H, Dickerson RR, Hains JC, Krotkov N, Richter A, Vinnikov K, Schwab JJ. SO2emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014758] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Ghude SD, Lal DM, Beig G, van der A R, Sable D. Rain-Induced Soil NOxEmission From India During the Onset of the Summer Monsoon: A Satellite Perspective. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013367] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Lamsal LN, Martin RV, van Donkelaar A, Celarier EA, Bucsela EJ, Boersma KF, Dirksen R, Luo C, Wang Y. Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013351] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Hains JC, Boersma KF, Kroon M, Dirksen RJ, Cohen RC, Perring AE, Bucsela E, Volten H, Swart DPJ, Richter A, Wittrock F, Schoenhardt A, Wagner T, Ibrahim OW, van Roozendael M, Pinardi G, Gleason JF, Veefkind JP, Levelt P. Testing and improving OMI DOMINO tropospheric NO2using observations from the DANDELIONS and INTEX-B validation campaigns. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012399] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Nassar R, Logan JA, Megretskaia IA, Murray LT, Zhang L, Jones DBA. Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Niño using TES observations and the GEOS-Chem model. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011760] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Palmer PI. Quantifying sources and sinks of trace gases using space-borne measurements: current and future science. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4509-4528. [PMID: 18852092 DOI: 10.1098/rsta.2008.0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have been observing the Earth's upper atmosphere from space for several decades, but only over the past decade has the necessary technology begun to match our desire to observe surface air pollutants and climate-relevant trace gases in the lower troposphere, where we live and breathe. A new generation of Earth-observing satellites, capable of probing the lower troposphere, are already orbiting hundreds of kilometres above the Earth's surface with several more ready for launch or in the planning stages. Consequently, this is one of the most exciting times for the Earth system scientists who study the countless current-day physical, chemical and biological interactions between the Earth's land, ocean and atmosphere. First, I briefly review the theory behind measuring the atmosphere from space, and how these data can be used to infer surface sources and sinks of trace gases. I then present some of the science highlights associated with these data and how they can be used to improve fundamental understanding of the Earth's climate system. I conclude the paper by discussing the future role of satellite measurements of tropospheric trace gases in mitigating surface air pollution and carbon trading.
Collapse
Affiliation(s)
- Paul I Palmer
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, UK.
| |
Collapse
|
22
|
Ghude SD, Fadnavis S, Beig G, Polade SD, van der A RJ. Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2over India. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009615] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Boersma KF, Jacob DJ, Eskes HJ, Pinder RW, Wang J, van der A RJ. Intercomparison of SCIAMACHY and OMI tropospheric NO2columns: Observing the diurnal evolution of chemistry and emissions from space. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008816] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Saunois M, Mari C, Thouret V, Cammas JP, Peyrillé P, Lafore JP, Sauvage B, Volz-Thomas A, Nédélec P, Pinty JP. An idealized two-dimensional approach to study the impact of the West African monsoon on the meridional gradient of tropospheric ozone. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Galbally IE, Kirstine WV, Meyer CPM, Wang YP. Soil-atmosphere trace gas exchange in semiarid and arid zones. JOURNAL OF ENVIRONMENTAL QUALITY 2008; 37:599-607. [PMID: 18396546 DOI: 10.2134/jeq2006.0445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A review is presented on trace gas exchange of CH4, CO, N2O, and NOx arising from agriculture and natural sources in the world's semiarid and arid zones due to soil processes. These gases are important contributors to the radiative forcing and the chemistry of the atmosphere. Quantitative information is summarized from the available studies. Between 5 and 40% of the global soil-atmosphere exchange for these gases (CH4, CO, N2O, and NOx) may occur in semiarid and arid zones, but for each of these gases there are fewer than a dozen studies to support the individual estimates, and these are from a limited number of locations. Significant differences in the biophysical and chemical processes controlling these trace gas exchanges are identified through the comparison of semiarid and arid zones with the moist temperate or wet/dry savanna land regions. Therefore, there is a poorly quantified understanding of the contribution of these regions to the global trace gas cycles and atmospheric chemistry. More importantly, there is a poor understanding of the feedback between these exchanges, global change, and regional land use and air pollution issues. A set of research issues is presented.
Collapse
Affiliation(s)
- Ian E Galbally
- CSIRO Marine and Atmospheric Research, PB1 Aspendale Victoria, Australia.
| | | | | | | |
Collapse
|
26
|
van der A RJ, Eskes HJ, Boersma KF, van Noije TPC, Van Roozendael M, De Smedt I, Peters DHMU, Meijer EW. Trends, seasonal variability and dominant NOxsource derived from a ten year record of NO2measured from space. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009021] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
The trend, seasonal cycle, and sources of tropospheric NO2 over China during 1997–2006 based on satellite measurement. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11430-007-0141-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Martin RV, Sauvage B, Folkins I, Sioris CE, Boone C, Bernath P, Ziemke J. Space-based constraints on the production of nitric oxide by lightning. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007831] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Fu TM, Jacob DJ, Palmer PI, Chance K, Wang YX, Barletta B, Blake DR, Stanton JC, Pilling MJ. Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007853] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Wang Y, McElroy MB, Martin RV, Streets DG, Zhang Q, Fu TM. Seasonal variability of NOxemissions over east China constrained by satellite observations: Implications for combustion and microbial sources. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007538] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Millet DB, Jacob DJ, Turquety S, Hudman RC, Wu S, Fried A, Walega J, Heikes BG, Blake DR, Singh HB, Anderson BE, Clarke AD. Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006853] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Martin RV, Sioris CE, Chance K, Ryerson TB, Bertram TH, Wooldridge PJ, Cohen RC, Neuman JA, Swanson A, Flocke FM. Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006680] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
van der A RJ, Peters DHMU, Eskes H, Boersma KF, Van Roozendael M, De Smedt I, Kelder HM. Detection of the trend and seasonal variation in tropospheric NO2over China. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006594] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Sauvage B, Thouret V, Thompson AM, Witte JC, Cammas JP, Nédélec P, Athier G. Enhanced view of the “tropical Atlantic ozone paradox” and “zonal wave one” from the in situ MOZAIC and SHADOZ data. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006241] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Jaeglé L, Steinberger L, Martin RV, Chance K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 2005; 130:407-23; discussion 491-517, 519-24. [PMID: 16161795 DOI: 10.1039/b502128f] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to derive monthly top-down NOx emissions for 2000 via inverse modeling with the GEOS-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel and biofuel), biomass burning and soils by exploiting the spatio-temporal distribution of remotely sensed fires and a priori information on the location of regions dominated by fuel combustion. The top-down inventory is combined with an a priori inventory to obtain an optimized a posteriori estimate of the relative roles of NOx sources. The resulting a posteriori fuel combustion inventory (25.6 TgN year(-1)) agrees closely with the a priori (25.4 TgN year(-1)), and errors are reduced by a factor of 2, from +/- 80% to +/- 40%. Regionally, the largest differences are found over Japan and South Africa, where a posteriori estimates are 25% larger than a priori. A posteriori fuel combustion emissions are aseasonal, with the exception of East Asia and Europe where winter emissions are 30-40% larger relative to summer emissions, consistent with increased energy use during winter for heating. Global a posteriori biomass burning emissions in 2000 resulted in 5.8 TgN (compared to 5.9 TgN year(-1) in the a priori), with Africa accounting for half of this total. A posteriori biomass burning emissions over Southeast Asia/India are decreased by 46% relative to a priori; but over North equatorial Africa they are increased by 50%. A posteriori estimates of soil emissions (8.9 TgN year(-1)) are 68% larger than a priori (5.3 TgN year(-1)). The a posteriori inventory displays the largest soil emissions over tropical savanna/woodland ecosystems (Africa), as well as over agricultural regions in the western U.S. (Great Plains), southern Europe (Spain, Greece, Turkey), and Asia (North China Plain and North India), consistent with field measurements. Emissions over these regions are highest during summer at mid-latitudes and during the rainy season in the Tropics. We estimate that 2.5-4.5 TgN year(-1) are emitted from N-fertilized soils, at the upper end of previous estimates. Soil and biomass burning emissions account for 22% and 14% of global surface NOx emissions, respectively. We infer a significant role for soil NOx emissions at northern mid-latitudes during summer, where they account for nearly half that of the fuel combustion source, a doubling relative to the a priori. The contribution of soil emissions to background ozone is thus likely to be underestimated by the current generation of chemical transport models.
Collapse
Affiliation(s)
- Lyatt Jaeglé
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|