1
|
Pan T, He X, Bai Y, Li T, Gong F, Wang D. Satellite retrieval of the linear polarization components of the water-leaving radiance in open oceans. OPTICS EXPRESS 2023; 31:15917-15939. [PMID: 37157682 DOI: 10.1364/oe.489680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Atmospheric correction (AC) of polarized radiances acquired by polarization satellite sensors, remains a challenge due to the complex radiative transfer processes of the coupled ocean-atmosphere system. In this study, we proposed an innovative polarized AC algorithm built on the near-infrared band (PACNIR) with an emphasis on the retrieval of the linear polarization components of the water-leaving radiance in clear open oceans. This algorithm was based on the black ocean assumption in the near-infrared band and fitted polarized radiance measurements along multiple observation directions with nonlinear optimized processing. Our retrieval algorithm notably inverted the linearly polarized components of the water-leaving radiance and aerosol parameters. Compared with that of the simulated linear polarization components of the water-leaving radiance via the vector radiative transfer model for the studied sea regions, the mean absolute error of the PACNIR-retrieved linearly polarized components (nQw and nUw) exhibited a magnitude of 10-4, while the magnitude of that of the simulated nQw and nUw data was 10-3. Moreover, the PACNIR-retrieved aerosol optical thicknesses at 865 nm exhibited a mean absolute percentage error of approximately 30% relative to in situ values obtained from Aerosol Robotic Network-Ocean Color (AERONET-OC) sites. The PACNIR algorithm could facilitate AC of the polarized data provided by the next generation of multiangle polarization satellite ocean color sensors.
Collapse
|
2
|
A Theoretical Analysis for Improving Aerosol-Induced CO2 Retrieval Uncertainties Over Land Based on TanSat Nadir Observations Under Clear Sky Conditions. REMOTE SENSING 2019. [DOI: 10.3390/rs11091061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aerosols significantly affect carbon dioxide (CO2) retrieval accuracy and precision by modifying the light path. Hyperspectral measurements in the near infrared and shortwave infrared (NIR/SWIR) bands from the generation of new greenhouse gas satellites (e.g., the Chinese Global Carbon Dioxide Monitoring Scientific Experimental Satellite, TanSat) contain aerosol information for correction of scattering effects in the retrieval. Herein, a new approach is proposed for optimizing the aerosol model used in the TanSat CO2 retrieval algorithm to reduce CO2 uncertainties associated with aerosols. The weighting functions of hyperspectral observations with respect to elements in the state vector are simulated by a forward radiative transfer model. Using the optimal estimation method (OEM), the information content and each component of the CO2 column-averaged dry-air mole fraction (XCO2) retrieval errors from the TanSat simulations are calculated for typical aerosols which are described by Aerosol Robotic Network (AERONET) inversion products at selected sites based on the a priori and measurement assumptions. The results indicate that the size distribution parameters (reff, veff), real refractive index coefficient of fine mode (arf) and fine mode fraction (fmf) dominate the interference errors, with each causing 0.2–0.8 ppm of XCO2 errors. Given that only 4–7 degrees of freedom for signal (DFS) of aerosols can be obtained simultaneously and CO2 information decreases as more aerosol parameters are retrieved, four to seven aerosol parameters are suggested as the most appropriate for inclusion in CO2 retrieval. Focusing on only aerosol-induced XCO2 errors, forward model parameter errors, rather than interference errors, are dominant. A comparison of these errors across different aerosol parameter combination groups reveals that fewer aerosol-induced XCO2 errors are found when retrieving seven aerosol parameters. Therefore, the model selected as the optimal aerosol model includes aerosol optical depth (AOD), peak height of aerosol profile (Hp), width of aerosol profile (Hw), effective variance of fine mode aerosol (vefff), effective radius of coarse mode aerosol (reffc), coefficient a of the real part of the refractive index for the fine mode and coarse mode (arf and arc), with the lowest error of less than 1.7 ppm for all aerosol and surface types. For marine aerosols, only five parameters (AOD, Hp, Hw, reffc and arc) are recommended for the low aerosol information. This optimal aerosol model therefore offers a theoretical foundation for improving CO2 retrieval precision from real TanSat observations in the future.
Collapse
|
3
|
Frouin RJ, Franz BA, Ibrahim A, Knobelspiesse K, Ahmad Z, Cairns B, Chowdhary J, Dierssen HM, Tan J, Dubovik O, Huang X, Davis AB, Kalashnikova O, Thompson DR, Remer LA, Boss E, Coddington O, Deschamps PY, Gao BC, Gross L, Hasekamp O, Omar A, Pelletier B, Ramon D, Steinmetz F, Zhai PW. Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era. FRONTIERS IN EARTH SCIENCE 2019; 7:10.3389/feart.2019.00145. [PMID: 32440515 PMCID: PMC7241613 DOI: 10.3389/feart.2019.00145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will carry into space the Ocean Color Instrument (OCI), a spectrometer measuring at 5nm spectral resolution in the ultraviolet (UV) to near infrared (NIR) with additional spectral bands in the shortwave infrared (SWIR), and two multi-angle polarimeters that will overlap the OCI spectral range and spatial coverage, i. e., the Spectrometer for Planetary Exploration (SPEXone) and the Hyper-Angular Rainbow Polarimeter (HARP2). These instruments, especially when used in synergy, have great potential for improving estimates of water reflectance in the post Earth Observing System (EOS) era. Extending the top-of-atmosphere (TOA) observations to the UV, where aerosol absorption is effective, adding spectral bands in the SWIR, where even the most turbid waters are black and sensitivity to the aerosol coarse mode is higher than at shorter wavelengths, and measuring in the oxygen A-band to estimate aerosol altitude will enable greater accuracy in atmospheric correction for ocean color science. The multi-angular and polarized measurements, sensitive to aerosol properties (e.g., size distribution, index of refraction), can further help to identify or constrain the aerosol model, or to retrieve directly water reflectance. Algorithms that exploit the new capabilities are presented, and their ability to improve accuracy is discussed. They embrace a modern, adapted heritage two-step algorithm and alternative schemes (deterministic, statistical) that aim at inverting the TOA signal in a single step. These schemes, by the nature of their construction, their robustness, their generalization properties, and their ability to associate uncertainties, are expected to become the new standard in the future. A strategy for atmospheric correction is presented that ensures continuity and consistency with past and present ocean-color missions while enabling full exploitation of the new dimensions and possibilities. Despite the major improvements anticipated with the PACE instruments, gaps/issues remain to be filled/tackled. They include dealing properly with whitecaps, taking into account Earth-curvature effects, correcting for adjacency effects, accounting for the coupling between scattering and absorption, modeling accurately water reflectance, and acquiring a sufficiently representative dataset of water reflectance in the UV to SWIR. Dedicated efforts, experimental and theoretical, are in order to gather the necessary information and rectify inadequacies. Ideas and solutions are put forward to address the unresolved issues. Thanks to its design and characteristics, the PACE mission will mark the beginning of a new era of unprecedented accuracy in ocean-color radiometry from space.
Collapse
Affiliation(s)
- Robert J. Frouin
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Correspondence: Robert J. Frouin,
| | - Bryan A. Franz
- Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States
| | - Amir Ibrahim
- Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States
- Science Systems and Applications Inc., Lanham, MD, United States
| | - Kirk Knobelspiesse
- Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States
| | - Ziauddin Ahmad
- Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States
- Science Application International Corporation, McLean, VA, United States
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY, United States
| | - Jacek Chowdhary
- NASA Goddard Institute for Space Studies, New York, NY, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, United States
| | - Heidi M. Dierssen
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Jing Tan
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Oleg Dubovik
- Laboratoire d’Optique Atmosphérique, Université de Lille, Villeneuve d’Ascq, France
| | - Xin Huang
- Laboratoire d’Optique Atmosphérique, Université de Lille, Villeneuve d’Ascq, France
| | - Anthony B. Davis
- Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, United States
| | - Olga Kalashnikova
- Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, United States
| | - David R. Thompson
- Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, United States
| | - Lorraine A. Remer
- Joint Center for Earth System Technology, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Odele Coddington
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, United States
| | | | - Bo-Cai Gao
- Naval Research Laboratory, Washington, DC, United States
| | | | - Otto Hasekamp
- Earth Science Group, Netherlands Institute for Space Research, Utrecht, Netherlands
| | - Ali Omar
- Atmospheric Composition Branch, NASA Langley Research Center, Hampton, VA, United States
| | - Bruno Pelletier
- Institut de Recherche Mathématique, Université de Rennes, Rennes, Franc
| | | | | | - Peng-Wang Zhai
- Department of Physics, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
4
|
Wu L, Hasekamp O, van Diedenhoven B, Cairns B, Yorks JE, Chowdhary J. Passive remote sensing of aerosol layer height using near-UV multi-angle polarization measurements. GEOPHYSICAL RESEARCH LETTERS 2016; 43:8783-8790. [PMID: 30002565 PMCID: PMC6038705 DOI: 10.1002/2016gl069848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We demonstrate that multi-angle polarization measurements in the near-UV and blue part of the spectrum are very well suited for passive remote sensing of aerosol layer height. For this purpose we use simulated measurements with different set-ups (different wavelength ranges, with and without polarization, different polarimetric accuracies) as well as airborne measurements from the Research Scanning Polarimeter (RSP) obtained over the continental USA. We find good agreement of the retrieved aerosol layer height from RSP with measurements from the Cloud Physics Lidar (CPL) showing a mean absolute difference of less than 1 km. Furthermore, we found that the information on aerosol layer height is provided for large part by the multi-angle polarization measurements with high accuracy rather than the multi-angle intensity measurements. The information on aerosol layer height is significantly decreased when the shortest RSP wavelength (410 nm) is excluded from the retrieval and is virtually absent when 550 nm is used as shortest wavelength.
Collapse
Affiliation(s)
- Lianghai Wu
- SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
| | - Otto Hasekamp
- SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
| | - Bastiaan van Diedenhoven
- Columbia University, Center for Climate System Research, 2880 Broadway, New York, NY 10025, USA
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - John E. Yorks
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Jacek Chowdhary
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025, USA
| |
Collapse
|
11
|
Chowdhary J, Cairns B, Travis LD. Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters. APPLIED OPTICS 2006; 45:5542-67. [PMID: 16855652 DOI: 10.1364/ao.45.005542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multiangle, multispectral photopolarimetry of atmosphere-ocean systems provides the fullest set of remote sensing information possible on the scattering properties of aerosols and on the color of the ocean. Recent studies have shown that inverting such data allows for the potential of separating the retrieval of aerosol properties from ocean color monitoring in the visible part of the spectrum. However, the data in these studies were limited to those principal plane observations where the polarization of water-leaving radiances could be ignored. Examining similar potentials for off-principal plane observations requires the ability to assess realistic variations in both the reflectance for and bidirectionality of polarized water-leaving radiances for such viewing geometries. We provide hydrosol models for use in underwater light scattering computations to study such variations. The model consists of two components whose refractive indices resemble those of detritus-minerallike and planktonlike particles, whose size distributions are constrained by underwater light linear polarization signatures, and whose mixing ratios change as a function of particulate backscattering efficiency. Multiple scattering computations show that these models are capable of reproducing realistic underwater light albedos for wavelengths ranging from 400 to 600 nm, and for chlorophyll a concentrations ranging from 0.03 to 3.0 mg/m(3). Numerical results for spaceborne observations of the reflectance for total and polarized water-leaving radiances are provided as a function of polar angles, and the change in these reflectances with wavelength, chlorophyll a concentration, and hydrosol model are discussed in detail for case 1 (open ocean) waters.
Collapse
Affiliation(s)
- Jacek Chowdhary
- Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025, USA
| | | | | |
Collapse
|