1
|
Kumar AH, Ratnam MV, Jain CD. Influence of background dynamics on the vertical distribution of trace gases (CO/WV/O 3) in the UTLS region during COVID-19 lockdown over India. ATMOSPHERIC RESEARCH 2022; 265:105876. [PMID: 36540554 PMCID: PMC9756858 DOI: 10.1016/j.atmosres.2021.105876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 05/28/2023]
Abstract
The COVID-19 pandemic lockdown has led to the significant reductions in the pollutant levels across the globe. Several studies have been carried out for examining and quantifying the improvement in the air quality due to the reduction of the pollution at the surface. Unlike most of the studies carried out earlier on COVID-19 lockdown, this study investigates the role of the dynamics on the vertical distribution of the trace gases (Carbonmonoxide (CO), Water Vapor (WV) and Ozone (O3)) over India in the Boundary Layer (BL), Middle Troposphere (MT) and Upper Troposphere (UT) during COVID-19 lockdown using satellite observations and re-analysis data products obtained during 2010-2020. Substantial differences in the time series and variability have been observed over different zones of India in different atmospheric layers. The changes observed in these species are large over Central India compared to South India and Indo-Gangetic plain regions. An enhancement in CO (~25-40%) and WV (50-60%) has been noticed over Central India in the UT at 147 hPa and 215 hPa, respectively, during lockdown. The strong updrafts before the lockdown and the extended weak zonal wind aloft over this region are found responsible for the observed enhancement in these trace gases in the UT. In spite of the non-availability of the anthropogenic pollution during the lockdown, this study highlights the transport of pollutants through long-range transport (always present even before lockdown) dominance over the Indian region not only near the surface but also aloft due to associated atmospheric dynamics.
Collapse
Affiliation(s)
- A Hemanth Kumar
- National Atmospheric Research Laboratory (NARL), Gadanki 517112, India
| | - M Venkat Ratnam
- National Atmospheric Research Laboratory (NARL), Gadanki 517112, India
| | - Chaithanya D Jain
- National Atmospheric Research Laboratory (NARL), Gadanki 517112, India
| |
Collapse
|
2
|
Lelieveld J, Bourtsoukidis E, Brühl C, Fischer H, Fuchs H, Harder H, Hofzumahaus A, Holland F, Marno D, Neumaier M, Pozzer A, Schlager H, Williams J, Zahn A, Ziereis H. The South Asian monsoon-pollution pump and purifier. Science 2018; 361:270-273. [PMID: 29903882 DOI: 10.1126/science.aar2501] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/30/2018] [Indexed: 11/02/2022]
Abstract
Air pollution is growing fastest in monsoon-affected South Asia. During the dry winter monsoon, the fumes disperse toward the Indian Ocean, creating a vast pollution haze, but their fate during the wet summer monsoon has been unclear. We performed atmospheric chemistry measurements by aircraft in the Oxidation Mechanism Observations campaign, sampling the summer monsoon outflow in the upper troposphere between the Mediterranean and the Indian Ocean. The measurements, supported by model calculations, show that the monsoon sustains a remarkably efficient cleansing mechanism by which contaminants are rapidly oxidized and deposited to Earth's surface. However, some pollutants are lofted above the monsoon clouds and chemically processed in a reactive reservoir before being redistributed globally, including to the stratosphere.
Collapse
Affiliation(s)
- J Lelieveld
- Max Planck Institute for Chemistry, 55128 Mainz, Germany. .,The Cyprus Institute, 1645 Nicosia, Cyprus
| | | | - C Brühl
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - H Fischer
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - H Fuchs
- Institute for Energy and Climate Research, Research Center Jülich, 52425 Jülich, Germany
| | - H Harder
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - A Hofzumahaus
- Institute for Energy and Climate Research, Research Center Jülich, 52425 Jülich, Germany
| | - F Holland
- Institute for Energy and Climate Research, Research Center Jülich, 52425 Jülich, Germany
| | - D Marno
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - M Neumaier
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - A Pozzer
- Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - H Schlager
- Institute of Atmospheric Physics, Germany Aerospace Center, 82234 Oberpfaffenhofen, Germany
| | - J Williams
- Max Planck Institute for Chemistry, 55128 Mainz, Germany.,The Cyprus Institute, 1645 Nicosia, Cyprus
| | - A Zahn
- Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - H Ziereis
- Institute of Atmospheric Physics, Germany Aerospace Center, 82234 Oberpfaffenhofen, Germany
| |
Collapse
|
3
|
Raman A, Arellano AF, Sorooshian A. Decreasing Aerosol Loading in the North American Monsoon Region. ATMOSPHERE 2016; 7:24. [PMID: 28491464 PMCID: PMC5422029 DOI: 10.3390/atmos7020024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examine the spatio-temporal variability of aerosol loading in the recent decade (2005-2014) over the North American Monsoon (NAM) region. Emerging patterns are characterized using aerosol optical depth (AOD) retrievals from the NASA Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) instrument along with a suite of satellite retrievals of atmospheric and land-surface properties. We selected 20 aerosol hotspots and classified them into fire, anthropogenic, dust, and NAM alley clusters based on the dominant driver influencing aerosol variability. We then analyzed multivariate statistics of associated anomalies during pre-, monsoon, and post-monsoon periods. Our results show a decrease in aerosol loading for the entire NAM region, confirming previous reports of a declining AOD trend over the continental United States. This is evident during pre-monsoon and monsoon for fire and anthropogenic clusters, which are associated with a decrease in the lower and upper quartile of fire counts and carbon monoxide, respectively. The overall pattern is obfuscated in the NAM alley, especially during monsoon and post-monsoon seasons. While the NAM alley is mostly affected by monsoon precipitation, the frequent occurrence of dust storms in the area modulates this trend. We find that aerosol loading in the dust cluster is associated with observed vegetation index and has only slightly decreased in the recent decade.
Collapse
Affiliation(s)
- Aishwarya Raman
- Department of Hydrology and Atmospheric Sciences, Tucson, AZ 85721, USA
| | | | - Armin Sorooshian
- Department of Hydrology and Atmospheric Sciences, Tucson, AZ 85721, USA
- Department of Chemical and Environmental Engineering, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Verma S, Bhanja SN, Pani SK, Misra A. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4977-4994. [PMID: 24363049 DOI: 10.1007/s11356-013-2383-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in relative distribution of fine and coarse mode of MODIS AOD was also inferred.
Collapse
Affiliation(s)
- S Verma
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India,
| | | | | | | |
Collapse
|
5
|
Fadnavis S, Beig G, Buchunde P, Ghude SD, Krishnamurti TN. Vertical transport of ozone and CO during super cyclones in the Bay of Bengal as detected by Tropospheric Emission Spectrometer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:301-15. [PMID: 20652426 DOI: 10.1007/s11356-010-0374-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/05/2010] [Indexed: 04/15/2023]
Abstract
Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.
Collapse
Affiliation(s)
- S Fadnavis
- Indian Institute of Tropical Meteorology, Pune, India.
| | | | | | | | | |
Collapse
|