1
|
Tackman EC, Grady RS, Freedman MA. Direct measurement of the pH of aerosol particles using carbon quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2929-2936. [PMID: 35856566 DOI: 10.1039/d2ay01005d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pH of aerosol particles remains challenging to measure because of their small size, complex composition, and high acidity. Acidity in aqueous aerosol particles, which are found abundantly in the atmosphere, impacts many chemical processes from reaction rates to cloud formation. Only one technique - pH paper - currently exists for directly determining the pH of aerosol particles, and this is restricted to measuring average acidity for entire particle populations. Other methods for evaluating aerosol pH include filter samples, particle-into-liquid sampling, Raman spectroscopy, organic dyes, and thermodynamic models, but these either operate in a higher pH range or are unable to assess certain chemical species or complexity. Here, we present a new method for determining acidity of individual particles and particle phases using carbon quantum dots as a novel in situ fluorophore. Carbon quantum dots are easily synthesized, shelf stable, and sensitive to pH in the highly acidic regime from pH 0 to pH 3 relevant to ambient aerosol particles. To establish the method, a calibration curve was formed from the ratiometric fluorescence intensity of aerosolized standard solutions with a correlation coefficient (R2) of 0.99. Additionally, the pH of aerosol particles containing a complex organic mixture (COM) representative of environmental aerosols was also determined, proving the efficacy of using carbon quantum dots as pH-sensitive fluorophores for complex systems. The ability to directly measure aerosol particle and phase acidity in the correct pH range can help parametrize atmospheric models and improve projections for other aerosol properties and their influence on health and climate.
Collapse
Affiliation(s)
- Emma C Tackman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Rachel S Grady
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Lee DS, Fahey DW, Skowron A, Allen MR, Burkhardt U, Chen Q, Doherty SJ, Freeman S, Forster PM, Fuglestvedt J, Gettelman A, De León RR, Lim LL, Lund MT, Millar RJ, Owen B, Penner JE, Pitari G, Prather MJ, Sausen R, Wilcox LJ. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 244:117834. [PMID: 32895604 PMCID: PMC7468346 DOI: 10.1016/j.atmosenv.2020.117834] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/02/2020] [Accepted: 07/30/2020] [Indexed: 05/04/2023]
Abstract
Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr-1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr-1. Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m-2 (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m-2), CO2 (34.3 mW m-2), and NOx (17.5 mW m-2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m-2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.
Collapse
Affiliation(s)
- D S Lee
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - D W Fahey
- NOAA Chemical Sciences Laboratory (CSL), Boulder, CO, USA
| | - A Skowron
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - M R Allen
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Department of Physics, University of Oxford, Oxford, UK
| | - U Burkhardt
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | - Q Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - S J Doherty
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
| | - S Freeman
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - P M Forster
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - J Fuglestvedt
- CICERO-Center for International Climate Research-Oslo, PO Box 1129, Blindern, 0318, Oslo, Norway
| | - A Gettelman
- National Center for Atmospheric Research, Boulder, CO, USA
| | - R R De León
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - L L Lim
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - M T Lund
- CICERO-Center for International Climate Research-Oslo, PO Box 1129, Blindern, 0318, Oslo, Norway
| | - R J Millar
- School of Geography and the Environment, University of Oxford, Oxford, UK
- Committee on Climate Change, 151 Buckingham Palace Road, London, SW1W 9SZ, UK
| | - B Owen
- Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, United Kingdom
| | - J E Penner
- Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St., Ann Arbor, MI, 48109-2143, USA
| | - G Pitari
- Department of Physical and Chemical Sciences, Università dell'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - M J Prather
- Department of Earth System Science, University of California, Irvine, 3329 Croul Hall, CA, 92697-3100, USA
| | - R Sausen
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | - L J Wilcox
- National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Earley Gate, Reading, RG6 6BB, UK
| |
Collapse
|
3
|
Friebel F, Mensah AA. Ozone Concentration versus Temperature: Atmospheric Aging of Soot Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14437-14450. [PMID: 31545616 DOI: 10.1021/acs.langmuir.9b02372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The oxidation of soot particles with ozone (O3) increases the particles' ability to act as cloud condensation nuclei (CCN). To assess if this process is a relevant source for CCN in the atmosphere, the reaction rate at atmospheric conditions must be known. Here we investigate the increase in CCN activity of soot particles rich in organic carbon at O3 concentrations ranging from 0-200 ppb and between 5 and 35 °C. We operated an ∼3 m3 aerosol chamber as a continuous-flow stirred tank reactor which allows for aging times of up to 12 h and beyond and of particle size selection prior to the aging step. We applied the activation time (tact) concept to retrieve kinetic data. It was found that 100 nm soot particles can be CCN-active down to supersaturations of 0.3% after 12 h of exposure to 200 ppb O3 at 35 °C. The reaction rate was found to be not directly proportional to the O3 concentration. Instead, a Langmuir-type reaction kinetic was found to be the best fit to parametrize the reaction rates. The initial reaction step is therefore the adsorption of O3 molecules, which could be detected by an increase in the particle diameter of up to 3.7 nm within several minutes after exposure. The increase in particle diameter agrees well with the calculated change in the O3 surface coverage, which was obtained from CCN activation data under the assumption of a Langmuir-sorption isotherm. Further, we found that a temperature increase from 5 to 35 °C increases the reaction rate by a factor of 5 which corresponds to an activation energy of 38.5 kJ·mol-1. Extrapolation to atmospheric conditions allows for the conclusion that the temperature is as important as the O3 concentration for the CCN activation of soot particles within the atmospheric range.
Collapse
Affiliation(s)
- Franz Friebel
- Institute for Atmospheric and Climate Science , ETH Zurich , Zurich 8092 , Switzerland
| | - Amewu A Mensah
- Institute for Atmospheric and Climate Science , ETH Zurich , Zurich 8092 , Switzerland
| |
Collapse
|
4
|
Charnawskas JC, Alpert PA, Lambe AT, Berkemeier T, O'Brien RE, Massoli P, Onasch TB, Shiraiwa M, Moffet RC, Gilles MK, Davidovits P, Worsnop DR, Knopf DA. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation. Faraday Discuss 2018; 200:165-194. [PMID: 28574555 DOI: 10.1039/c7fd00010c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.
Collapse
Affiliation(s)
- Joseph C Charnawskas
- Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vergara‐Temprado J, Holden MA, Orton TR, O'Sullivan D, Umo NS, Browse J, Reddington C, Baeza‐Romero MT, Jones JM, Lea‐Langton A, Williams A, Carslaw KS, Murray BJ. Is Black Carbon an Unimportant Ice-Nucleating Particle in Mixed-Phase Clouds? JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:4273-4283. [PMID: 29938147 PMCID: PMC6001433 DOI: 10.1002/2017jd027831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 05/15/2023]
Abstract
It has been hypothesized that black carbon (BC) influences mixed-phase clouds by acting as an ice-nucleating particle (INP). However, the literature data for ice nucleation by BC immersed in supercooled water are extremely varied, with some studies reporting that BC is very effective at nucleating ice, whereas others report no ice-nucleating ability. Here we present new experimental results for immersion mode ice nucleation by BC from two contrasting fuels (n-decane and eugenol). We observe no significant heterogeneous nucleation by either sample. Using a global aerosol model, we quantify the maximum relative importance of BC for ice nucleation when compared with K-feldspar and marine organic aerosol acting as INP. Based on the upper limit from our laboratory data, we show that BC contributes at least several orders of magnitude less INP than feldspar and marine organic aerosol. Representations of its atmospheric ice-nucleating ability based on older laboratory data produce unrealistic results when compared against ambient observations of INP. Since BC is a complex material, it cannot be unambiguously ruled out as an important INP species in all locations at all times. Therefore, we use our model to estimate a range of values for the density of active sites that BC particles must have to be relevant for ice nucleation in the atmosphere. The estimated values will guide future work on BC, defining the required sensitivity of future experimental studies.
Collapse
Affiliation(s)
- Jesús Vergara‐Temprado
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
- Now at Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
| | - Mark A. Holden
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
- School of ChemistryUniversity of LeedsLeedsUK
| | - Thomas R. Orton
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
- Now at Lloyd's of LondonLondonUK
| | - Daniel O'Sullivan
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Nsikanabasi S. Umo
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
- Now at Institute for Meteorology and Climate Research‐Atmospheric Aerosol ResearchKarlsruhe Institute of TechnologyEggenstein‐LeopoldshafenGermany
| | - Jo Browse
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
- Now at School of GeographyUniversity of ExeterPenrynCornwallUK
| | - Carly Reddington
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | | | - Jenny M. Jones
- School of Chemical and Process EngineeringUniversity of LeedsLeedsUK
| | - Amanda Lea‐Langton
- School of Chemical and Process EngineeringUniversity of LeedsLeedsUK
- Now at School of Mechanical, Aerospace and Civil EngineeringUniversity of ManchesterManchesterUK
| | - Alan Williams
- School of Chemical and Process EngineeringUniversity of LeedsLeedsUK
| | - Ken S. Carslaw
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Benjamin J. Murray
- Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
| |
Collapse
|
6
|
Thomson ES, Weber D, Bingemer HG, Tuomi J, Ebert M, Pettersson JBC. Intensification of ice nucleation observed in ocean ship emissions. Sci Rep 2018; 8:1111. [PMID: 29348652 PMCID: PMC5773617 DOI: 10.1038/s41598-018-19297-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/28/2017] [Indexed: 11/11/2022] Open
Abstract
Shipping contributes primary and secondary emission products to the atmospheric aerosol burden that have implications for climate, clouds, and air quality from regional to global scales. In this study we exam the potential impact of ship emissions with regards to ice nucleating particles. Particles that nucleate ice are known to directly affect precipitation and cloud microphysical properties. We have collected and analyzed particles for their ice nucleating capacity from a shipping channel outside a large Scandinavia port. We observe that ship plumes amplify the background levels of ice nucleating particles and discuss the larger scale implications. The measured ice nucleating particles suggest that the observed amplification is most likely important in regions with low levels of background particles. The Arctic, which as the sea ice pack declines is opening to transit and natural resource exploration and exploitation at an ever increasing rate, is highlighted as such a region.
Collapse
Affiliation(s)
- E S Thomson
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41296, Sweden.
| | - D Weber
- Institute for Atmospheric and Environmental Sciences, J. W. Goethe-University, Frankfurt am Main, Frankfurt, 60438, Germany
| | - H G Bingemer
- Institute for Atmospheric and Environmental Sciences, J. W. Goethe-University, Frankfurt am Main, Frankfurt, 60438, Germany
| | - J Tuomi
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41296, Sweden
| | - M Ebert
- Institute for Applied Geosciences, Technical University of Darmstadt, Darmstadt, 64287, Germany
| | - J B C Pettersson
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41296, Sweden
| |
Collapse
|
7
|
Kupiszewski P, Zanatta M, Mertes S, Vochezer P, Lloyd G, Schneider J, Schenk L, Schnaiter M, Baltensperger U, Weingartner E, Gysel M. Ice residual properties in mixed-phase clouds at the high-alpine Jungfraujoch site. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:12343-12362. [PMID: 28066694 PMCID: PMC5175215 DOI: 10.1002/2016jd024894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 05/28/2023]
Abstract
Ice residual (IR) and total aerosol properties were measured in mixed-phase clouds (MPCs) at the high-alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC-containing particles were determined using single-particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10-4 to 10-3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC-free and BC-containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC-containing particles also increased with total particle size, in a similar manner as for the BC-free particles, but on a level 1 order of magnitude lower. Furthermore, BC-containing IR were found to have a thicker coating than the BC-containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.
Collapse
Affiliation(s)
- Piotr Kupiszewski
- Laboratory of Atmospheric ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Now at Department of MeteorologyStockholm UniversityStockholmSweden
| | - Marco Zanatta
- Laboratory of Atmospheric ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Laboratoire de Glaciologie et Géophysique de l'EnvironnementUniversité Grenoble Alpes/CNRSGrenobleFrance
- Now at Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Stephan Mertes
- Leibniz Institute for Tropospheric ResearchLeipzigGermany
| | - Paul Vochezer
- Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Gary Lloyd
- Centre for Atmospheric Science, SEAESUniversity of ManchesterManchesterUK
| | - Johannes Schneider
- Particle Chemistry DepartmentMax Planck Institute for ChemistryMainzGermany
| | - Ludwig Schenk
- Leibniz Institute for Tropospheric ResearchLeipzigGermany
| | - Martin Schnaiter
- Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Urs Baltensperger
- Laboratory of Atmospheric ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Ernest Weingartner
- Laboratory of Atmospheric ChemistryPaul Scherrer InstituteVilligenSwitzerland
- Now at Institute for Aerosol and Sensor TechnologyUniversity of Applied SciencesWindischSwitzerland
| | - Martin Gysel
- Laboratory of Atmospheric ChemistryPaul Scherrer InstituteVilligenSwitzerland
| |
Collapse
|
8
|
Järvinen E, Vochezer P, Möhler O, Schnaiter M. Laboratory study of microphysical and scattering properties of corona-producing cirrus clouds. APPLIED OPTICS 2014; 53:7566-7575. [PMID: 25402925 DOI: 10.1364/ao.53.007566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Corona-producing cirrus clouds were generated and measured under chamber conditions at the AIDA cloud chamber in Karlsruhe. We were able to measure the scattering properties as well as microphysical properties of these clouds under well-defined laboratory conditions in contrast with previous studies of corona-producing clouds, where the measurements were conducted by means of lidar and in situ aircraft measurements. Our results are in agreement with those of previous studies, confirming that corona-producing cirrus clouds consist of a narrow distribution of small (median Dp=19-32 μm) and compact ice crystals. We showed that the ice crystals in these clouds are most likely formed in homogeneous freezing processes. As a result of the homogeneous freezing process, the ice crystals grow uniformly in size; furthermore, the majority of the ice crystals have rough surface features.
Collapse
|
9
|
Brooks SD, Suter K, Olivarez L. Effects of Chemical Aging on the Ice Nucleation Activity of Soot and Polycyclic Aromatic Hydrocarbon Aerosols. J Phys Chem A 2014; 118:10036-47. [DOI: 10.1021/jp508809y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah D. Brooks
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Katie Suter
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Laura Olivarez
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Lupi L, Molinero V. Does Hydrophilicity of Carbon Particles Improve Their Ice Nucleation Ability? J Phys Chem A 2014; 118:7330-7. [DOI: 10.1021/jp4118375] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Laura Lupi
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt
Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt
Lake City, Utah 84112-0850, United States
| |
Collapse
|
11
|
Lupi L, Hudait A, Molinero V. Heterogeneous nucleation of ice on carbon surfaces. J Am Chem Soc 2014; 136:3156-64. [PMID: 24495074 DOI: 10.1021/ja411507a] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atmospheric aerosols can promote the heterogeneous nucleation of ice, impacting the radiative properties of clouds and Earth's climate. The experimental investigation of heterogeneous freezing of water droplets by carbonaceous particles reveals widespread ice freezing temperatures. It is not known which structural and chemical characteristics of soot account for the variability in ice nucleation efficiency. Here we use molecular dynamics simulations to investigate the nucleation of ice from liquid water in contact with graphitic surfaces. We find that atomically flat carbon surfaces promote heterogeneous nucleation of ice, while molecularly rough surfaces with the same hydrophobicity do not. Graphitic surfaces and other surfaces that promote ice nucleation induce layering in the interfacial water, suggesting that the order imposed by the surface on liquid water may play an important role in the heterogeneous nucleation mechanism. We investigate a large set of graphitic surfaces of various dimensions and radii of curvature and find that variations in nanostructures alone could account for the spread in the freezing temperatures of ice on soot in experiments. We conclude that a characterization of the nanostructure of soot is needed to predict its ice nucleation efficiency.
Collapse
Affiliation(s)
- Laura Lupi
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | | | |
Collapse
|
12
|
Cziczo DJ, Froyd KD, Hoose C, Jensen EJ, Diao M, Zondlo MA, Smith JB, Twohy CH, Murphy DM. Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science 2013; 340:1320-4. [DOI: 10.1126/science.1234145] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Ching J, Riemer N, West M. Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle-resolved model. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Gettelman A, Liu X, Barahona D, Lohmann U, Chen C. Climate impacts of ice nucleation. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017950] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wang B, Laskin A, Roedel T, Gilles MK, Moffet RC, Tivanski AV, Knopf DA. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017446] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME. Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev 2012; 41:6519-54. [PMID: 22932664 DOI: 10.1039/c2cs35200a] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.
Collapse
Affiliation(s)
- B J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
17
|
Hendricks J, Kärcher B, Lohmann U. Effects of ice nuclei on cirrus clouds in a global climate model. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015302] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Friedman B, Kulkarni G, Beránek J, Zelenyuk A, Thornton JA, Cziczo DJ. Ice nucleation and droplet formation by bare and coated soot particles. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015999] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Storelvmo T, Hoose C, Eriksson P. Global modeling of mixed-phase clouds: The albedo and lifetime effects of aerosols. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014724] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Liu J, Fan S, Horowitz LW, Levy H. Evaluation of factors controlling long-range transport of black carbon to the Arctic. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015145] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Tishkova V, Demirdjian B, Ferry D, Johnson M. Neutron diffraction study of water freezing on aircraft engine combustor soot. Phys Chem Chem Phys 2011; 13:20729-35. [DOI: 10.1039/c1cp21109a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Barahona D, Rodriguez J, Nenes A. Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014273] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Lee D, Pitari G, Grewe V, Gierens K, Penner J, Petzold A, Prather M, Schumann U, Bais A, Berntsen T, Iachetti D, Lim L, Sausen R. Transport impacts on atmosphere and climate: Aviation. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2010; 44:4678-4734. [PMID: 32288556 PMCID: PMC7110594 DOI: 10.1016/j.atmosenv.2009.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 05/30/2009] [Accepted: 06/02/2009] [Indexed: 05/04/2023]
Abstract
Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion. The last major international assessment of these impacts was made by the Intergovernmental Panel on Climate Change (IPCC) in 1999. Here, a comprehensive updated assessment of aviation is provided. Scientific advances since the 1999 assessment have reduced key uncertainties, sharpening the quantitative evaluation, yet the basic conclusions remain the same. The climate impact of aviation is driven by long-term impacts from CO2 emissions and shorter-term impacts from non-CO2 emissions and effects, which include the emissions of water vapour, particles and nitrogen oxides (NO x ). The present-day radiative forcing from aviation (2005) is estimated to be 55 mW m-2 (excluding cirrus cloud enhancement), which represents some 3.5% (range 1.3-10%, 90% likelihood range) of current anthropogenic forcing, or 78 mW m-2 including cirrus cloud enhancement, representing 4.9% of current forcing (range 2-14%, 90% likelihood range). According to two SRES-compatible scenarios, future forcings may increase by factors of 3-4 over 2000 levels, in 2050. The effects of aviation emissions of CO2 on global mean surface temperature last for many hundreds of years (in common with other sources), whilst its non-CO2 effects on temperature last for decades. Much progress has been made in the last ten years on characterizing emissions, although major uncertainties remain over the nature of particles. Emissions of NO x result in production of ozone, a climate warming gas, and the reduction of ambient methane (a cooling effect) although the overall balance is warming, based upon current understanding. These NO x emissions from current subsonic aviation do not appear to deplete stratospheric ozone. Despite the progress made on modelling aviation's impacts on tropospheric chemistry, there remains a significant spread in model results. The knowledge of aviation's impacts on cloudiness has also improved: a limited number of studies have demonstrated an increase in cirrus cloud attributable to aviation although the magnitude varies: however, these trend analyses may be impacted by satellite artefacts. The effect of aviation particles on clouds (with and without contrails) may give rise to either a positive forcing or a negative forcing: the modelling and the underlying processes are highly uncertain, although the overall effect of contrails and enhanced cloudiness is considered to be a positive forcing and could be substantial, compared with other effects. The debate over quantification of aviation impacts has also progressed towards studying potential mitigation and the technological and atmospheric tradeoffs. Current studies are still relatively immature and more work is required to determine optimal technological development paths, which is an aspect that atmospheric science has much to contribute. In terms of alternative fuels, liquid hydrogen represents a possibility and may reduce some of aviation's impacts on climate if the fuel is produced in a carbon-neutral way: such fuel is unlikely to be utilized until a 'hydrogen economy' develops. The introduction of biofuels as a means of reducing CO2 impacts represents a future possibility. However, even over and above land-use concerns and greenhouse gas budget issues, aviation fuels require strict adherence to safety standards and thus require extra processing compared with biofuels destined for other sectors, where the uptake of such fuel may be more beneficial in the first instance.
Collapse
Affiliation(s)
- D.S. Lee
- Dalton Research Institute, Department of Environmental and Geographical Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Corresponding author. Tel.: +44 161 247 3663.
| | - G. Pitari
- Dipartimento di Fisica, University of L'Aquila, Vio Vetoio Località Coppito, 67100 l'Aquila, Italy
| | - V. Grewe
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - K. Gierens
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - J.E. Penner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143, USA
| | - A. Petzold
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - M.J. Prather
- Department of Earth System Science, University of California, Irvine, 3329 Croull Hall, CA 92697-3100, USA
| | - U. Schumann
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - A. Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - T. Berntsen
- Department of Geosciences, University of Oslo, PO Box 1022 Blindern, 0315, Oslo, Norway
| | - D. Iachetti
- Dipartimento di Fisica, University of L'Aquila, Vio Vetoio Località Coppito, 67100 l'Aquila, Italy
| | - L.L. Lim
- Dalton Research Institute, Department of Environmental and Geographical Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - R. Sausen
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| |
Collapse
|
24
|
Jacobson MZ. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013795] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Lang-Yona N, Abo-Riziq A, Erlick C, Segre E, Trainic M, Rudich Y. Interaction of internally mixed aerosols with light. Phys Chem Chem Phys 2010; 12:21-31. [DOI: 10.1039/b913176k] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Amsler P, Stetzer O, Schnaiter M, Hesse E, Benz S, Moehler O, Lohmann U. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements. APPLIED OPTICS 2009; 48:5811-5822. [PMID: 19844319 DOI: 10.1364/ao.48.005811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RH(ice)), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 microm (average size of 19 microm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RH(ice) and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 microm. The second mode grows to sizes of 5 to 63 microm, just after the particles of the first one fall out. It is found that an increasing aspect ratio chi of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements.
Collapse
Affiliation(s)
- Peter Amsler
- Institute of Meteorology and Climate Research, Forschungszentrum Karlsruhe, Karlsruhe, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Targino AC, Coe H, Cozic J, Crosier J, Crawford I, Bower K, Flynn M, Gallagher M, Allan J, Verheggen B, Weingartner E, Baltensperger U, Choularton T. Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Liu X, Penner JE, Wang M. Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010492] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Cozic J, Mertes S, Verheggen B, Cziczo DJ, Gallavardin SJ, Walter S, Baltensperger U, Weingartner E. Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009266] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Schwarz JP, Spackman JR, Fahey DW, Gao RS, Lohmann U, Stier P, Watts LA, Thomson DS, Lack DA, Pfister L, Mahoney MJ, Baumgardner D, Wilson JC, Reeves JM. Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009042] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Choularton TW, Bower KN, Weingartner E, Crawford I, Coe H, Gallagher MW, Flynn M, Crosier J, Connolly P, Targino A, Alfarra MR, Baltensperger U, Sjogren S, Verheggen B, Cozic J, Gysel M. The influence of small aerosol particles on the properties of water and ice clouds. Faraday Discuss 2008; 137:205-22; discussion 297-318. [DOI: 10.1039/b702722m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Popovicheva O, Persiantseva NM, Shonija NK, DeMott P, Koehler K, Petters M, Kreidenweis S, Tishkova V, Demirdjian B, Suzanne J. Water interaction with hydrophobic and hydrophilic soot particles. Phys Chem Chem Phys 2008; 10:2332-44. [DOI: 10.1039/b718944n] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Shonija NK, Popovicheva OB, Persiantseva NM, Savel'ev AM, Starik AM. Hydration of aircraft engine soot particles under plume conditions: Effect of sulfuric and nitric acid processing. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007217] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Schwarz JP, Gao RS, Fahey DW, Thomson DS, Watts LA, Wilson JC, Reeves JM, Darbeheshti M, Baumgardner DG, Kok GL, Chung SH, Schulz M, Hendricks J, Lauer A, Kärcher B, Slowik JG, Rosenlof KH, Thompson TL, Langford AO, Loewenstein M, Aikin KC. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007076] [Citation(s) in RCA: 505] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Kärcher B, Hendricks J, Lohmann U. Physically based parameterization of cirrus cloud formation for use in global atmospheric models. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006219] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Dymarska M, Murray BJ, Sun L, Eastwood ML, Knopf DA, Bertram AK. Deposition ice nucleation on soot at temperatures relevant for the lower troposphere. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006627] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Kanji ZA, Abbatt JPD. Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006766] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber. J Photochem Photobiol A Chem 2005. [DOI: 10.1016/j.jphotochem.2005.08.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Wagner R, Naumann KH, Mangold A, Möhler O, Saathoff H, Schurath U. Aerosol Chamber Study of Optical Constants and N2O5 Uptake on Supercooled H2SO4/H2O/HNO3 Solution Droplets at Polar Stratospheric Cloud Temperatures. J Phys Chem A 2005; 109:8140-8. [PMID: 16834200 DOI: 10.1021/jp0513364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of the formation of supercooled ternary H(2)SO(4)/H(2)O/HNO(3) solution (STS) droplets in the polar winter stratosphere, i.e., the uptake of nitric acid and water onto background sulfate aerosols at T < 195 K, was successfully mimicked during a simulation experiment at the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. Supercooled sulfuric acid droplets, acting as background aerosol, were added to the cooled AIDA vessel at T = 193.6 K, followed by the addition of ozone and nitrogen dioxide. N(2)O(5), the product of the gas phase reaction between O(3) and NO(2), was then hydrolyzed in the liquid phase with an uptake coefficient gamma(N(2)O(5)). From this experiment, a series of FTIR extinction spectra of STS droplets was obtained, covering a broad range of different STS compositions. This infrared spectra sequence was used for a quantitative test of the accuracy of published infrared optical constants for STS aerosols, needed, for example, as input in remote sensing applications. The present findings indicate that the implementation of a mixing rule approach, i.e., calculating the refractive indices of ternary H(2)SO(4)/H(2)O/HNO(3) solution droplets based on accurate reference data sets for the two binary H(2)SO(4)/H(2)O and HNO(3)/H(2)O systems, is justified. Additional model calculations revealed that the uptake coefficient gamma(N(2)O(5)) on STS aerosols strongly decreases with increasing nitrate concentration in the particles, demonstrating that this so-called nitrate effect, already well-established from uptake experiments conducted at room temperature, is also dominant at stratospheric temperatures.
Collapse
Affiliation(s)
- Robert Wagner
- Forschungszentrum Karlsruhe, Institute of Meteorology and Climate Research (IMK-AAF), Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Wagner R, Benz S, Möhler O, Saathoff H, Schnaiter M, Schurath U. Mid-infrared Extinction Spectra and Optical Constants of Supercooled Water Droplets. J Phys Chem A 2005; 109:7099-112. [PMID: 16834073 DOI: 10.1021/jp051942z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complex refractive indices of supercooled liquid water have been retrieved at 269, 258, 252, and 238 K in the 4500-1100 cm(-1) wavenumber regime from series of infrared extinction spectra of micron-sized water droplets. The spectra collection was recorded during expansion experiments in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. A Mie inversion technique was applied to derive the low-temperature refractive index data sets by iteratively adjusting the room-temperature optical constants of liquid water until obtaining the best agreement between measured and calculated infrared spectra of the supercooled water droplets. The new optical constants, revealing significant temperature-induced spectral variations in comparison with the room-temperature refractive indices, proved to be in good agreement with data sets obtained in a recent study. A detailed analysis was performed to elaborate potential inaccuracies in the retrieval results when deriving optical constants from particle extinction spectra using an iterative procedure.
Collapse
Affiliation(s)
- Robert Wagner
- Forschungszentrum Karlsruhe, Institute of Meteorology and Climate Research (IMK-AAF), Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|