1
|
A Coupled Evaluation of Operational MODIS and Model Aerosol Products for Maritime Environments Using Sun Photometry: Evaluation of the Fine and Coarse Mode. REMOTE SENSING 2022. [DOI: 10.3390/rs14132978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although satellite retrievals and data assimilation have progressed to where there is a good skill for monitoring maritime Aerosol Optical Depth (AOD), there remains uncertainty in achieving further degrees of freedom, such as distinguishing fine and coarse mode dominated species in maritime environments (e.g., coarse mode sea salt and dust versus fine mode terrestrial anthropogenic emissions, biomass burning, and maritime secondary production). For the years 2016 through 2019, we performed an analysis of 550 nm total AOD550, fine mode AOD (FAOD550; also known as FM AOD in the literature), coarse mode AOD (CAOD550), and fine mode fraction (η550) between Moderate Resolution Spectral Imaging Radiometer (MODIS) V6.1 MOD/MYD04 dark target aerosol retrievals and the International Cooperative for Aerosol Prediction (ICAP) core four multi-model consensus (C4C) of analyses/short term forecasts that assimilate total MODIS AOD550. Differences were adjudicated by the global shipboard Maritime Aerosol Network (MAN) and selected island AERONET sun photometer observations with the application of the spectral deconvolution algorithm (SDA). Through a series of conditional and regional analyses, we found divergence included regions of terrestrial influence and latitudinal dependencies in the remote oceans. Notably, MODIS and the C4C and its members, while having good correlations overall, have a persistent +0.04 to +0.02 biases relative to MAN and AERONET for typical AOD550 values (84th% < 0.28), with the C4C underestimating significant events thereafter. Second, high biases in AOD550 are largely associated with the attribution of the fine mode in satellites and models alike. Thus, both MODIS and C4C members are systematically overestimating AOD550 and FAOD550 but perform better in characterizing the CAOD550. Third, for MODIS, findings are consistent with previous reports of a high bias in the retrieved Ångström Exponent, and we diagnosed both the optical model and cloud masking as likely causal factors for the AOD550 and FAOD550 high bias, whereas for the C4C, it is likely from secondary overproduction and perhaps numerical diffusion. Fourth, while there is no wind-speed-dependent bias for surface winds <12 m s−1, the C4C and MODIS AOD550s also overestimate CAOD550 and FAOD550, respectively, for wind speeds above 12 m/s. Finally, sampling bias inherent in MAN, as well as other circumstantial evidence, suggests biases in MODIS are likely even larger than what was diagnosed here. We conclude with a discussion on how MODIS and the C4C products have their own strengths and challenges for a given climate application and discuss needed research.
Collapse
|
2
|
Physical-Optical Properties of Marine Aerosols over the South China Sea: Shipboard Measurements and MERRA-2 Reanalysis. REMOTE SENSING 2022. [DOI: 10.3390/rs14102453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aerosols play an important role in the Earth–atmosphere system. Their impacts on the weather and climate are highly dependent on spatiotemporal distributions as well as physical-optical properties. Physical-optical properties of the aerosols over the Asian continent have been widely investigated, but there are relatively few observations in maritime locations, especially the South China Sea (SCS). Here, with the combination of in situ ship-based observations from June and July 2019 as well as long-term MERRA-2 reanalysis datasets from January 2012 to December 2021, the physical and optical properties of marine aerosols in the SCS are explored. The impacts of meteorological factors, particularly frontal systems, on the aerosol properties are further analyzed based on detailed observations. The observed results show that aerosols are vertically concentrated below 3 km and the extinction coefficient reaches the maximum value of 0.055 km−1 near 480 m. Moreover, the particles are composed of an accumulation and a coarse particle mode, and they conform to the lognormal distribution. The synoptic-scale case study demonstrates that both the cold front and stationary front lead to an increase in aerosol optical thickness (AOD), which is due to the enhanced wind speed and the hygroscopic growth of fine particles, respectively. The long-term analysis indicates that AOD decreases from northwest to southeast with the increasing distance away from the continent, and it reflects higher values in spring and winter than in summer and autumn. Sulfate and sea salt dominate AOD in this region when compared with other components. The overall AOD shows a significant negative trend of −0.0027 year−1. This work will help us further understand the physical and optical properties of marine aerosols over the SCS and then contribute to quantifying the aerosol radiative forcing in the future.
Collapse
|
3
|
Aerosol Distributions and Sahara Dust Transport in Southern Morocco, from Ground-Based and Satellite Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigates aerosols distributions and a strong Sahara dust-storm event that occurred by early August 2018, in the South of Morocco. We used columnar aerosol optical depth (AOD), Angstrom Exponent (AE) and volume size distributions (VSD) as derived from ground-based observations by 2 AERONET (AErosol RObotic NETwork) sun-photometers at Saada (31.63°N, 8.16°W) and Ouarzazate (30.93°N, 6.91°W) sites, over the periods 2004–2019 and 2012–2015, respectively. The monthly seasonal distributions of AOD, AE, and VSD showed a seasonal trend dominated by the annual cycle, with a maximum aerosol load during summer (July–August) and a minimum in winter (December–January), characterized by a coarse mode near the radius of 2.59 μm and a fine mode at the radius of 0.16 μm, respectively. Indeed, this study showed that aerosol populations in southern Morocco are dominated by Saharan desert dust, especially during the summer season. The latter can sometimes be subject of dust-storm events. The case study presented in this paper reports on one of these events, which happened in early August 2018. The HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model was used to simulate air-mass back-trajectories during the event. In agreement with ground-based (AERONET sun-photometers) and satellite (CALIOP, MODIS and AIRS) observations, HYSPLIT back-trajectories showed that the dust air-mass at the 4-km layer, the average height of the dust plume, has crossed southern Morocco over the Saada site, with a westward direction towards the Atlantic Ocean, before it changed northward up to the Portuguese coasts.
Collapse
|
4
|
Spatial Distribution of Aerosol Characteristics over the South Atlantic and Southern Ocean Using Multiyear (2004–2021) Measurements from Russian Antarctic Expeditions. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Since 2004, we have carried out yearly measurements of physicochemical aerosol characteristics onboard research vessels at Southern Hemisphere high latitudes (34–72° S; 45° W–110° E). In this work, we statistically generalize the results from multiyear (2004–2021) measurements in this area of the aerosol optical depth (AOD) of the atmosphere, concentrations of aerosol and equivalent black carbon (EBC), as well as the ionic composition of aerosol. A common regularity was that the aerosol characteristics decreased with increasing latitude up to the Antarctic coast, where the aerosol content corresponded to the global background level. Between Africa and Antarctica, AOD decreased from 0.07 to 0.024, the particle volume decreased from 5.5 to 0.55 µm3/cm3, EBC decreased from 68.1 to 17.4 ng/m3, and the summed ion concentration decreased from 24.5 to 2.5 µg/m3. Against the background of the common tendency of the latitude decrease in aerosol characteristics, we discerned a secondary maximum (AOD and ion concentrations) or a plateau (aerosol and EBC concentrations). The obtained spatial distribution of aerosol characteristics qualitatively agreed with the model-based MERRA-2 reanalysis data, but showed quantitative differences: the model AOD values were overestimated (by 0.015, on average); while the EBC concentrations were underestimated (by 21.7 ng/m3). An interesting feature was found in the aerosol spatial distribution in the region of Antarctic islands: at a distance of 300 km from the islands, the concentrations of EBC decreased on average by 29%, while the aerosol content increased by a factor of 2.5.
Collapse
|
5
|
Deep Neural Networks for Aerosol Optical Depth Retrieval. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aerosol Optical Depth (AOD) is a measure of the extinction of solar radiation by aerosols in the atmosphere. Understanding the variations of global AOD is necessary for precisely determining the role of aerosols. Arctic warming is partially caused by aerosols transported from vast distances, including those released during biomass burning events (BBEs). However, measuring AODs is challenging, typically requiring active LIDAR systems or passive sun photometers. Both are limited to cloud-free conditions; sun photometers provide only point measurements, thus requiring more spatial coverage. A more viable method to obtain accurate AOD may be found through machine learning. This study uses DNNs to estimate Svalbard’s AODs using a minimal set of meteorological parameters (temperature, air mass, water vapor, wind speed, latitude, longitude, and time of year). The mean absolute error (MAE) between predicted and true data was 0.00401 for the entire set and 0.0079 for the validation set. It was then shown that the inclusion of BBE data improves predictions by 42.167%. It was demonstrated that AODs may be accurately estimated without the use of expensive instrumentation, using machine learning and minimal data. Similar models may be developed for other regions, allowing immediate improvement of current meteorological models.
Collapse
|
6
|
Fiedler S, Wyser K, Rogelj J, van Noije T. Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery. ATMOSPHERIC RESEARCH 2021; 264:105866. [PMID: 34602689 PMCID: PMC8462062 DOI: 10.1016/j.atmosres.2021.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The pandemic in 2020 caused an abrupt change in the emission of anthropogenic aerosols and their precursors. We estimate the associated change in the aerosol radiative forcing at the top of the atmosphere and the surface. To that end, we perform new simulations with the CMIP6 global climate model EC-Earth3. The simulations use the here newly created data for the anthropogenic aerosol optical properties and an associated effect on clouds from the simple plumes parameterization (MACv2-SP), based on revised SO2 and NH3 emission scenarios. Our results highlight the small impact of the pandemic on the global aerosol radiative forcing in 2020 compared to the CMIP6 scenario SSP2-4.5 of the order of +0.04 Wm-2, which is small compared to the natural year-to-year variability in the radiation budget. Natural variability also limits the ability to detect a meaningful regional difference in the anthropogenic aerosol radiative effects. We identify the best chances to find a significant change in radiation at the surface during cloud-free conditions for regions that were strongly polluted in the past years. The post-pandemic recovery scenarios indicate a spread in the aerosol forcing of -0.68 to -0.38 Wm-2 for 2050 relative to the pre-industrial, which translates to a difference of +0.05 to -0.25 Wm-2 compared to the 2050 baseline from SSP2-4.5. This spread falls within the present-day uncertainty in aerosol radiative forcing and the CMIP6 spread in aerosol forcing at the end of the 21st century. We release the new MACv2-SP data for studies on the climate response to the pandemic and the recovery scenarios. Our 2050 forcing estimates suggest that sustained aerosol emission reductions during the post-pandemic recovery cause a stronger climate response than in 2020, i.e., there is a delayed influence of the pandemic on climate.
Collapse
Affiliation(s)
- Stephanie Fiedler
- University of Cologne, Institute of Geophysics and Meteorology, Cologne, Germany
- Hans-Ertel-Centre for Weather Research, Climate Monitoring and Diagnostics, Bonn/Cologne, Germany
| | - Klaus Wyser
- Rossby Centre, Swedish Meteorological and Hydrological Institute, Sweden
| | - Joeri Rogelj
- Grantham Institute, Imperial College London, United Kingdom
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Twan van Noije
- Royal Netherlands Meteorological Institute, De Bilt, Netherlands
| |
Collapse
|
7
|
Abstract
Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.
Collapse
|
8
|
Black Carbon over Wuhan, China: Seasonal Variations in Its Optical Properties, Radiative Forcing and Contribution to Atmospheric Aerosols. REMOTE SENSING 2021. [DOI: 10.3390/rs13183620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As an important fraction of light-absorbing particles, black carbon (BC) has a significant warming effect, despite accounting for a small proportion of total aerosols. A comprehensive investigation was conducted on the characteristics of atmospheric aerosols and BC particles over Wuhan, China. Mass concentration, optical properties, and radiative forcing of total aerosols and BC were estimated using multi-source observation data. Results showed that the BC concentration monthly mean varied from 2.19 to 5.33 μg m−3. The BC aerosol optical depth (AOD) maximum monthly mean (0.026) occurred in winter, whereas the maximum total AOD (1.75) occurred in summer. Under polluted-air conditions, both aerosol radiative forcing (ARF) and BC radiative forcing (BCRF) at the bottom of the atmosphere (BOA) were strongest in summer, with values of −83.01 and −11.22 W m−2, respectively. In summer, ARF at BOA on polluted-air days was more than two-fold that on clean-air days. In addition, compared with clean-air days, BCRF at BOA on polluted-air days was increased by 76% and 73% in summer and winter, respectively. The results indicate an important influence of particulate air pollution on ARF and BCRF. Furthermore, the average contribution of BCRF to ARF was 13.8%, even though the proportion of BC in PM2.5 was only 5.1%.
Collapse
|
9
|
Aerosol Optical Properties around the East China Seas Based on AERONET Measurements. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding aerosols optical properties over the oceans is vital for enhancing our knowledge of aerosol effects on climate and pollutant transport between continents. In this study, the characteristics of aerosol optical thickness (AOT) at 500 nm (τ500nm), Ångström exponent for the wavelength pair 440–870 nm (α) and volume size distribution (VSD), are presented and analyzed over the East China seas based on the observations at four AERONET sites during 1999–2019. The main results are: (1) the mean τ500nm (α) value ranged from 0.31 to 0.36 (1.17–1.31); (2) the distribution of τ500nm (α) is similar to a log-normal distribution with a right-skewed long tail larger than 0.5 (closer to the normal distribution); (3) large AOT (τ500nm>0.6) was frequently observed in summer (June and July) and spring (March to May), followed by autumn and winter; (4) all aerosol types were observed, and urban/industrial aerosols and mixed types were dominant throughout the period. The atmospheric column aerosol was characterized by a bimodal lognormal size distribution with a fine mode at effective radius, Reff = 0.16 ± 0.01 μm, and coarse mode at Reff = 2.05 ± 0.1 μm.
Collapse
|
10
|
Chen S, Song Q, Ma C, Lin M, Liu J, Hu L, Li S, Xue C. Evaluation of regions suitable for vicarious calibration of ocean color satellite sensors in the South China Sea. OPTICS EXPRESS 2021; 29:11712-11727. [PMID: 33984947 DOI: 10.1364/oe.423108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Accurate retrieval of biogeochemical components of the ocean at a global scale from space requires accurately calibrated top-of-atmosphere (TOA) radiance, which is usually achieved by deriving a vicarious gain coefficient (g-factor) through a process called system vicarious calibration (SVC). Currently, only two SVC sites, Marine Optical Buoy (MOBY) and BOUée pour l'acquiSition d'une Série Optique à Long termE (BOUSSOLE), are routinely operated to support the SVC process for all on-orbit ocean color satellite payloads. However, high-quality matchups between satellite observations and in situ measurements are rare because of the strict requirements of the SVC process. Meanwhile, a stable g-factor is usually computed by averaging sufficient gain measurements. Therefore, more SVC sites are required to derive a stable g-factor in a short duration, particularly for the initial calibration of newly launched satellite sensors. In this study, nearly twenty years of well-calibrated ocean color satellite data were used to calculate the mean and standard deviation of physical and optical properties of waters and the atmosphere in the South China Sea (SCS) to evaluate the feasibility of establishing a SVC site. A region was identified that meets all requirements that were used to evaluate the MOBY and BOUSSOLE sites. Two in situ measurements within this region were used to derive a g-factor for MODIS-Terra and MODIS-Aqua and were compared with the g-factor derived using MOBY data. The consistence of the two g-factors indicates that the identified region in the SCS could be a potential area for establishing a long-term moored SVC site.
Collapse
|
11
|
Antoine D, Slivkoff M, Klonowski W, Kovach C, Ondrusek M. Uncertainty assessment of unattended above-water radiometric data collection from research vessels with the Dynamic Above-water Radiance (L) and Irradiance (E) Collector (DALEC). OPTICS EXPRESS 2021; 29:4607-4631. [PMID: 33771034 DOI: 10.1364/oe.412022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
We used above- and below-water radiometry measurements collected during a research voyage in the eastern Indian Ocean to assess uncertainties in deriving the remote sensing reflectance, Rrs, from unattended above-water radiometric data collection with the In-Situ Marine Optics Pty. Ltd. (IMO) Dynamic Above-water Radiance (L) and Irradiance (E) Collector (DALEC). To achieve this, the Rrs values derived from using the latest version of this hyperspectral radiometer were compared to values obtained from two in-water profiling radiometer systems of rather general use in the ocean optics research community, i.e., the Biospherical Instruments Inc. Compact Optical Profiling System (C-OPS) and the Seabird HyperPro II. Our results show that unattended, carefully quality-controlled, DALEC measurements provide Rrs for wavelengths < 600 nm that match those derived from the in-water systems with no bias and a dispersion of about 8%, provided that the appropriate technique is used to quantify the contribution of sky light reflection to the measured signal. The dispersion is larger (25-50%) for red bands, which is expected for clear oligotrophic waters as encountered during the voyage, where ∼2 10-5 < Rrs < ∼2 10-4 sr-1. For comparison, the two in-water systems provided Rrs in agreement within 4% for wavelengths < 600 nm.
Collapse
|
12
|
Xu W, Wang W, Chen B. Comparison of hourly aerosol retrievals from JAXA Himawari/AHI in version 3.0 and a simple customized method. Sci Rep 2020; 10:20884. [PMID: 33257793 PMCID: PMC7705744 DOI: 10.1038/s41598-020-77948-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Advanced Himawari imager (AHI) carried on the new-generation geostationary meteorological Himawari-8 satellite of Japan has been generating aerosol observations with a high temporal resolution since 7 July 2015. However, the previous studies lack a comprehensive quality assessment and spatial coverage analysis of AHI hourly aerosol products (level 3 version 3.0) across the full disk scan. The monitoring accuracy of different AHI aerosol products (AODpure and AODmerged) and a simple customized product (AODmean) was evaluated against Aerosol Robotic Network (AERONET) and Maritime Aerosol Network (MAN) observations from May 2016 to February 2019 in this study. Results showed that AHI AODmean demonstrates a better agreement to AERONET AOD measurements than AODpure and AODmerged over land (R = 0.81, bias = - 0.011) and all the AHI land retrievals present a significant regional performance differences, while the relatively better performance is observed in AODmerged over the coastal regions (R = 0.89, bias = 0.053). Over ocean, AHI exhibited overall overestimation in retrieving AOD against MAN observations and the relatively lower uncertainties were found in AODpure retrievals (R = 0.96, bias = 0.057). The hourly comparisons in different AHI products demonstrated a robust performance in the late afternoon (16:00-17:00 LT) over land and around the noon (10:00-13:00 LT) over coast. AHI AOD products indicated an obvious underestimation when compared to MODIS AOD retrievals over both land and ocean. Furthermore, the performance differences of AHI AOD products have also affected by the vegetation cover, pollution levels and relative humidity. For spatiotemporal coverage, the results of different AHI products demonstrated that AODmean can achieve relatively higher coverage than AODpure and AODmerged, and AHI retrievals present significant regional differences in coverage capability.
Collapse
Affiliation(s)
- Weiwei Xu
- School of Geoscience and Info-Physics, Central South University, Changsha, China
| | - Wei Wang
- School of Geoscience and Info-Physics, Central South University, Changsha, China.
| | - Biyan Chen
- School of Geoscience and Info-Physics, Central South University, Changsha, China
| |
Collapse
|
13
|
Silva SJ, Ridley DA, Heald CL. Exploring the Constraints on Simulated Aerosol Sources and Transport Across the North Atlantic With Island-Based Sun Photometers. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2020; 7:e2020EA001392. [PMID: 33381616 PMCID: PMC7757267 DOI: 10.1029/2020ea001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric aerosol over the North Atlantic Ocean impacts regional clouds and climate. In this work, we use a set of sun photometer observations of aerosol optical depth (AOD) located on the Graciosa and Cape Verde islands, along with the GEOS-Chem chemical transport model to investigate the sources of these aerosol and their transport over the North Atlantic Ocean. At both locations, the largest simulated contributor to aerosol extinction is the local source of sea-salt aerosol. In addition to this large source, we find that signatures consistent with long-range transport of anthropogenic, biomass burning, and dust emissions are apparent throughout the year at both locations. Model simulations suggest that this signal of long-range transport in AOD is more apparent at higher elevation locations; the influence of anthropogenic and biomass burning aerosol extinction is particularly pronounced at the height of Pico Mountain, near the Graciosa Island site. Using a machine learning approach, we further show that simulated observations at these three sites (near Graciosa, Pico Mountain, and Cape Verde) can be used to predict the simulated background aerosol imported into cities on the European mainland, particularly during the local winter months, highlighting the utility of background AOD monitoring for understanding downwind air quality.
Collapse
Affiliation(s)
- Sam J. Silva
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Now at: Pacific Northwest National LaboratoryRichlandWAUSA
| | - David A. Ridley
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Now at: California Air Resources BoardSacramentoCAUSA
| | - Colette L. Heald
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
14
|
The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. REMOTE SENSING 2020. [DOI: 10.3390/rs12182900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Dark Target aerosol algorithm was developed to exploit the information content available from the observations of Moderate-Resolution Imaging Spectroradiometers (MODIS), to better characterize the global aerosol system. The algorithm is based on measurements of the light scattered by aerosols toward a space-borne sensor against the backdrop of relatively dark Earth scenes, thus giving rise to the name “Dark Target”. Development required nearly a decade of research that included application of MODIS airborne simulators to provide test beds for proto-algorithms and analysis of existing data to form realistic assumptions to constrain surface reflectance and aerosol optical properties. This research in itself played a significant role in expanding our understanding of aerosol properties, even before Terra MODIS launch. Contributing to that understanding were the observations and retrievals of the growing Aerosol Robotic Network (AERONET) of sun-sky radiometers, which has walked hand-in-hand with MODIS and the development of other aerosol algorithms, providing validation of the satellite-retrieved products after launch. The MODIS Dark Target products prompted advances in Earth science and applications across subdisciplines such as climate, transport of aerosols, air quality, and data assimilation systems. Then, as the Terra and Aqua MODIS sensors aged, the challenge was to monitor the effects of calibration drifts on the aerosol products and to differentiate physical trends in the aerosol system from artefacts introduced by instrument characterization. Our intention is to continue to adapt and apply the well-vetted Dark Target algorithms to new instruments, including both polar-orbiting and geosynchronous sensors. The goal is to produce an uninterrupted time series of an aerosol climate data record that begins at the dawn of the 21st century and continues indefinitely into the future.
Collapse
|
15
|
Ma X, Huang Z, Qi S, Huang J, Zhang S, Dong Q, Wang X. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137699. [PMID: 32179344 DOI: 10.1016/j.scitotenv.2020.137699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Passive remote sensing has been widely used in recent decades to obtain global particulate matter (PM) mass concentration at daytime and under cloud-free condition. In this study, a retrieval method was developed for providing PM (PM10 and PM2.5) mass concentration both at daytime and nighttime using the latest data version (V4.10) from space-borne Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar measurements. The advantage of the method is that PM10 & PM2.5 mass concentrations were obtained for seven aerosol types respectively base on active remote sensing observation at daytime and nighttime, even under cloudy condition. The results show that satellite-based PM mass concentrations are in good agreement with in-situ observations from 1602 ground monitoring sites throughout the world. Moreover, global distributions of PM10 and PM2.5 mass concentration during 2007-2016 were investigated, showing that for Beijing the annual mean PM2.5 mass concentration at nighttime is 11.31% less than those at daytime, however for London is 36.62%. It is suggested that diurnal variations in PM2.5 mass concentration are closely related to human activities. This work provides a reliable high-resolution database for long-term particulate mass concentrations on the global scale, which is of importance to evaluate aerosol impacts on climate, environment as well as ecosystem.
Collapse
Affiliation(s)
- Xiaojun Ma
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for West Ecological Safety (CIWES), Lanzhou University, Lanzhou 730000, China.
| | - Siqi Qi
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianping Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for West Ecological Safety (CIWES), Lanzhou University, Lanzhou 730000, China
| | - Shuang Zhang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingqing Dong
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Bellouin N, Quaas J, Gryspeerdt E, Kinne S, Stier P, Watson‐Parris D, Boucher O, Carslaw KS, Christensen M, Daniau A, Dufresne J, Feingold G, Fiedler S, Forster P, Gettelman A, Haywood JM, Lohmann U, Malavelle F, Mauritsen T, McCoy DT, Myhre G, Mülmenstädt J, Neubauer D, Possner A, Rugenstein M, Sato Y, Schulz M, Schwartz SE, Sourdeval O, Storelvmo T, Toll V, Winker D, Stevens B. Bounding Global Aerosol Radiative Forcing of Climate Change. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:e2019RG000660. [PMID: 32734279 PMCID: PMC7384191 DOI: 10.1029/2019rg000660] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 05/04/2023]
Abstract
Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m-2, or -2.0 to -0.4 W m-2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.
Collapse
Affiliation(s)
- N. Bellouin
- Department of MeteorologyUniversity of ReadingReadingUK
| | - J. Quaas
- Institute for MeteorologyUniversität LeipzigLeipzigGermany
| | - E. Gryspeerdt
- Space and Atmospheric Physics GroupImperial College LondonLondonUK
| | - S. Kinne
- Max Planck Institute for MeteorologyHamburgGermany
| | - P. Stier
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - D. Watson‐Parris
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - O. Boucher
- Institut Pierre‐Simon Laplace, Sorbonne Université/CNRSParisFrance
| | - K. S. Carslaw
- School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - M. Christensen
- Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK
| | - A.‐L. Daniau
- EPOC, UMR 5805, CNRS‐Université de BordeauxPessacFrance
| | - J.‐L. Dufresne
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, Ecole Normale Supérieure, PSL Research University, Ecole PolytechniqueParisFrance
| | - G. Feingold
- NOAA ESRL Chemical Sciences DivisionBoulderCOUSA
| | - S. Fiedler
- Max Planck Institute for MeteorologyHamburgGermany
- Now at Institut für Geophysik und MeteorologieUniversität zu KölnKölnGermany
| | - P. Forster
- Priestley International Centre for ClimateUniversity of LeedsLeedsUK
| | - A. Gettelman
- National Center for Atmospheric ResearchBoulderCOUSA
| | - J. M. Haywood
- CEMPSUniversity of ExeterExeterUK
- UK Met Office Hadley CentreExeterUK
| | - U. Lohmann
- Institute for Atmospheric and Climate ScienceETH ZürichZürichSwitzerland
| | | | - T. Mauritsen
- Department of MeteorologyStockholm UniversityStockholmSweden
| | - D. T. McCoy
- School of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - G. Myhre
- Center for International Climate and Environmental Research‐Oslo (CICERO)OsloNorway
| | - J. Mülmenstädt
- Institute for MeteorologyUniversität LeipzigLeipzigGermany
| | - D. Neubauer
- Institute for Atmospheric and Climate ScienceETH ZürichZürichSwitzerland
| | - A. Possner
- Department of Global EcologyCarnegie Institution for ScienceStanfordCAUSA
- Now at Institute for Atmospheric and Environmental SciencesGoethe UniversityFrankfurtGermany
| | | | - Y. Sato
- Department of Applied Energy, Graduate School of Engineering, Nagoya UniversityNagoyaJapan
- Now at Faculty of Science, Department of Earth and Planetary SciencesHokkaido UniversitySapporoJapan
| | - M. Schulz
- Climate Modelling and Air Pollution Section, Research and Development DepartmentNorwegian Meteorological InstituteOsloNorway
| | - S. E. Schwartz
- Brookhaven National Laboratory Environmental and Climate Sciences DepartmentUptonNYUSA
| | - O. Sourdeval
- Institute for MeteorologyUniversität LeipzigLeipzigGermany
- Laboratoire d'Optique AtmosphériqueUniversité de LilleVilleneuve d'AscqFrance
| | - T. Storelvmo
- Department of GeosciencesUniversity of OsloOsloNorway
| | - V. Toll
- Department of MeteorologyUniversity of ReadingReadingUK
- Now at Institute of PhysicsUniversity of TartuTartuEstonia
| | - D. Winker
- NASA Langley Research CenterHamptonVAUSA
| | - B. Stevens
- Max Planck Institute for MeteorologyHamburgGermany
| |
Collapse
|
17
|
Abstract
For reflected sunlight observed from space at visible and near-infrared wavelengths, particles suspended in Earth’s atmosphere provide contrast with vegetation or dark water at the surface. This is the physical motivation for the Dark Target (DT) aerosol retrieval algorithm developed for the Moderate Resolution Imaging Spectrometer (MODIS). To extend the data record of aerosol optical depth (AOD) beyond the expected 20-year lifespan of the MODIS sensors, DT must be adapted for other sensors. A version of the DT AOD retrieval for the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-National Polar-Orbiting Partnership (SNPP) is now mature enough to be released as a standard data product, and includes some upgraded features from the MODIS version. Differences between MODIS Aqua and VIIRS SNPP lead to some inevitable disagreement between their respective AOD measurements, but the offset between the VIIRS SNPP and MODIS Aqua records is smaller than the offset between those of MODIS Aqua and MODIS Terra. The VIIRS SNPP retrieval shows good agreement with ground-based measurements. For most purposes, DT for VIIRS SNPP is consistent enough and in close enough agreement with MODIS to continue the record of satellite AOD. The reasons for the offset from MODIS Aqua, and its spatial and temporal variability, are investigated in this study.
Collapse
|
18
|
Application and Evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) in Poorly Gauged Regions in Western China. WATER 2019. [DOI: 10.3390/w11102171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The temporal and spatial differentiation of the underlying surface in East Asia is complex. Due to a lack of meteorological observation data, human cognition and understanding of the surface processes (runoff, snowmelt, soil moisture, water production, etc.) in the area have been greatly limited. With the Heihe River Basin, a poorly gauged region in the cold region of Western China, selected as the study area, three meteorological datasets are evaluated for their suitability to drive the Soil and Water Assessment Tool (SWAT): China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS), Climate Forecast System Reanalysis (CFSR), and Traditional Weather Station (TWS). Resultingly, (1) the runoff output of CMADS + SWAT mode is generally better than that of the other two modes (CFSR + SWAT and TWS + SWAT) and the monthly and daily Nash–Sutcliffe efficiency ranges of the CMADS + SWAT mode are 0.75–0.95 and 0.58–0.77, respectively; (2) the CMADS + SWAT and TWS + SWAT results were fairly similar to the actual data (especially for precipitation and evaporation), with the results produced by CMADS + SWAT lower than those produced by TWS + SWAT; (3) the CMADS + SWAT mode has a greater ability to reproduce water balance than the other two modes. Overestimation of CFSR precipitation results in greater error impact on the uncertainty output of the model, whereas the performances of CMADS and TWS are more similar. This study addresses the gap in the study of surface processes by CMADS users in Western China and provides an important scientific basis for analyzing poorly gauged regions in East Asia.
Collapse
|
19
|
Shen X, Bilal M, Qiu Z, Sun D, Wang S, Zhu W. Long-term spatiotemporal variations of aerosol optical depth over Yellow and Bohai Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7969-7979. [PMID: 30684183 DOI: 10.1007/s11356-019-04203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/08/2019] [Indexed: 05/15/2023]
Abstract
In this study, MODerate resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1) level-2 Dark Target (DT) Aerosol Optical Depth (AOD) observations at 550 nm (AOD550) for the highest quality flag assurance (QA = 3) were obtained to analyze spatiotemporal variations of aerosol optical properties over the Yellow and the Bohai Sea from 2002 to 2017. Spectral AOD observations at 470 nm (AOD470) and 660 nm (AOD660) were obtained to calculate Angstrom Exponent (AE470-660) and classify the aerosol types including clean continental (CC), clean maritime (CM) biomass and urban industrial (BUI), dust (D), and mixed (MXD) aerosol types. Results showed a very distinct spatial pattern of AOD distribution over the Bohai Sea which looks suspicious, i.e., high aerosol loadings (AOD > 0.8) throughout the entire time period, whereas relative low AOD distribution was observed over the adjacent land pixels especially in autumn and winter, which suggested that the DT algorithm might be influenced by a large number of sediments located in the Bohai Sea. Significant differences in spatial distributions were found in different seasons in terms of area coverage as a maximum number of pixels were available during autumn, and regional high and low aerosol loadings were observed during autumn and summer, respectively. Trend analysis from 2002 to 2017 showed that AOD was increased up to 0.04 over the Bohai Sea and decreased up to 0.04 over the Yellow Sea, and this trend varies from month to month. Aerosol classification showed significant contributions of BUI and CC over the region, and contributions of CM, DUST, and MXD aerosols over the Yellow Sea were relatively high compared to the Bohai Sea.
Collapse
Affiliation(s)
- Xiaojing Shen
- School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Muhammad Bilal
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhongfeng Qiu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Deyong Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shengqiang Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Weijun Zhu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
20
|
Rupakheti D, Kang S, Rupakheti M, Cong Z, Tripathee L, Panday AK, Holben BN. Observation of optical properties and sources of aerosols at Buddha's birthplace, Lumbini, Nepal: environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:14868-14881. [PMID: 29546514 DOI: 10.1007/s11356-018-1713-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
For the first time, aerosol optical properties are measured over Lumbini, Nepal, with CIMEL sunphotometer of the Aerosol Robotic Network (AERONET) program. Lumbini is a sacred place as the birthplace of Lord Buddha, and thus a UNESCO world heritage site, located near the northern edge of the central Indo-Gangetic Plains (IGP) and before the Himalayan foothills (and Himalayas) to its north. Average aerosol optical depth (AOD) is found to be 0.64 ± 0.38 (0.06-3.28) over the sampling period (January 2013-December 2014), with the highest seasonal AOD during the post-monsoon season (0.72 ± 0.44). More than 80% of the daily averaged AOD values, during the monitoring period, are above 0.3, indicating polluted conditions in the region. The levels of aerosol load observed over Lumbini are comparable to those observed at several heavily polluted sites in the IGP. Based on the relationship between AOD and Ångstrom exponent (α), anthropogenic, biomass burning, and mixed aerosols are found to be the most prevalent aerosol types. The aerosol volume-size distribution is bi-modal during all four seasons with modes centered at 0.1-0.3 and 3-4 μm. For both fine and coarse modes, the highest volumetric concentration of ~ 0.08 μm-3 μm-2 is observed during the post-monsoon and pre-monsoon seasons. As revealed by the single-scattering albedo (SSA), asymmetry parameter (AP), and refractive index (RI) analyses, aerosol loading over Lumbini is dominated by absorbing, urban-industrial, and biomass burning aerosols.
Collapse
Affiliation(s)
- Dipesh Rupakheti
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Shichang Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Maheswar Rupakheti
- Institute for Advanced Sustainability Studies (IASS), Potsdam, Germany
- Himalayan Sustainability Institute (HIMSI), Kathmandu, Nepal
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Arnico K Panday
- International Centre for Integrated Mountain Development (ICIMOD), Lalitpur, Nepal
| | | |
Collapse
|
21
|
Validation of MODIS C6 Dark Target Aerosol Products at 3 km and 10 km Spatial Resolutions Over the China Seas and the Eastern Indian Ocean. REMOTE SENSING 2018. [DOI: 10.3390/rs10040573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Effect of Wind Speed on Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth over the North Pacific. ATMOSPHERE 2018. [DOI: 10.3390/atmos9020060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Sayer AM, Hsu NC, Lee J, Bettenhausen C, Kim WV, Smirnov A. Satellite Ocean Aerosol Retrieval (SOAR) algorithm extension to S-NPP VIIRS as part of the 'Deep Blue' aerosol project. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:380-400. [PMID: 30123731 PMCID: PMC6090557 DOI: 10.1002/2017jd027412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectro-radiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine mode AOD fraction are also well-correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.
Collapse
Affiliation(s)
- A M Sayer
- Goddard Earth Sciences Technology and Research (GESTAR), Universities Space Research Association, Columbia, MD, USA
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - N C Hsu
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J Lee
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Earth Systems Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA
| | - C Bettenhausen
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- ADNET Systems Inc., Bethesda, MD, USA
| | - W V Kim
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Earth Systems Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA
| | - A Smirnov
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems and Applications, Inc., Lanham, MD, USA
| |
Collapse
|
24
|
Patel PN, Dumka UC, Babu KN, Mathur AK. Aerosol characterization and radiative properties over Kavaratti, a remote island in southern Arabian Sea from the period of observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:165-180. [PMID: 28475910 DOI: 10.1016/j.scitotenv.2017.04.168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
Long-term measurements of spectral aerosol optical depth (AOD) using sun/sky radiometer for a period of five years (2009-2014) from the remote island location at Kavaratti (KVT; 10.56°N, 72.64°E) in the southern Arabian sea have been analysed. Climatologically, AODs decrease from October to reach maximum of ~0.6 (at 500nm) in March, followed by a sudden fall towards May. Significant modulations of intra-seasonal timescales over this general pattern are noticed due to the changes in the relative strength of distinctively different sources. The corresponding changes in aerosol inversion parameters reveal the presence of coarse-mode aerosols during spring and fine-mode absorbing aerosols in autumn and winter months. An overall dominance of a mixed type of aerosols (~41%) with maximum in winter (~53%) was found via the AOD500 vs. Ångström exponent (α440-870) relationship, while biomass-burning aerosols or thick urban/industrial plumes contribute to ~19%. Spectral dependence of Ångström exponent and aerosol absorbing properties were used to identify the aerosol types and its modification processes. Based on air mass back trajectory analysis, we revealed that the advection of aerosols from Indian subcontinent and western regions plays a major role in modifying the optical properties of aerosols over the observational site. The shortwave aerosol direct radiative forcing estimated via SBDART model ranges from -11.00Wm-2 to -7.38Wm-2, -21.51Wm-2 to -14.33Wm-2 and 3.17Wm-2 and 10.0Wm-2 at top of atmosphere, surface and within the atmosphere, respectively. This atmospheric forcing translates into heating rate of 0.62-1.04Kday-1. Furthermore, the vertical profiles of aerosols and heating rate exhibit significant increase in lower (during winter and autumn) and mid troposphere (during spring). This may cause serious climate implications over Kavaratti with further consequences on cloud microphysics and monsoon rainfall.
Collapse
Affiliation(s)
- Piyushkumar N Patel
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India.
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263 001, India.
| | - K N Babu
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| | - A K Mathur
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| |
Collapse
|
25
|
Torres B, Dubovik O, Fuertes D, Schuster G, Cachorro VE, Lapyonok T, Goloub P, Blarel L, Barreto A, Mallet M, Toledano C, Tanré D. Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm. ATMOSPHERIC MEASUREMENT TECHNIQUES 2017; 10:3743-3781. [PMID: 33505530 PMCID: PMC7837514 DOI: 10.5194/amt-10-3743-2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study evaluates the potential of using aerosol optical depth (τ a) measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP (Generalized Retrieval of Aerosol and Surface Properties) code for numerical testing of six different aerosol models with different aerosol loads. The direct numerical simulations (self-consistency tests) indicate that the GRASP-AOD retrieval provides modal aerosol optical depths (fine and coarse) to within 0.01 of the input values. The retrieval of the fine-mode radius, width and volume concentration are stable and precise if the real part of the refractive index is known. The coarse-mode properties are less accurate, but they are significantly improved when additional a priori information is available. The tests with random simulated errors show that the uncertainty in the bimodal log-normal size distribution parameters increases as the aerosol load decreases. Similarly, the reduction in the spectral range diminishes the stability of the retrieved parameters. In addition to these numerical studies, we used optical depth observations at eight AERONET locations to validate our results with the standard AERONET inversion products. We found that bimodal log-normal size distributions serve as useful input assumptions, especially when the measurements have inadequate spectral coverage and/or limited accuracy, such as moon photometry. Comparisons of the mode median radii between GRASP-AOD and AERONET indicate average differences of 0.013 μm for the fine mode and typical values of 0.2-0.3 μm for the coarse mode. The dominant mode (i.e. fine or coarse) indicates a 10 % difference in mode radii between the GRASP-AOD and AERONET inversions, and the average of the difference in volume concentration is around 17 % for both modes. The retrieved values of the fine-mode τ a(500) using GRASP-AOD are generally between those values obtained by the standard AERONET inversion and the values obtained by the AERONET spectral deconvolution algorithm (SDA), with differences typically lower than 0.02 between GRASP-AOD and both algorithms. Finally, we present some examples of application of GRASP-AOD inversion using moon photometry and the airborne PLASMA sun photometer during the ChArMEx summer 2013 campaign in the western Mediterranean.
Collapse
Affiliation(s)
- Benjamin Torres
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
- GRASP-SAS, Remote sensing developments, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Oleg Dubovik
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - David Fuertes
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
- GRASP-SAS, Remote sensing developments, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | | | | | - Tatsiana Lapyonok
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Philippe Goloub
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Luc Blarel
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Africa Barreto
- Group of Atmospheric Optics, Valladolid University, Valladolid, Spain
- Cimel Electronique, Paris, France
- Izaña Atmospheric Research Center, Spanish Meteorological Agency, Tenerife, Spain
| | - Marc Mallet
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
| | - Carlos Toledano
- Group of Atmospheric Optics, Valladolid University, Valladolid, Spain
| | - Didier Tanré
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| |
Collapse
|
26
|
Randles CA, Da Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R, Smirnov A, Holben B, Ferrare R, Hair J, Shinozuka Y, Flynn CJ. The MERRA-2 Aerosol Reanalysis, 1980 - onward, Part I: System Description and Data Assimilation Evaluation. JOURNAL OF CLIMATE 2017; 30:6823-6850. [PMID: 29576684 PMCID: PMC5859955 DOI: 10.1175/jcli-d-16-0609.1] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) updates NASA's previous satellite era (1980 - onward) reanalysis system to include additional observations and improvements to the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model. As a major step towards a full Integrated Earth Systems Analysis (IESA), in addition to meteorological observations, MERRA-2 now includes assimilation of aerosol optical depth (AOD) from various ground- and space-based remote sensing platforms. Here, in the first of a pair of studies, we document the MERRA-2 aerosol assimilation, including a description of the prognostic model (GEOS-5 coupled to the GOCART aerosol module), aerosol emissions, and the quality control of ingested observations. We provide initial validation and evaluation of the analyzed AOD fields using independent observations from ground, aircraft, and shipborne instruments. We demonstrate the positive impact of the AOD assimilation on simulated aerosols by comparing MERRA-2 aerosol fields to an identical control simulation that does not include AOD assimilation. Having shown the AOD evaluation, we take a first look at aerosol-climate interactions by examining the shortwave, clear-sky aerosol direct radiative effect. In our companion paper, we evaluate and validate available MERRA-2 aerosol properties not directly impacted by the AOD assimilation (e.g. aerosol vertical distribution and absorption). Importantly, while highlighting the skill of the MERRA-2 aerosol assimilation products, both studies point out caveats that must be considered when using this new reanalysis product for future studies of aerosols and their interactions with weather and climate.
Collapse
Affiliation(s)
- C. A. Randles
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Corresponding author address: C. A. Randles, 1545 US-22, Clinton, NJ, 08801,
| | - A. M. Da Silva
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - V. Buchard
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- GESTAR/Universities Space Research Association, Columbia, Maryland, USA
| | - P. R. Colarco
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - A. Darmenov
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - R. Govindaraju
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Science Systems and Applications, Inc., Lanham, MD, USA
| | - A. Smirnov
- Science Systems and Applications, Inc., Lanham, MD, USA
- NASA Biospheric Sciences Laboratory, Greenbelt, Maryland, USA
| | - B. Holben
- NASA Biospheric Sciences Laboratory, Greenbelt, Maryland, USA
| | - R. Ferrare
- NASA Langley Research Center, Hampton, VA, USA
| | - J. Hair
- NASA Langley Research Center, Hampton, VA, USA
| | - Y. Shinozuka
- Bay Area Environmental Research Institute, Petaluma, California, USA
- NASA Ames Research Center Cooperative for Research in Earth Science and Technology, Moffett Field, California, USA
| | - C. J. Flynn
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
27
|
Sayer AM, Hsu NC, Lee J, Carletta N, Chen SH, Smirnov A. Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:9945-9967. [PMID: 30140601 PMCID: PMC6101972 DOI: 10.1002/2017jd026934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Deep Blue (DB) and Satellite Ocean Aerosol Retrieval (SOAR) algorithms have previously been applied to observations from sen-sors like the Moderate Resolution Imaging Spectroradiometers (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to provide records of mid-visible aerosol optical depth (AOD) and related quantities over land and ocean surfaces respectively. Recently, DB and SOAR have also been applied to Ad-vanced Very High Resolution Radiometer (AVHRR) observations from several platforms (NOAA11, NOAA14, and NOAA18), to demonstrate the potential for extending the DB and SOAR AOD records. This study provides an evaluation of the initial version (V001) of the resulting AVHRR-based AOD data set, including validation against Aerosol Robotic Network (AERONET) and ship-borne observations, and comparison against both other AVHRR AOD Research (GESTAR), Universities Space Research Association. records and MODIS/SeaWiFS products at select long-term AERONET sites. Although it is difficult to distil error characteristics into a simple expression, the results suggest that one standard deviation confidence intervals on retrieved AOD of ±(0.03+15%) over water and ±(0.05+25%) over land represent the typical level of uncertainty, with a tendency towards negative biases in high-AOD conditions, caused by a combination of algorithmic assumptions and sensor calibration issues. Most of the available validation data are for NOAA18 AVHRR, although performance appears to be similar for the NOAA11 and NOAA14 sensors as well.
Collapse
Affiliation(s)
- A M Sayer
- Goddard Earth Sciences Technology and
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - N C Hsu
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J Lee
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Earth Systems Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA
| | - N Carletta
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems and Applications, Inc., Lanham, MD, USA
| | - S-H Chen
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems and Applications, Inc., Lanham, MD, USA
| | - A Smirnov
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems and Applications, Inc., Lanham, MD, USA
| |
Collapse
|
28
|
Zibordi G, Mélin F. An evaluation of marine regions relevant for ocean color system vicarious calibration. REMOTE SENSING OF ENVIRONMENT 2017; 190:122-136. [PMID: 28260817 PMCID: PMC5312659 DOI: 10.1016/j.rse.2016.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/17/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
System Vicarious Calibration (SVC) is the fundamental process commonly implemented to meet uncertainty requirements in satellite ocean color data. It is performed by applying gain factors, g-factors, to the pre-launch calibration coefficients of the space sensor already corrected for sensitivity decay with time. Mission specific g-factors are determined from top-of-the-atmosphere data computed by propagating highly accurate in situ values of the water-leaving radiance, Lw, to the satellite sensor. Values of Lw from marine regions characterized by oligotrophic/mesotrophic waters and maritime aerosols, high environmental stability and spatial homogeneity, low cloudiness and absence of any source of land contamination, are essential to determine g-factors applicable to the creation of Climate Data Records (CDRs) from multiple ocean color missions. Accounting for the location of existing and potential new SVC fixed sites, marine regions satisfying SVC requirements for the generation of CDRs have been identified through the analysis of satellite data from recent ocean color missions.
Collapse
|
29
|
Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). REMOTE SENSING 2016. [DOI: 10.3390/rs8050421] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Sensor Capability and Atmospheric Correction in Ocean Colour Remote Sensing. REMOTE SENSING 2015. [DOI: 10.3390/rs8010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Seasonal Variations of the Relative Optical Air Mass Function for Background Aerosol and Thin Cirrus Clouds at Arctic and Antarctic Sites. REMOTE SENSING 2015. [DOI: 10.3390/rs70607157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Li Z, Goloub P, Blarel L, Yang B, Li K, Podvin T, Li D, Xie Y, Chen X, Gu X, Zheng X, Li J, Catalfamo M. Method to intercalibrate sunphotometer constants using an integrating sphere as a light source in the laboratory. APPLIED OPTICS 2013; 52:2226-2234. [PMID: 23670750 DOI: 10.1364/ao.52.002226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
A calibration method is introduced to transfer calibration constants from the reference to secondary sunphotometers using a laboratory integrating sphere as a light source, instead of the traditional transferring approach performed at specific calibration sites based on sunlight. The viewing solid angle and spectral response effects of the photometer are taken into account in the transfer, and thus the method can be applied to different types of sunphotometers widely used in the field of atmospheric observation. A laboratory experiment is performed to illustrate this approach for four types of CIMEL CE318 sunphotometers belonging to the aerosol robotic network (AERONET). The laboratory calibration method shows an average difference of 1.4% from the AERONET operational calibration results, while a detailed error analysis suggests that the uncertainty agrees with the estimation and could be further improved. Using this laboratory calibration approach is expected to avoid weather influences and decrease data interruption due to operationally required periodic calibration operations. It also provides a basis for establishing a network including different sunphotometers for worldwide aerosol measurements, based on a single standard calibration reference.
Collapse
Affiliation(s)
- Zhengqiang Li
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kanitz T, Ansmann A, Engelmann R, Althausen D. North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2013; 118:2643-2655. [PMID: 25821662 PMCID: PMC4370761 DOI: 10.1002/jgrd.50273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 02/01/2013] [Accepted: 02/12/2013] [Indexed: 06/04/2023]
Abstract
Shipborne aerosol lidar observations were performed aboard the research vessel Polarstern in 2009 and 2010 during three north-south cruises from about 50°N to 50°S. The aerosol data set provides an excellent opportunity to characterize and contrast the vertical aerosol distribution over the Atlantic Ocean in the polluted northern and relatively clean southern hemisphere. Three case studies, an observed pure Saharan dust plume, a Patagonian dust plume east of South America, and a case of a mixed dust/smoke plume west of Central Africa are exemplarily shown and discussed by means of their optical properties. The meridional transatlantic cruises were used to determine the latitudinal cross section of the aerosol optical thickness (AOT). Profiles of particle backscatter and extinction coefficients are presented as mean profiles for latitudinal belts to contrast northern- and southern-hemispheric aerosol loads and optical effects. Results of lidar observations at Punta Arenas (53°S), Chile, and Stellenbosch (34°S), South Africa, are shown and confirm the lower frequency of occurrence of free-tropospheric aerosol in the southern hemisphere than in the northern hemisphere. The maximum latitudinal mean AOT of 0.27 was found in the northern tropics (0- 15°N) in the Saharan outflow region. Marine AOT is typically 0.05 ± 0.03. Particle optical properties are presented separately for the marine boundary layer and the free troposphere. Concerning the contrast between the anthropogenically influenced midlatitudinal aerosol conditions in the 30- 60°N belt and the respective belt in the southern hemisphere over the remote Atlantic, it is found that the AOT and extinction coefficients for the vertical column from 0-5km (total aerosol column) and 1-5km height (lofted aerosol above the marine boundary layer) are a factor of 1.6 and 2 higher at northern midlatitudes than at respective southern midlatitudes, and a factor of 2.5 higher than at the clean marine southern-hemispheric site of Punta Arenas. The strong contrast is confined to the lowermost 3km of the atmosphere.
Collapse
Affiliation(s)
- T Kanitz
- Leibniz Institute for Tropospheric Research Leipzig, Germany
| | - A Ansmann
- Leibniz Institute for Tropospheric Research Leipzig, Germany
| | - R Engelmann
- Leibniz Institute for Tropospheric Research Leipzig, Germany
| | - D Althausen
- Leibniz Institute for Tropospheric Research Leipzig, Germany
| |
Collapse
|
34
|
Baars H, Ansmann A, Althausen D, Engelmann R, Heese B, Müller D, Artaxo P, Paixao M, Pauliquevis T, Souza R. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018338] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, Dickerson RR, Thompson AM, Schafer JS. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018127] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
|
37
|
Babu SS, Gogoi MM, Kumar VHA, Nair VS, Moorthy KK. Radiative properties of Bay of Bengal aerosols: Spatial distinctiveness and source impacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Sayer AM, Smirnov A, Hsu NC, Holben BN. A pure marine aerosol model, for use in remote sensing applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016689] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Sayer AM, Hsu NC, Bettenhausen C, Ahmad Z, Holben BN, Smirnov A, Thomas GE, Zhang J. SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016599] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
|
41
|
Duflot V, Royer P, Chazette P, Baray JL, Courcoux Y, Delmas R. Marine and biomass burning aerosols in the southern Indian Ocean: Retrieval of aerosol optical properties from shipborne lidar and Sun photometer measurements. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015839] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Giles DM, Holben BN, Tripathi SN, Eck TF, Newcomb WW, Slutsker I, Dickerson RR, Thompson AM, Mattoo S, Wang SH, Singh RP, Sinyuk A, Schafer JS. Aerosol properties over the Indo-Gangetic Plain: A mesoscale perspective from the TIGERZ experiment. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015809] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
He X, Pan D, Bai Y, Zhu Q, Gong F. Evaluation of the aerosol models for SeaWiFS and MODIS by AERONET data over open oceans. APPLIED OPTICS 2011; 50:4353-4364. [PMID: 21833111 DOI: 10.1364/ao.50.004353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The operational atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses the predefined aerosol models to retrieve aerosol optical properties, and their accuracy depends on how well the aerosol models can represent the real aerosol optical properties. In this paper, we developed a method to evaluate the aerosol models (combined with the model selection methodology) by simulating the aerosol retrieval using the Aerosol Robotic Network (AERONET) data. Our method can evaluate the ability of aerosol models themselves, independent of the sensor performance. Two types of aerosol models for SeaWiFS and MODIS operational atmospheric correction algorithms are evaluated over global open oceans, namely the GW1994 models and Ahmad2010 models. The results show that GW1994 models significantly overestimate the aerosol optical thicknesses and underestimate the Ångström exponent, which is caused by the underestimation of the scattering phase function. However, Ahmad2010 models can significantly reduce the overestimation of the aerosol optical thickness and the underestimation of the Ångström exponent as a whole, but this improvement depends on the backscattering angle. Ahmad2010 models have a significant improvement in the retrieval of the aerosol optical thickness at a backscattering angle less than 140°. For a backscattering angle larger than 140°, GW1994 models are better at retrieving the aerosol optical thickness than the Ahmad2010 models.
Collapse
Affiliation(s)
- Xianqiang He
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography of State Oceanic Administration, Hangzhou, China.
| | | | | | | | | |
Collapse
|
44
|
Moorthy KK, Beegum SN, Babu SS, Smirnov A, John SR, Kumar KR, Narasimhulu K, Dutt CBS, Nair VS. Optical and physical characteristics of Bay of Bengal aerosols during W-ICARB: Spatial and vertical heterogeneities in the marine atmospheric boundary layer and in the vertical column. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014094] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- K. Krishna Moorthy
- Space Physics Laboratory; Vikram Sarabhai Space Centre; Trivandrum India
| | - S. Naseema Beegum
- Space Physics Laboratory; Vikram Sarabhai Space Centre; Trivandrum India
| | - S. Suresh Babu
- Space Physics Laboratory; Vikram Sarabhai Space Centre; Trivandrum India
| | - Alexander Smirnov
- Biospheric Sciences Branch; NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | | | | | - K. Narasimhulu
- Department of Physics; Sri Krishnadevaraya University; Anantapur India
| | | | | |
Collapse
|
45
|
Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, Holben BN. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014601] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|