1
|
Qu K, Yan Y, Wang X, Jin X, Vrekoussis M, Kanakidou M, Brasseur GP, Lin T, Xiao T, Cai X, Zeng L, Zhang Y. The effect of cross-regional transport on ozone and particulate matter pollution in China: A review of methodology and current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174196. [PMID: 38942314 DOI: 10.1016/j.scitotenv.2024.174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
China is currently one of the countries impacted by severe atmospheric ozone (O3) and particulate matter (PM) pollution. Due to their moderately long lifetimes, O3 and PM can be transported over long distances, cross the boundaries of source regions and contribute to air pollution in other regions. The reported contributions of cross-regional transport (CRT) to O3 and fine PM (PM2.5) concentrations often exceed those of local emissions in the major regions of China, highlighting the important role of CRT in regional air pollution. Therefore, further improvement of air quality in China requires more joint efforts among regions to ensure a proper reduction in emissions while accounting for the influence of CRT. This review summarizes the methodologies employed to assess the influence of CRT on O3 and PM pollution as well as current knowledge of CRT influence in China. Quantifying CRT contributions in proportion to O3 and PM levels and studying detailed CRT processes of O3, PM and precursors can be both based on targeted observations and/or model simulations. Reported publications indicate that CRT contributes by 40-80 % to O3 and by 10-70 % to PM2.5 in various regions of China. These contributions exhibit notable spatiotemporal variations, with differences in meteorological conditions and/or emissions often serving as main drivers of such variations. Based on trajectory-based methods, transport pathways contributing to O3 and PM pollution in major regions of China have been revealed. Recent studies also highlighted the important role of horizontal transport in the middle/high atmospheric boundary layer or low free troposphere, of vertical exchange and mixing as well as of interactions between CRT, local meteorology and chemistry in the detailed CRT processes. Drawing on the current knowledge on the influence of CRT, this paper provides recommendations for future studies that aim at supporting ongoing air pollution mitigation strategies in China.
Collapse
Affiliation(s)
- Kun Qu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
| | - Yu Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Sichuan Academy of Environmental Policy and Planning, Chengdu 610041, China
| | - Xuesong Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China.
| | - Xipeng Jin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mihalis Vrekoussis
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Center of Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Maria Kanakidou
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Center of Studies of Air quality and Climate Change, Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Guy P Brasseur
- Max Planck Institute for Meteorology, Hamburg, Germany; National Center for Atmospheric Research, Boulder, CO, USA
| | - Tingkun Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Teng Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Xuhui Cai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
2
|
Zhang Y, Gao J, Zhu Y, Liu Y, Li H, Yang X, Zhong X, Zhao M, Wang W, Che F, Zhou D, Wang S, Zhi G, Xue L, Li H. Evolution of Ozone Formation Sensitivity during a Persistent Regional Ozone Episode in Northeastern China and Its Implication for a Control Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:617-627. [PMID: 38112179 PMCID: PMC10786154 DOI: 10.1021/acs.est.3c03884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
In recent years, the magnitude and frequency of regional ozone (O3) episodes have increased in China. We combined ground-based measurements, observation-based model (OBM), and the Weather Research and Forecasting and Community Multiscale Air Quality (WRF-CMAQ) model to analyze a typical persistent O3 episode that occurred across 88 cities in northeastern China during June 19-30, 2021. The meteorological conditions, particularly the wind convergence centers, played crucial roles in the evolution of O3 pollution. Daily analysis of the O3 formation sensitivity showed that O3 formation was in the volatile organic compound (VOC)-limited or transitional regime at the onset of the pollution episode in 92% of the cities. Conversely, it tended to be or eventually became a NOx-limited regime as the episode progressed in the most polluted cities. Based on the emission-reduction scenario simulations, mitigation of the regional O3 pollution was found to be most effective through a phased control strategy, namely, reduction of a high ratio of VOCs to NOx at the onset of the pollution and lower ratio during evolution of the O3 episode. This study presents a new possibility for regional O3 pollution abatement in China based on a reasonable combination of OBM and the WRF-CMAQ model.
Collapse
Affiliation(s)
- Yujie Zhang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Gao
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujiao Zhu
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Yi Liu
- Nanjing CLIMBLUE Technology Co., LTD., Nanjing 211135, China
| | - Hong Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuelian Zhong
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Min Zhao
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Wan Wang
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Che
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Derong Zhou
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences & School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Shuai Wang
- China
National Environmental Monitoring Centre, Beijing 100012, China
| | - Guorui Zhi
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Likun Xue
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Haisheng Li
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Effect of Vertical Wind Shear on PM2.5 Changes over a Receptor Region in Central China. REMOTE SENSING 2022. [DOI: 10.3390/rs14143333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertical wind shear (VWS) significantly impacts the vertical mixing of air pollutants and leads to changes in near-surface air pollutants. We focused on Changsha (CS) and Jingmen (JM), the upstream and downstream urban sites of a receptor region in central China, to explore the impact of VWS on surface PM2.5 changes using 5-year wintertime observations and simulations from 2016–2020. The surface PM2.5 concentration was lower in CS with higher anthropogenic PM2.5 emissions than in JM, and the correlation between wind speed and PM2.5 was negative for clean conditions and positive for polluted conditions in both two sites. The difference in the correlation pattern of surface PM2.5 and VWS between CS and JM might be due to the different influences of regional PM2.5 transport and boundary layer dynamics. In downstream CS, the weak wind and VWS in the height of 1–2 km stabilized the ABL under polluted conditions, and strong northerly wind accompanied by enhanced VWS above 2 km favored the long-range transport of air pollutants. In upstream JM, local circulation and long-range PM2.5 transport co-determined the positive correlation between VWS and PM2.5 concentrations. Prevailed northerly wind disrupted the local circulation and enhanced the surface PM2.5 concentrations under polluted conditions, which tend to be an indicator of regional transport of air pollutants. The potential contribution source maps calculated from WRF-FLEXPART simulations also confirmed the more significant contribution of regional PM2.5 transport to the PM2.5 pollution in upstream region JM. By comparing the vertical profiles of meteorological parameters for typical transport- and local-type pollution days, the northerly wind prevailed throughout the ABL with stronger wind speed and VWS in transport-type pollution days, favoring the vertical mixing of transported air pollutants, in sharp contrast to the weak wind conditions in local-type pollution days. This study provided the evidence that PM2.5 pollution in the Twain-Hu Basin was affected by long-distance transport with different features at upstream and downstream sites, improving the understanding of the air pollutant source–receptor relationship in air quality changes with regional transport of air pollutants.
Collapse
|
4
|
Multi-Year Variation of Ozone and Particulate Matter in Northeast China Based on the Tracking Air Pollution in China (TAP) Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073830. [PMID: 35409512 PMCID: PMC8997942 DOI: 10.3390/ijerph19073830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022]
Abstract
With the rapid development of economy and urbanization acceleration, ozone (O3) pollution has become the main factor of urban air pollution in China after particulate matter. In this study, 90th percentile of maximum daily average (MDA) 8 h O3 (O3-8h-90per) and PM2.5 data from the Tracking Air Pollution in China (TAP) dataset were used to determine the mean annual, seasonal, monthly, and interannual distribution of O3-8h-90per and PM2.5 concentrations in Northeast China (NEC). The O3-8h-90per concentration was highest in Liaoning (>100 μg/m3), whereas the highest PM2.5 concentration was observed mainly in urban areas of central Liaoning and the Harbin−Changchun urban agglomeration (approximately 60 μg/m3). The O3-8h-90per concentrations were highest in spring and summer due to more intense solar radiation. On the contrary, the PM2.5 concentration increased considerably in winter influenced by anthropogenic activities. In May and June, the highest monthly mean O3-8h-90per concentrations were observed in central and western Liaoning, about 170−180 μg/m3, while the PM2.5 concentrations were the highest in January, February, and December, approximately 100 μg/m3. The annual mean O3-8h-90per concentration in NEC showed an increasing trend, while the PM2.5 concentration exhibited an annual decline. By 2020, the annual mean O3-8h-90per concentration in southern Liaoning had increased considerably, reaching 120−130 μg/m3. From the perspective of city levels, PM2.5 and O3-8h-90per also showed an opposite variation trend in the 35 cities of NEC. The reduced tropospheric NO2 column is consistent with the decreasing trend of the interannual PM2.5, while the increased surface temperature could be the main meteorological factor affecting the O3-8h-90per concentration in NEC. The results of this study enable a comprehensive understanding of the regional and climatological O3-8h-90per and PM2.5 distribution at distinct spatial and temporal scales in NEC.
Collapse
|
5
|
Mao J, Yan F, Zheng L, You Y, Wang W, Jia S, Liao W, Wang X, Chen W. Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151883. [PMID: 34826481 DOI: 10.1016/j.scitotenv.2021.151883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Given the leveling off of fine particulate matter (PM2.5), ground-level ozone (O3) pollution has become one of the most significant atmospheric pollution issues in the Pearl River Delta (PRD) region in China, especially in the manufacturing city of Dongguan, which faces more severe O3 pollution. The development of strategies to control O3 precursor emissions, including volatile organic compounds (VOCs) and nitrogen oxide (NOx), depends to a large extent on the source region of the O3 pollution. In this study, by combining the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), the Empirical Kinetic Modeling Approach (EKMA), and the Flexible Particle model (FLEXPART), more effective strategies of controlling O3 precursor emissions were identified under two typical types of O3 pollution episodes: local formation (LF)-dominant (8-12 September 2019) and regional transport (RT)-dominant (23-27 October 2017) episodes, distinguished by the WRF-FLEXPART model. During the LF-dominant episode, the EKMA revealed that the O3 formation in Dongguan was in a transitional regime, and the abatement of solvent use-VOCs emissions in the key area of Dongguan was more effective in reducing O3 levels, with an emission reduction benefit 1.7 times that of total VOCs emission sources throughout Dongguan. With respect to the RT-dominant episode, the reduction in VOCs emissions in the local region did not effectively curb O3 pollution, although the photochemical regime of the O3 formation in Dongguan was VOCs-limited. A 50% reduction in NOx emissions in the upwind regions (parts of Guangzhou and Huizhou) effectively decreased the O3 concentration in Dongguan by 17%. The results of this study emphasize the importance of the source region of O3 pollution in the implementation of effective O3 control strategies and provide valuable insights for region-specific precursor emission policy formulation, not only in Dongguan, but also in other regions facing severe O3 pollution.
Collapse
Affiliation(s)
- Jingying Mao
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China
| | - Fenghua Yan
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China
| | - Lianming Zheng
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China
| | - Yingchang You
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China
| | - Weiwen Wang
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China
| | - Shiguo Jia
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhui Liao
- Guangdong University of Finance, Guangzhou 510521, PR China
| | - Xuemei Wang
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China
| | - Weihua Chen
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Wang H, Ding K, Huang X, Wang W, Ding A. Insight into ozone profile climatology over northeast China from aircraft measurement and numerical simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147308. [PMID: 33932671 DOI: 10.1016/j.scitotenv.2021.147308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone is a major pollutant that can harm human health, animals and plants. With a rapid development in Northeast China, ozone pollution has become an increasingly serious environmental challenge. To study the ozone distribution and the potential sources of ozone precursors in Northeast China, we analyzed vertical ozone profiles from the In-service Aircraft for a Global Observing System (IAGOS) in 2012-2014 and provided the climatological vertical structure of tropospheric ozone over Shenyang. The tropospheric ozone generally presents high in hot months, mainly due to the combined effects of the strong solar radiation and high volatile organic compounds emission in summer. While in cold months, the ozone is low because of weak solar radiation and high nitrogen oxides emission. Besides, a low-ozone center exists within lower troposphere in August, which is mainly caused by the East Asian summer monsoon prevailing in summer. To analyze the sources of ozone, typical ozone pollution episodes were studied and the results revealed the different pathways for the enhancement of ozone pollution in Shenyang: regional transport of anthropogenic emissions from North China Plain (NCP), long-range transport from Siberian biomass burning and local photochemical production. Modeling results show that the largest contribution to the surface ozone in Northeast China is local anthropogenic emissions (exceed 90%); the regional transport of NCP anthropogenic emissions contribute more to the pollutants around 2 km, and account for more than 50% pollutants during highly ozone polluted days; through long-range transport, Siberian biomass burning in the spring also have a nonnegligible effect on the near-ground ozone in Northeast China. Overall, this study provides tropospheric ozone climatology and its source attribution in Northeast China, and highlight the great importance of regional transport of anthropogenic and biomass burning emissions in ozone pollution.
Collapse
Affiliation(s)
- Hongyue Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Ke Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Province Collaborative Innovation Center of Climate Change, Nanjing, China.
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Province Collaborative Innovation Center of Climate Change, Nanjing, China
| | - Wuke Wang
- Department of atmospheric science, China University of Geosciences, Wuhan, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences (JirLATEST), School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Province Collaborative Innovation Center of Climate Change, Nanjing, China.
| |
Collapse
|
7
|
Jia M, Evangeliou N, Eckhardt S, Huang X, Gao J, Ding A, Stohl A. Black Carbon Emission Reduction Due to COVID-19 Lockdown in China. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL093243. [PMID: 34230717 PMCID: PMC8250075 DOI: 10.1029/2021gl093243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 05/17/2023]
Abstract
During the Lunar New Year Holiday of 2020, China implemented an unprecedented lockdown to fight the COVID-19 outbreak, which strongly affected the anthropogenic emissions. We utilized elemental carbon observations (equivalent to black carbon, BC) from 42 sites and performed inverse modeling to determine the impact of the lockdown on the weekly BC emissions and quantify the effect of the stagnant conditions on BC observations in densely populated eastern and northern China. BC emissions declined 70% (eastern China) and 48% (northern China) compared to the first half of January. In northern China, under the stagnant conditions of the first week of the lockdown, the observed BC concentrations rose unexpectedly (29%) even though the BC emissions fell. The emissions declined substantially thereafter until a week after the lockdown ended. On the contrary, in eastern China, BC emissions dropped sharply in the first week and recovered synchronously with the end of the lockdown.
Collapse
Affiliation(s)
- Mengwei Jia
- Joint International Research Laboratory of Atmospheric and Earth System SciencesSchool of Atmospheric SciencesNanjing UniversityNanjingChina
| | - Nikolaos Evangeliou
- Department of Atmospheric and Climate ResearchNILU – Norwegian Institute for Air ResearchKjellerNorway
| | - Sabine Eckhardt
- Department of Atmospheric and Climate ResearchNILU – Norwegian Institute for Air ResearchKjellerNorway
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System SciencesSchool of Atmospheric SciencesNanjing UniversityNanjingChina
| | - Jian Gao
- Chinese Research Academy of Environmental SciencesBeijingChina
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System SciencesSchool of Atmospheric SciencesNanjing UniversityNanjingChina
| | - Andreas Stohl
- Department of Meteorology and GeophysicsUniversity of ViennaUZA IIViennaAustria
| |
Collapse
|
8
|
Liu X, Zhu B, Kang H, Hou X, Gao J, Kuang X, Yan S, Shi S, Fang C, Pan C, Meng K. Stable and transport indices applied to winter air pollution over the Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115954. [PMID: 33218767 DOI: 10.1016/j.envpol.2020.115954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 05/16/2023]
Abstract
Previous studies have developed a stable weather index (SWI) based on meteorological elements that adequately represent PM2.5 pollution over the North China Plain (NCP). However, the SWI performs poorly over the Yangtze River Delta (YRD) region because air pollution over this region is affected not only by stagnant weather (STAG) but also by transport (TRANS). For example, air pollutants can be transported from the NCP to the YRD by cold fronts. In this study, an obliquely rotated principal component analysis in the T-model is applied to classify the synoptic patterns of winter weather over the YRD region from 2013 to 2018. Among the four identified synoptic patterns, two of which cause TRANS, one pattern is most likely to cause STAG, and one pattern can lead to either STAG or TRANS depending on the location of high pressure around Shandong province. Due to the large contribution (63%) of TRANS to the total PM2.5 pollution events, a transport pollution index (TPI) is constructed to describe the transport features of PM2.5 pollution over the YRD region. Our results show that, when considering the SWI alone, the correlation coefficients between the SWI and ln(PM2.5) range from 0.50 to 0.57 in the main cities of the YRD. Excitingly, when considering both the TPI and SWI (TPI+SWI), the correlation coefficients increase significantly to 0.63-0.78, suggesting that TPI+SWI better reflects the wintertime PM2.5 pollution level over the YRD region. In addition, satisfactory performance in validation also suggests that TPI+SWI can increase the accuracy of evaluating and forecasting of PM2.5 pollution episodes over regions downstream of source emissions.
Collapse
Affiliation(s)
- Xiaohui Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Bin Zhu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Hanqing Kang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuewei Hou
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jinhui Gao
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiang Kuang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuqi Yan
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuangshuang Shi
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chenwei Fang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Nanjing University of Information Science & Technology, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chen Pan
- Jiangsu Meteorological Observatory, Nanjing, 210008, China; Key Laboratory of Transportation Meteorology, China Meteorological Administration (LATM-CMA), Nanjing, 210009, China
| | - Kai Meng
- Hebei Provincial Environmental Meteorological Center, Shijiazhuang, 050021, China
| |
Collapse
|
9
|
Li XB, Fan G, Lou S, Yuan B, Wang X, Shao M. Transport and boundary layer interaction contribution to extremely high surface ozone levels in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115804. [PMID: 33065362 DOI: 10.1016/j.envpol.2020.115804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Vertical measurements of ozone (O3) within the 3000-m lower troposphere were obtained using an O3 lidar to investigate the contribution of the interactions between the transport and boundary layer processes to the surface O3 levels in urban Shanghai, China during July 23-28, 2017. An extremely severe pollution episode with a maximum hourly O3 mixing ratio of 160.4 ppb was observed. In addition to enhanced local photochemical production, both downward and advection transport in the lower troposphere may have played important roles in forming the pollution episode. The O3-rich air masses in the lower free troposphere primarily originated from central China and the northern Yangtze River Delta (YRD) region. The downward transport of O3 from the lower free troposphere may have an average contribution of up to 49.1% to the daytime (09:00-16:00 local time) surface O3 in urban Shanghai during the pollution episode (July 23-26, 2017). As for the advection transport, large amounts of O3 were transported outward from Shanghai in the planetary boundary layer under the influence of southeasterly winds during the field study. In this condition, the boundary-layer O3 that was transported downward from the free troposphere in Shanghai could be transported back to the northern YRD region and accumulated therein, leading to the occurrence of severe O3 pollution events over the whole YRD region. Our results indicate that effective regional emission control measures are urgently required to mitigate O3 pollution in the YRD region.
Collapse
Affiliation(s)
- Xiao-Bing Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Guangqiang Fan
- Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| |
Collapse
|
10
|
Dong Y, Li J, Guo J, Jiang Z, Chu Y, Chang L, Yang Y, Liao H. The impact of synoptic patterns on summertime ozone pollution in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139559. [PMID: 32480158 DOI: 10.1016/j.scitotenv.2020.139559] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Surface ozone pollution is a challenging environmental issue in most parts of China. In particular, the North China Plain (NCP) region suffers from the severest ozone pollution throughout the country. In addition to the emission of precursors, ozone concentration is closely related to meteorological conditions resulting from regional atmospheric circulation. In this study, we investigate the relationship between synoptic patterns and summertime ozone pollution in the NCP using the objective principal component analysis in T-mode (T-PCA) classification method. Four dominant synoptic patterns are identified during the summers of 2014-2018. The heaviest ozone pollution is found to be associated with a high pressure anomaly over the Northwest Pacific and a distinct low pressure center in Northeast China. The southwesterly wind surrounding the low pressure center brings dry, warm air from inland South China, resulting in a high temperature, low humidity environment in the NCP, which favors the chemical formation of surface ozone. Locally, this type is associated with a moderate planetary boundary layer height (PBLH) of ~860 m and a stronger warm anomaly within the boundary layer than the upper level. We also notice a non-linear relationship between surface ozone concentration and the PBLH, i.e., ozone concentration first increases with PBLH till ~0.9 km, and then remains stable. This initial increase may relate to enhanced mixing with upper levels where ozone concentration is typically higher than that near the surface. However, when PBLH further increases, this downward mixing effect is balanced with the stronger upward turbulent mixing so that surface ozone shows little change. The synoptic patterns identified here, however, is unlikely responsible for the observed increasing trend in ozone concentration over the NCP region. Our study sheds light on the meteorological contribution to surface ozone pollution in North China and provides a reference for the pollution control and prediction.
Collapse
Affiliation(s)
- Yueming Dong
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Jing Li
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China.
| | - Jianping Guo
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Zhongjing Jiang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Yiqi Chu
- Beijing Institute of Radio Measurement, Beijing 100871, China
| | - Liang Chang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Yang Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
11
|
Liu B, Wu C, Ma N, Chen Q, Li Y, Ye J, Martin ST, Li YJ. Vertical profiling of fine particulate matter and black carbon by using unmanned aerial vehicle in Macau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136109. [PMID: 31884272 DOI: 10.1016/j.scitotenv.2019.136109] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
An unmanned aerial vehicle (UAV) equipped with miniature monitors was used to study the vertical profiles of PM2.5 (particulate matter with a ≤2.5-μm diameter) and black carbon (BC) in Macau, China, from the surface to 500 m above ground level (AGL). Twelve- and 11-day measurements were conducted during February and March 2018, respectively. In total, 46 flights were conducted between 05:00 and 06:00 AM Local Time (LT). The average concentrations of PM2.5 and BC were significantly lower in March (40.1 ± 17.9 and 2.3 ± 2.0 μg m-3, respectively) when easterly winds prevailed, compared with those in February (69.8 ± 35.7 and 3.6 ± 2.0 μg m-3, respectively) when northerly winds dominated. In general, PM2.5 concentrations decreased with height, with a vertical decrement of 0.2 μg m-3 per 10 m. BC concentrations exhibited diverse vertical profiles with an overall vertical decrement of 0.1 μg m-3 per 10 m. Meteorological analyses including back-trajectory analysis and atmospheric stability categorization revealed that both advection and convection transports may have notable influences on the vertical profiles of PM pollutants. The concentration of PM pollutants above the boundary layer was lower than that within the layer, thus exhibiting a sigmoid profile in some cases. In addition, the lighting of firecrackers and fireworks on February 16 (first day of the Chinese New Year) resulted in the elevated concentrations of PM2.5 and BC within 150 m AGL. The takeoff of a civil flight on February 10 may have resulted in a substantial increase in the PM2.5 concentrations from 80.8 (±2.1) μg m-3 at the ground level to 119.2 (±9.3) μg m-3 at a height of 330 m. Although the results are confined to a height of 500 m AGL, the current study provides a useful dataset for PM vertical distributions, complementing the spatiotemporal variations by ground-based measurements.
Collapse
Affiliation(s)
- Ben Liu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
| | - Cheng Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China
| | - Nan Ma
- Center for Pollution and Climate Change Research (APCC), Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing, China
| | - Yaowei Li
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jianhuai Ye
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Scot T Martin
- School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China.
| |
Collapse
|
12
|
Meng W, Zhong Q, Chen Y, Shen H, Yun X, Smith KR, Li B, Liu J, Wang X, Ma J, Cheng H, Zeng EY, Guan D, Russell AG, Tao S. Energy and air pollution benefits of household fuel policies in northern China. Proc Natl Acad Sci U S A 2019; 116:16773-16780. [PMID: 31383761 PMCID: PMC6708357 DOI: 10.1073/pnas.1904182116] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and 26 other municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with fewer than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190 to 230) μg/m3 to 125 (99 to 150) μg/m3 The population-weighted PM2.5 concentrations can be reduced from 140 μg/m3 in 2014 to 78 μg/m3 or 61 μg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because ∼90% of daily exposure of the rural population is attributable to indoor air pollution. Women benefit more than men.
Collapse
Affiliation(s)
- Wenjun Meng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Qirui Zhong
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Yilin Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Huizhong Shen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Xiao Yun
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Kirk R Smith
- School of Public Health, University of California, Berkeley, CA 94720;
- Collaborative Clean Air Policy Centre, 110003 New Delhi, India
| | - Bengang Li
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Junfeng Liu
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Xilong Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, 510632 Guangzhou, China
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, 510632 Guangzhou, China
| | - Dabo Guan
- School of International Development, University of East Anglia, NR4 7TJ Norwich, United Kingdom
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, 100871 Beijing, China;
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
13
|
Thakur J, Thever P, Gharai B, Sesha Sai M, Pamaraju VNR. Enhancement of carbon monoxide concentration in atmosphere due to large scale forest fire of Uttarakhand. PeerJ 2019; 7:e6507. [PMID: 30984477 PMCID: PMC6452848 DOI: 10.7717/peerj.6507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 01/24/2019] [Indexed: 11/20/2022] Open
Abstract
The richly forested Indian state of Uttarakhand experienced widespread forest fires in April to May 2016. The current study examines dispersion of carbon monoxide (CO) from the source regions of forest fire to distant places, using the Lagrangian particle dispersion model, FLEXPART. Atmospheric Infrared Sounder (AIRS) observations revealed that CO columnar concentrations had increased by almost 28 percentage during 24 April to 02 May 2016 with respect to the previous non-burning period of April 2016 at Uttarakhand. It is also seen that there is considerable enhancement of 45 percentage in average columnar concentration of CO during the burning period, compared to that in the previous 5 years as observed by AIRS. In the present study, concentrations of CO at different pressure levels and columnar CO over Uttarakhand during the forest fire event have been simulated using FLEXPART. The area averaged profile of model derived CO has been compared with the profile from AIRS onboard Aqua. Comparison between model derived columnar CO and satellite observations shows good agreement with coefficient of correlation (r) approximately 0.91 over the burnt areas. Further analysis using FLEXPART reveals that the transport of pollutants is towards north-eastern and eastern regions from the locations of forest fire events. Model derived vertical distribution of CO over Tibet, which is situated at the north-east of Uttarakhand, shows significant increase of CO concentration at higher altitudes around 3 km from the mean sea level during the fire event. FLEXPART results show that the emissions from the Uttarakhand fires were transported to Tibet during the study period.
Collapse
Affiliation(s)
- Jaya Thakur
- Indian Space Research Organization, National Remote Sensing Centre, Hyderabad, Telangana, India
| | - Prajesh Thever
- Indian Space Research Organization, National Remote Sensing Centre, Hyderabad, Telangana, India.,Indian Space Research Organization, U R Rao Satellite Centre, Bengaluru, Karnataka, India
| | - Biswadip Gharai
- Indian Space Research Organization, National Remote Sensing Centre, Hyderabad, Telangana, India
| | - Mvr Sesha Sai
- Indian Space Research Organization, National Remote Sensing Centre, Hyderabad, Telangana, India
| | - VNRao Pamaraju
- Indian Space Research Organization, National Remote Sensing Centre, Hyderabad, Telangana, India
| |
Collapse
|
14
|
An Evaluation of the CHIMERE Chemistry Transport Model to Simulate Dust Outbreaks across the Northern Hemisphere in March 2014. ATMOSPHERE 2017. [DOI: 10.3390/atmos8120251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Štrbová K, Raclavská H, Bílek J. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:1190-1198. [PMID: 28606418 DOI: 10.1016/j.jenvman.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region.
Collapse
Affiliation(s)
- Kristína Štrbová
- ENET - Energy Units for Utilization of Non-Traditional Energy Sources, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava-Poruba, Czech Republic; Department of Energy Engineering, Faculty of Mechanical Engineering, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava-Poruba, Czech Republic.
| | - Helena Raclavská
- ENET - Energy Units for Utilization of Non-Traditional Energy Sources, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava-Poruba, Czech Republic; Institute of Geological Engineering, Faculty of Mining and Geology, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 708 33, Ostrava-Poruba, Czech Republic.
| | - Jiří Bílek
- ENVIRTA, s.r.o., Poličanská 1487, Újezd nad Lesy, 190 16, Praha 9, Czech Republic.
| |
Collapse
|
16
|
Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, Wang T, Xue H, Zhang H, Zhu B. Aerosol and boundary-layer interactions and impact on air quality. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx117] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Air quality is concerned with pollutants in both the gas phase and solid or liquid phases. The latter are referred to as aerosols, which are multifaceted agents affecting air quality, weather and climate through many mechanisms. Unlike gas pollutants, aerosols interact strongly with meteorological variables with the strongest interactions taking place in the planetary boundary layer (PBL). The PBL hosting the bulk of aerosols in the lower atmosphere is affected by aerosol radiative effects. Both aerosol scattering and absorption reduce the amount of solar radiation reaching the ground and thus reduce the sensible heat fluxes that drive the diurnal evolution of the PBL. Moreover, aerosols can increase atmospheric stability by inducing a temperature inversion as a result of both scattering and absorption of solar radiation, which suppresses dispersion of pollutants and leads to further increases in aerosol concentration in the lower PBL. Such positive feedback is especially strong during severe pollution events. Knowledge of the PBL is thus crucial for understanding the interactions between air pollution and meteorology. A key question is how the diurnal evolution of the PBL interacts with aerosols, especially in vertical directions, and affects air quality. We review the major advances in aerosol measurements, PBL processes and their interactions with each other through complex feedback mechanisms, and highlight the priorities for future studies.
Collapse
Affiliation(s)
- Zhanqing Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, GCESS, Beijing Normal University, Beijing 1000875, China
- Department of Atmospheric and Oceanic Sciences, University of Maryland, MD 21029, USA
| | - Jianping Guo
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Aijun Ding
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Hong Liao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianjun Liu
- Department of Atmospheric and Oceanic Sciences, University of Maryland, MD 21029, USA
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Huiwen Xue
- Department of Atmospheric and Oceanic Sciences, Peking University, Beijing 100871, China
| | - Hongsheng Zhang
- Department of Atmospheric and Oceanic Sciences, Peking University, Beijing 100871, China
| | - Bin Zhu
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
17
|
Wang T, Xue L, Brimblecombe P, Lam YF, Li L, Zhang L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1582-1596. [PMID: 27789078 DOI: 10.1016/j.scitotenv.2016.10.081] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 05/22/2023]
Abstract
High concentrations of ozone in urban and industrial regions worldwide have long been a major air quality issue. With the rapid increase in fossil fuel consumption in China over the past three decades, the emission of chemical precursors to ozone-nitrogen oxides and volatile organic compounds-has increased sharply, surpassing that of North America and Europe and raising concerns about worsening ozone pollution in China. Historically, research and control have prioritized acid rain, particulate matter, and more recently fine particulate matter (PM2.5). In contrast, less is known about ozone pollution, partly due to a lack of monitoring of atmospheric ozone and its precursors until recently. This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health. Ozone concentrations exceeding the ambient air quality standard by 100-200% have been observed in China's major urban centers such as Jing-Jin-Ji, the Yangtze River delta, and the Pearl River delta, and limited studies suggest harmful effect of ozone on human health and agricultural corps; key chemical precursors and meteorological conditions conductive to ozone pollution have been investigated, and inter-city/region transport of ozone is significant. Several recommendations are given for future research and policy development on ground-level ozone.
Collapse
Affiliation(s)
- Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| | - Likun Xue
- Environment Research Institute, Shandong University, Ji'nan, Shandong, China
| | - Peter Brimblecombe
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Yun Fat Lam
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Li Li
- Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Li Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
18
|
The Influence of Sandstorms and Long-Range Transport on Polycyclic Aromatic Hydrocarbons (PAHs) in PM2.5 in the High-Altitude Atmosphere of Southern China. ATMOSPHERE 2015. [DOI: 10.3390/atmos6111633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Metcalf AR, Craven JS, Ensberg JJ, Brioude J, Angevine W, Sorooshian A, Duong HT, Jonsson HH, Flagan RC, Seinfeld JH. Black carbon aerosol over the Los Angeles Basin during CalNex. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017255] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Lin M, Fiore AM, Horowitz LW, Cooper OR, Naik V, Holloway J, Johnson BJ, Middlebrook AM, Oltmans SJ, Pollack IB, Ryerson TB, Warner JX, Wiedinmyer C, Wilson J, Wyman B. Transport of Asian ozone pollution into surface air over the western United States in spring. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016961] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Lin W, Xu X, Ma Z, Zhao H, Liu X, Wang Y. Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in north China: effectiveness of control measures. J Environ Sci (China) 2012; 24:34-49. [PMID: 22783613 DOI: 10.1016/s1001-0742(11)60727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SO2 measurements made in recent years at sites in Beijing and its surrounding areas are performed to study the variations and trends of surface SO2 at different types of sites in Northern China. The overall average concentrations of SO2 are (16.8 +/- 13.1) ppb, (14.8 +/- 9.4) ppb, and (7.5 +/- 4.0) ppb at China Meteorological Administration (CMA, Beijing urban area), Gucheng (GCH, relatively polluted rural area, 110 km to the southwest of Beijing urban area), and Shangdianzi (SDZ, clean background area, 100 km to the northeast of Beijing urban area), respectively. The SO2 levels in winter (heating season) are 4-6 folds higher than those in summer. There are highly significant correlations among the daily means of SO2 at different sites, indicating regional characteristics of SO2 pollution. Diurnal patterns of surface SO2 at all sites have a common feature with a daytime peak, which is probably caused by the downward mixing and/or the advection transport of SO2-richer air over the North China Plain. The concentrations of SO2 at CMA and GCH show highly significant downward trends (-4.4 ppb/yr for CMA and -2.4 ppb/yr for GCH), while a less significant trend (-0.3 ppb/yr) is identified in the data from SDZ, reflecting the character of SDZ as a regional atmospheric background site in North China. The SO2 concentrations of all three sites show a significant decrease from period before to after the control measures for the 2008 Olympic Games, suggesting that the SO2 pollution control has long-term effectiveness and benefits. In the post-Olympics period, the mean concentrations of SO2 at CMA, GCH, and SDZ are (14.3 +/- 11.0) ppb, (12.1 +/- 7.7) ppb, and (7.5 +/- 4.0) ppb, respectively, with reductions of 26%, 36%, and 13%, respectively, compared to the levels before. Detailed analysis shows that the differences of temperature, relative humidity, wind speed, and wind direction were not the dominant factors for the significant differences of SO2 between the pre-Olympics and post-Olympics periods. By extracting the data being more representative of local or regional characteristics, a reduction of up to 40% for SO2 in polluted areas and a reduction of 20% for regional SO2 are obtained for the effect of control measures implemented for the Olympic Games.
Collapse
Affiliation(s)
- Weili Lin
- Key Laboratory for Atmospheric Chemistry, CMA Centre for Atmosphere Watch & Services, Chinese Acaidemy of Meteorological Sciences, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
22
|
Fadnavis S, Beig G, Buchunde P, Ghude SD, Krishnamurti TN. Vertical transport of ozone and CO during super cyclones in the Bay of Bengal as detected by Tropospheric Emission Spectrometer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:301-15. [PMID: 20652426 DOI: 10.1007/s11356-010-0374-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/05/2010] [Indexed: 04/15/2023]
Abstract
Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.
Collapse
Affiliation(s)
- S Fadnavis
- Indian Institute of Tropical Meteorology, Pune, India.
| | | | | | | | | |
Collapse
|
23
|
Guo H, Ding AJ, Wang T, Simpson IJ, Blake DR, Barletta B, Meinardi S, Rowland FS, Saunders SM, Fu TM, Hung WT, Li YS. Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011448] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|