1
|
Qi Q, Wu J, Gueymard CA, Qin W, Wang L, Zhou Z, Niu J, Zhang M. Mapping of 10-km daily diffuse solar radiation across China from reanalysis data and a Machine-Learning method. Sci Data 2024; 11:756. [PMID: 38992050 PMCID: PMC11239849 DOI: 10.1038/s41597-024-03609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Diffuse solar radiation (DSR) plays a critical role in renewable energy utilization and efficient agricultural production. However, there is a scarcity of high-precision, long-term, and spatially continuous datasets for DSR in the world, and particularly in China. To address this gap, a 41-year (1982-2022) daily diffuse solar radiation dataset (CHDSR) is constructed with a spatial resolution of 10 km, based on a new ensemble model that combines the clear-sky irradiance estimated by the REST2 model and a machine-learning technique using precise cloud information derived from reanalysis data. Validation against ground-based measurements indicates strong performance of the new hybrid model, with a correlation coefficient, root mean square error and mean bias error (MBE) of 0.94, 13.9 W m-2 and -0.49 W m-2, respectively. The CHDSR dataset shows good spatial and temporal continuity over the time horizon from 1982 to 2022, with a multi-year mean value of 74.51 W m-2. This dataset is now freely available on figshare to the potential benefit of any analytical work in solar energy, agriculture, climate change, etc ( https://doi.org/10.6084/m9.figshare.21763223.v3 ).
Collapse
Affiliation(s)
- Qinghai Qi
- Hubei Key Laboratory of Regional Ecology and Environment Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Jinyang Wu
- Hubei Key Laboratory of Regional Ecology and Environment Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | | | - Wenmin Qin
- Hubei Key Laboratory of Regional Ecology and Environment Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| | - Lunche Wang
- Hubei Key Laboratory of Regional Ecology and Environment Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Zhigao Zhou
- School of Low Carbon Economics, Hubei University of Economics, Wuhan, 430074, China
| | - Jiayun Niu
- Hubei Key Laboratory of Regional Ecology and Environment Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Ming Zhang
- Hubei Key Laboratory of Regional Ecology and Environment Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
2
|
Constructing High-Resolution (10 km) Daily Diffuse Solar Radiation Dataset across China during 1982–2020 through Ensemble Model. REMOTE SENSING 2022. [DOI: 10.3390/rs14153695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Diffuse solar radiation is an essential component of surface solar radiation that contributes to carbon sequestration, photovoltaic power generation, and renewable energy production in terrestrial ecosystems. We constructed a 39-year (1982–2020) daily diffuse solar radiation dataset (CHSSDR), using ERA5 and MERRA_2 reanalysis data, with a spatial resolution of 10 km through a developed ensemble model (generalized additive models, GAM). The validation results, with ground-based measurements, showed that GAM had a high and stable performance with the correlation coefficient (R), root-mean-square error (RMSE), and mean absolute error (MAE) for the sample-based cross-validations of 0.88, 19.54 Wm−2, and 14.87 Wm−2, respectively. CHSSDR had the highest consistency with ground-based measurements among the four diffuse solar radiation products (CERES, ERA5, JiEA, and CHSSDR), with the least deviation (MAE = 15.06 Wm−2 and RMSE = 20.22 Wm−2) and highest R value (0.87). The diffuse solar radiation values in China range from 59.13 to 104.65 Wm−2, with a multi-year average value of 79.39 Wm−2 from 1982 to 2020. Generally, low latitude and low altitude regions have larger diffuse solar radiation than high latitude and high altitude regions, and eastern China has less diffuse solar radiation than western China. This dataset would be valuable for analyzing regional climate change, photovoltaic applications, and solar energy resources. The dataset is freely available from figshare.
Collapse
|
3
|
Kocifaj M, Barentine JC. Air pollution mitigation can reduce the brightness of the night sky in and near cities. Sci Rep 2021; 11:14622. [PMID: 34272438 PMCID: PMC8285390 DOI: 10.1038/s41598-021-94241-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Light pollution is a novel environmental problem whose extent and severity are rapidly increasing. Among other concerns, it threatens global biodiversity, nocturnal animal migration, and the integrity of the ground-based astronomy research enterprise. The most familiar manifestation of light pollution is skyglow, the result of the interplay of outdoor artificial light at night (ALAN) and atmospheric scattering that obscures views of naturally dark night skies. Interventions to reduce night sky brightness (NSB) involving the adoption of modern lighting technologies are expected to yield the greatest positive environmental consequences, but other aspects of the problem have not been fully explored as bases for public policies aimed at reducing light pollution. Here we show that reducing air pollution, specifically aerosols, decreases NSB by tens of percent at relatively small distances from light sources. Cleaner city air lowers aerosol optical depth and darkens night skies, particularly in directions toward light sources, due to relatively short path lengths traversed by photons from source to observer. A field experiment demonstrating the expected changes when transitioning from conditions of elevated turbidity to cleaner air validated our hypothesis. Our results suggest new policy actions to augment and enhance existing light pollution reduction techniques targeting lighting technology and design.
Collapse
Affiliation(s)
- Miroslav Kocifaj
- ICA, Slovak Academy of Sciences, Dúbravská Road 9, 845 03, Bratislava, Slovakia. .,Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská Dolina, 842 48, Bratislava, Slovakia.
| | - John C Barentine
- International Dark-Sky Association, 3223 N. First Avenue, Tucson, AZ, 85719, USA.,Consortium for Dark Sky Studies, University of Utah, 375 S 1530 E, RM 235 ARCH, Salt Lake City, UT, 84112-0730, USA
| |
Collapse
|
4
|
Kassianov E, Cromwell E, Monroe J, Riihimaki LD, Flynn C, Barnard J, Michalsky JJ, Hodges G, Shi Y, Comstock JM. Harmonized and high-quality datasets of aerosol optical depth at a US continental site, 1997-2018. Sci Data 2021; 8:82. [PMID: 33707444 PMCID: PMC7952417 DOI: 10.1038/s41597-021-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/02/2021] [Indexed: 12/02/2022] Open
Abstract
Aerosol optical depth (AOD) characterizes the aerosol burden in the atmosphere, while its wavelength dependence is a sign of particle size. Long-term records of wavelength-resolved AOD with high quality and suitable continuity are required for climate change assessment. Typically, climate-related studies use AOD products provided by several, and perhaps different, ground-based instruments. The measurements from these instruments often have different accuracy and temporal resolution. To preserve the advantages of these products (high quality) and to reduce their disadvantages (patchy records), we generate a merged dataset obtained from four instruments deployed at a US continental site in which a nearly-continuous AOD record is found at two wavelengths (500 and 870 nm) with high quality and high temporal resolution (1-min) for a 21-yr period (1997-2018). The combined dataset addresses: (1) varying data quality and resolution mismatch of the individual AOD records, and (2) the uncertainty of the merged AOD and its relevance for user-specified needs. The generated dataset will be beneficial for a wide range of applications including aerosol-radiation interactions.
Collapse
Affiliation(s)
| | - Erol Cromwell
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Justin Monroe
- Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK, USA
- National Oceanic and Atmospheric Administration, National Severe Storms Laboratory, Norman, OK, USA
| | - Laura D Riihimaki
- Cooperative Institute for Research in the Environmental Sciences, Boulder, CO, USA
- National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, Boulder, CO, USA
| | - Connor Flynn
- School of Meteorology, University of Oklahoma, Norman, OK, USA
| | | | - Joseph J Michalsky
- National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, Boulder, CO, USA
| | - Gary Hodges
- Cooperative Institute for Research in the Environmental Sciences, Boulder, CO, USA
- National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, Boulder, CO, USA
| | - Yan Shi
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
5
|
Solar Brightening/Dimming over China’s Mainland: Effects of Atmospheric Aerosols, Anthropogenic Emissions, and Meteorological Conditions. REMOTE SENSING 2020. [DOI: 10.3390/rs13010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface solar radiation (SSR) is the main factor affecting the earth’s climate and environment and its variations and the reason for these variations are an important part of climate change research. In this research, we investigated the long-term variations of SSR during 1984–2016 and the quantitative influences of atmospheric aerosols, anthropogenic emissions, and meteorological conditions on SSR over China’s mainland. The results show the following: (1) The annual average SSR values had a decline trend at a rate of −0.371 Wm−2 yr−1 from 1984 to 2016 over China. (2) The aerosol optical depth (AOD) plays the main role in inducing variations in SSR over China, with r values of −0.75. Moreover, there are marked regional differences in the influence of anthropogenic emissions and meteorological conditions on SSR trends. (3) From a regional perspective, AOD is the main influencing factor on SSR in northeast China (NEC), Yunnan Plateau and surrounding regions (YPS), North China (NC), and Loess Plateau (LP), with r values of −0.65, −0.60, −0.89, and −0.50, respectively. However, the main driving factors for SSR in northwest China (NWC) are “in cloud optical thickness of all clouds” (TAUTOT) (−0.26) and black carbon (BC) anthropogenic emissions (−0.21). TAUTOT (−0.39) and total precipitable water vapor (TQV) (−0.29) are the main influencing factors of SSR in the middle-lower Yangtze Plain (MYP). The main factors that influence SSR in southern China (SC) are surface pressure (PS) (−0.66) and AOD (−0.43). This research provides insights in understanding the variations of SSR and its relationships with anthropogenic conditions and meteorological factors.
Collapse
|
6
|
Abstract
Human activities are threatening to push the Earth system beyond its planetary boundaries, risking catastrophic and irreversible global environmental change. Action is urgently needed, yet well-intentioned policies designed to reduce pressure on a single boundary can lead, through economic linkages, to aggravation of other pressures. In particular, the potential policy spillovers from an increase in the global carbon price onto other critical Earth system processes has received little attention to date. To this end, we explore the global environmental effects of pricing carbon, beyond its effect on carbon emissions. We find that the case for carbon pricing globally becomes even stronger in a multi-boundary world, since it can ameliorate many other planetary pressures. It does however exacerbate certain planetary pressures, largely by stimulating additional biofuel production. When carbon pricing is allied with a biofuel policy, however, it can alleviate all planetary pressures. In the light of nine Earth System Processes (ESPs) and the corresponding planetary boundaries, here the authors assessed the global environmental impact of a global carbon pricing in a multi-boundary world. They show that a global carbon tax would relieve pressure on most ESPs and it is therefore stronger in a multi-boundary world than when considering climate change in isolation.
Collapse
|
7
|
Abstract
The state-of-art satellite observations of atmospheric aerosols over the last two decades from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instruments have been extensively utilized in climate change and air quality research and applications. The operational algorithms now produce Level 2 aerosol data at varying spatial resolutions (1, 3, and 10 km) and Level 3 data at 1 degree. The local and global applications have benefited from the coarse resolution gridded data sets (i.e., Level 3, 1 degree), as it is easier to use since data volume is low, and several online and offline tools are readily available to access and analyze the data with minimal computing resources. At the same time, researchers who require data at much finer spatial scales have to go through a challenging process of obtaining, processing, and analyzing larger volumes of data sets that require high-end computing resources and coding skills. Therefore, we created a high spatial resolution (high-resolution gridded (HRG), 0.1 × 0.1 degree) daily and monthly aerosol optical depth (AOD) product by combining two MODIS operational algorithms, namely Deep Blue (DB) and Dark Target (DT). The new HRG AODs meet the accuracy requirements of Level 2 AOD data and provide either the same or more spatial coverage on daily and monthly scales. The data sets are provided in daily and monthly files through open an Ftp server with python scripts to read and map the data. The reduced data volume with an easy to use format and tools to access the data will encourage more users to utilize the data for research and applications.
Collapse
|
8
|
Meng Q, Liu B, Yang H, Chen X. Solar dimming decreased maize yield potential on the North China Plain. Food Energy Secur 2020. [DOI: 10.1002/fes3.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Baohua Liu
- China Agricultural University Beijing China
| | - Haishun Yang
- Department of Agronomy and Horticulture University of Nebraska‐Lincoln Lincoln NE USA
| | - Xinping Chen
- China Agricultural University Beijing China
- College of Resources and Environment Southwest University Chongqing China
| |
Collapse
|
9
|
Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments. ATMOSPHERE 2019. [DOI: 10.3390/atmos11010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is limited research on indoor air quality in the Middle East. In this study, concentrations and size distributions of indoor particles were measured in eight Jordanian dwellings during the winter and summer. Supplemental measurements of selected gaseous pollutants were also conducted. Indoor cooking, heating via the combustion of natural gas and kerosene, and tobacco/shisha smoking were associated with significant increases in the concentrations of ultrafine, fine, and coarse particles. Particle number (PN) and particle mass (PM) size distributions varied with the different indoor emission sources and among the eight dwellings. Natural gas cooking and natural gas or kerosene heaters were associated with PN concentrations on the order of 100,000 to 400,000 cm−3 and PM2.5 concentrations often in the range of 10 to 150 µg/m3. Tobacco and shisha (waterpipe or hookah) smoking, the latter of which is common in Jordan, were found to be strong emitters of indoor ultrafine and fine particles in the dwellings. Non-combustion cooking activities emitted comparably less PN and PM2.5. Indoor cooking and combustion processes were also found to increase concentrations of carbon monoxide, nitrogen dioxide, and volatile organic compounds. In general, concentrations of indoor particles were lower during the summer compared to the winter. In the absence of indoor activities, indoor PN and PM2.5 concentrations were generally below 10,000 cm−3 and 30 µg/m3, respectively. Collectively, the results suggest that Jordanian indoor environments can be heavily polluted when compared to the surrounding outdoor atmosphere primarily due to the ubiquity of indoor combustion associated with cooking, heating, and smoking.
Collapse
|
10
|
Long-Term Aerosol Trends and Variability over Central Saudi Arabia Using Optical Characteristics from Solar Village AERONET Measurements. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural and anthropogenic aerosols over the Kingdom of Saudi Arabia (KSA) play a major role in affecting the regional radiation budget. The long-term variability of these aerosols’ physical and optical parameters, including aerosol optical depth (AOD) and Ångström exponent (α), were measured at a location near central KSA using the Solar Village (SV) AERONET (Aerosol Robotic Network) station during the period December 1999–January 2013. The AERONET measurements show an overall increase in AOD on an annual basis. This upward trend is mainly attributed to a prolonged increase in the monthly/seasonal mean AOD during March–June and during August–September. In contrast, lower AOD values were observed during November–December. This can be attributed to a low frequency of dust outbreaks and higher precipitation rates. An overall, weak declining trend in α was observed, except during the summer. The spring and summer seasons experienced a pronounced increase in the number of coarse particles (~2 µm) during April 2006–January 2013 as compared to December 1999–March 2006, suggesting an increase in natural aerosol loadings. Using the HYSPLIT model, it was found that the March 2009 dust storm contributed to the mixing of long-transported dust with anthropogenic local emissions near the SV. The results suggest that extensive industrial activity contributed to the increase of anthropogenic emissions over KSA during the period April 2006–January 2013.
Collapse
|
11
|
Analysis of Atmospheric Aerosol Optical Properties in the Northeast Brazilian Atmosphere with Remote Sensing Data from MODIS and CALIOP/CALIPSO Satellites, AERONET Photometers and a Ground-Based Lidar. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A 12-year analysis, from 2005 to 2016, of atmospheric aerosol optical properties focusing for the first time on Northeast Brazil (NEB) was performed based on four different remote sensing datasets: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Aerosol Robotic Network (AERONET), the Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP) and a ground-based Lidar from Natal. We evaluated and identified distinct aerosol types, considering Aerosol Optical Depth (AOD) and Angström Exponent (AE). All analyses show that over the NEB, a low aerosol scenario prevails, while there are two distinct seasons of more elevated AOD that occur every year, from August to October and January to March. According to MODIS, AOD values ranges from 0.04 to 0.52 over the region with a mean of 0.20 and occasionally isolated outliers of up to 1.21. Aerosol types were identified as sea spray, biomass burning, and dust aerosols mostly transported from tropical Africa. Three case studies on days with elevated AOD were performed. All cases identified the same aerosol types and modeled HYSPLIT backward trajectories confirmed their source-dependent origins. This analysis is motivated by the implementation of an atmospheric chemistry model with an advanced data assimilation system that will use the observational database over NEB with the model to overcome high uncertainties in the model results induced by still unvalidated emission inventories.
Collapse
|
12
|
Koivisto AJ, Kling KI, Hänninen O, Jayjock M, Löndahl J, Wierzbicka A, Fonseca AS, Uhrbrand K, Boor BE, Jiménez AS, Hämeri K, Maso MD, Arnold SF, Jensen KA, Viana M, Morawska L, Hussein T. Source specific exposure and risk assessment for indoor aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:13-24. [PMID: 30851679 DOI: 10.1016/j.scitotenv.2019.02.398] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 05/19/2023]
Abstract
Poor air quality is a leading contributor to the global disease burden and total number of deaths worldwide. Humans spend most of their time in built environments where the majority of the inhalation exposure occurs. Indoor Air Quality (IAQ) is challenged by outdoor air pollution entering indoors through ventilation and infiltration and by indoor emission sources. The aim of this study was to understand the current knowledge level and gaps regarding effective approaches to improve IAQ. Emission regulations currently focus on outdoor emissions, whereas quantitative understanding of emissions from indoor sources is generally lacking. Therefore, specific indoor sources need to be identified, characterized, and quantified according to their environmental and human health impact. The emission sources should be stored in terms of relevant metrics and statistics in an easily accessible format that is applicable for source specific exposure assessment by using mathematical mass balance modelings. This forms a foundation for comprehensive risk assessment and efficient interventions. For such a general exposure assessment model we need 1) systematic methods for indoor aerosol emission source assessment, 2) source emission documentation in terms of relevant a) aerosol metrics and b) biological metrics, 3) default model parameterization for predictive exposure modeling, 4) other needs related to aerosol characterization techniques and modeling methods. Such a general exposure assessment model can be applicable for private, public, and occupational indoor exposure assessment, making it a valuable tool for public health professionals, product safety designers, industrial hygienists, building scientists, and environmental consultants working in the field of IAQ and health.
Collapse
Affiliation(s)
- Antti Joonas Koivisto
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark.
| | - Kirsten Inga Kling
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej 307, 2800 Kgs. Lyngby, Denmark
| | - Otto Hänninen
- National Institute for Health and Welfare (THL), Kuopio, Finland
| | | | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Aneta Wierzbicka
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Ana Sofia Fonseca
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - Katrine Uhrbrand
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States; Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, 177 South Russell Street, West Lafayette, IN 47907, United States
| | - Araceli Sánchez Jiménez
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Kaarle Hämeri
- University of Helsinki, Institute for Atmospheric and Earth System Research (INAR), PL 64, FI-00014 Helsinki, Finland
| | - Miikka Dal Maso
- Aerosol Physics, Faculty of Natural Science, Tampere University of Technology, Tampere, Finland
| | - Susan F Arnold
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Keld A Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - Mar Viana
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia
| | - Tareq Hussein
- University of Helsinki, Institute for Atmospheric and Earth System Research (INAR), PL 64, FI-00014 Helsinki, Finland; The University of Jordan, Department of Physics, Amman 11942, Jordan
| |
Collapse
|
13
|
Meng C, Cheng T, Gu X, Shi S, Wang W, Wu Y, Bao F. Contribution of meteorological factors to particulate pollution during winters in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:977-985. [PMID: 30625684 DOI: 10.1016/j.scitotenv.2018.11.365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Associated with its modernization, Beijing has experienced significant fine particulate matter (PM2.5) pollution, especially in winter. In 2016, severe PM2.5 pollution (PM2.5 > 250 μg/m3) lasted over 6 days and affected over 23 million people. A major challenge in dealing with this issue is the uncertainty regarding the influence of individual meteorological factors to the overall PM2.5 concentration in Beijing. Thus, applying an empirical regression method to long-term ground-based PM2.5 data and meteorological sounding measurements, we attempted to analyze the influence of individual meteorological factors on PM2.5 pollution during winters in Beijing. We found that horizontal dilution and vertical aggregation plays a major role in PM2.5 pollution during the winter of 2016. The impact of horizontal wind on PM2.5 concentration in Beijing was mainly from its dilution, the dilution of northerly wind contributed 27.8% in 2016, far below its contribution in 2015 (32.2%). The contribution from the growing vertical aggregation observed in 2016 was mainly the result of both the lower height of the planetary boundary layer and the greater depth of the temperature inversion. The dilution of the planetary boundary layer height contributed 9.8% to PM2.5 pollution in 2016, 5.4% lower than that in 2017. Compared with the temperature difference of the inversion layer, the temperature inversion depth better reflects the aggregated impact of temperature inversions to PM2.5, which was 10.9% in 2015, and the ratio rose to 14.3% in 2016. Relative humidity is also an important impacting factor, which contributed 41.0%, far higher than the ratio in 2017 (26.7%). Such results imply that we should focus on not only local emission control, but also horizontal atmospheric transport and meteorological conditions in order to provide a more accurate analysis of pollution mechanisms, conductive to air pollution governance in Beijing.
Collapse
Affiliation(s)
- Can Meng
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhai Cheng
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingfa Gu
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaiyi Shi
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wannan Wang
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wu
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fangwen Bao
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
Lim S, Lee M, Czimczik CI, Joo T, Holden S, Mouteva G, Santos GM, Xu X, Walker J, Kim S, Kim HS, Kim S, Lee S. Source signatures from combined isotopic analyses of PM 2.5 carbonaceous and nitrogen aerosols at the peri-urban Taehwa Research Forest, South Korea in summer and fall. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1505-1514. [PMID: 30577141 DOI: 10.1016/j.scitotenv.2018.11.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Isotopes are essential tools to apportion major sources of aerosols. We measured the radiocarbon, stable carbon, and stable nitrogen isotopic composition of PM2.5 at Taehwa Research Forest (TRF) near Seoul Metropolitan Area (SMA) during August-October 2014. PM2.5, TC, and TN concentrations were 19.4 ± 10.1 μg m-3, 2.6 ± 0.8 μg C m-3, and 1.4 ± 1.4 μg N m-3, respectively. The δ13C of TC and the δ15N of TN were - 25.4 ± 0.7‰ and 14.6 ± 3.8‰, respectively. EC was dominated by fossil-fuel sources with Fff (EC) of 78 ± 7%. In contrast, contemporary sources were dominant for TC with Fc (TC) of 76 ± 7%, revealing the significant contribution of contemporary sources to OC during the growing season. The isotopic signature carries more detailed information on sources depending on air mass trajectories. The urban influence was dominant under stagnant condition, which was in reasonable agreement with the estimated δ15N of NH4+. The low δ15N (7.0 ± 0.2‰) with high TN concentration was apparent in air masses from Shandong province, indicating fossil fuel combustion as major emission source. In contrast, the high δ15N (16.1 ± 3.2‰) with enhanced TC/TN ratio reveals the impact of biomass burning in the air transported from the far eastern border region of China and Russia. Our findings highlight that the multi-isotopic composition is a useful tool to identify emission sources and to trace regional sources of carbonaceous and nitrogen aerosols.
Collapse
Affiliation(s)
- Saehee Lim
- Dept. of Earth and environmental sciences, Korea University, Seoul, South Korea
| | - Meehye Lee
- Dept. of Earth and environmental sciences, Korea University, Seoul, South Korea.
| | - Claudia I Czimczik
- Dept. of Earth System Science, University of California, Irvine, Irvine, USA.
| | - Taekyu Joo
- Dept. of Earth and environmental sciences, Korea University, Seoul, South Korea
| | - Sandra Holden
- Dept. of Earth System Science, University of California, Irvine, Irvine, USA
| | - Gergana Mouteva
- Dept. of Earth System Science, University of California, Irvine, Irvine, USA
| | - Guaciara M Santos
- Dept. of Earth System Science, University of California, Irvine, Irvine, USA
| | - Xiaomei Xu
- Dept. of Earth System Science, University of California, Irvine, Irvine, USA
| | - Jennifer Walker
- Dept. of Earth System Science, University of California, Irvine, Irvine, USA
| | - Saewung Kim
- Dept. of Earth System Science, University of California, Irvine, Irvine, USA
| | - Hyun Seok Kim
- Dept. of Forest Sciences, Seoul National University, Seoul, South Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea; National Center for Agro Meteorology, Seoul, South Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soyoung Kim
- National Institute of Environmental Research, Incheon, South Korea
| | - Sanguk Lee
- National Institute of Environmental Research, Incheon, South Korea
| |
Collapse
|
15
|
Spatial and Temporal Distribution of Aerosol Optical Depth and Its Relationship with Urbanization in Shandong Province. ATMOSPHERE 2019. [DOI: 10.3390/atmos10030110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the process of rapid urbanization, air environment quality has become a hot issue. Aerosol optical depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) can be used to monitor air pollution effectively. In this paper, the Spearman coefficient is used to analyze the correlations between AOD and urban development, construction factors, and geographical environment factors in Shandong Province. The correlation between AOD and local climatic conditions in Shandong Province is analyzed by geographic weight regression (GWR). The results show that in the time period from 2007 to 2017, the AOD first rose and then fell, reaching its highest level in 2012, which is basically consistent with the time when the national environmental protection decree was issued. In terms of quarterly and monthly changes, AOD also rose first and then fell, the highest level in summer, with the highest monthly value occurring in June. In term of the spatial distribution, the high-value area is located in the northwestern part of Shandong Province, and the low-value area is located in the eastern coastal area. In terms of social factors, the correlation between pollutant emissions and AOD is much greater the correlations between AOD and population, economy, and construction indicators. In terms of environmental factors, the relationship between digital elevation model (DEM), temperature, precipitation, and AOD is significant, but the regulation of air in coastal areas is even greater. Finally, it was found that there are no obvious differences in AOD among cities with different development levels, which indicates that urban development does not inevitably lead to air pollution. Reasonable development planning and the introduction of targeted environmental protection policies can effectively alleviate pollution-related problems in the process of urbanization.
Collapse
|
16
|
Sulfate alters aerosol absorption properties in East Asian outflow. Sci Rep 2018; 8:5172. [PMID: 29581448 PMCID: PMC5980100 DOI: 10.1038/s41598-018-23021-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/28/2018] [Indexed: 11/09/2022] Open
Abstract
Black carbon (BC) and brown carbon (BrC) aerosols that are released from the combustion of fossil fuels and biomass are of great concern because of their light-absorbing ability and great abundance associated with various anthropogenic sources, particularly in East Asia. However, the optical properties of ambient aerosols are dependent on the mixing state and the chemical composition of absorbing and non-absorbing aerosols. Here we examined how, in East Asian outflows, the parameters of the aerosol optical properties can be altered seasonally in conjunction with the mixing state and the chemical composition of aerosols, using 3-year aerosol measurements. Our findings highlight the important role played by sulfate in East Asia during the warm season in both enhancing single scattering albedo (SSA) and altering the absorption properties of aerosols-enhancing mass absorption cross section of BC (MACBC) and reducing MAC of BrC (MACBrC,370). Therefore we suggest that in global radiative forcing models, particular attention should be paid to the consideration of the accurate treatment of the SO2 emission changes in the coming years in this region that will result from China's air quality policy.
Collapse
|
17
|
Gu X, Bao F, Cheng T, Chen H, Wang Y, Guo H. The impacts of regional transport and meteorological factors on aerosol optical depth over Beijing, 1980-2014. Sci Rep 2018; 8:5113. [PMID: 29572491 PMCID: PMC5865206 DOI: 10.1038/s41598-018-22803-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
Understanding the role of different sources that contribute to the aerosol extinction coefficient is an important aspect toward analyzing climate change and regional air quality. In Beijing specifically, the region has suffered severe air quality deterioration over the past three decades, but the magnitude of extraneous contributions to aerosol variation has remained uncertain. Therefore, we estimated trends of contributions to aerosol optical depth (AOD) for Beijing from 1980 to 2014 and built a seasonal regression model to decouple the extraneous contribution from the total emitted using ground-based aerosol and meteorological measurements, extended to the emissions of man-made and natural contribution. The variation of AOD over Beijing was significantly affected by the anthropogenic aerosol emissions, which experienced slight augmentation by 15.3% from 1980 to 2000, rapid inflation by 36.9% from 2000 to 2006, and a gradual decrease by 10.0% from 2006 to 2014. The extraneous contribution from wind and its associated languishing patterns explain the historical increase of regional AOD, which experienced about a 10% enhancement over the three stages. Other meteorological contributions show no significant trends over 35 years, except for the temperature inversion, which despite the weakened hygroscopic growth after 2006, still experiences a significant enhancement.
Collapse
Affiliation(s)
- Xingfa Gu
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangwen Bao
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianhai Cheng
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hao Chen
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Guo
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
18
|
Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica. Sci Rep 2018; 8:5002. [PMID: 29568040 PMCID: PMC5864877 DOI: 10.1038/s41598-018-23390-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 03/05/2018] [Indexed: 11/08/2022] Open
Abstract
Annually averaged solar radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m-2 during the past three decades; however, the drivers of this variability are unknown. Because small differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of solar variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease solar intensity. Because of the polar location of the McMurdo Dry Valleys (77-78°S) and relatively long solar ray path through the stratosphere, terrestrial solar intensity is sensitive to small differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.
Collapse
|
19
|
Sullivan RC, Levy RC, da Silva AM, Pryor SC. Developing and diagnosing climate change indicators of regional aerosol optical properties. Sci Rep 2017; 7:18093. [PMID: 29273800 PMCID: PMC5741728 DOI: 10.1038/s41598-017-18402-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
Given the importance of aerosol particles to radiative transfer via aerosol-radiation interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates of total columnar burden (aerosol optical depth, AOD), dominant size mode (Ångström exponent, AE), and relative magnitude of radiation scattering versus absorption (single scattering albedo, SSA), along with metrics of the structure of the spatial field of these properties. Over well-defined regions of North America, there are generally negative temporal trends in mean and extreme AOD, and SSA. These are consistent with lower aerosol burdens and transition towards a relatively absorbing aerosol, driven primarily by declining sulfur dioxide emissions. Conversely, more remote regions are characterized by increasing mean and extreme AOD that is attributed to increased local wildfire emissions and long-range (transcontinental) transport. Regional and national reductions in anthropogenic emissions of aerosol precursors are leading to declining spatial autocorrelation in the aerosol fields and increased importance of local anthropogenic emissions in dictating aerosol burdens. However, synoptic types associated with high aerosol burdens are intensifying (becoming more warm and humid), and thus changes in synoptic meteorology may be offsetting aerosol burden reductions associated with emissions legislation.
Collapse
Affiliation(s)
- Ryan C Sullivan
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA.
- Environmental Science Division, Argonne National Laboratory, Argonne, IL, USA.
| | - Robert C Levy
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - Sara C Pryor
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
- Pervasive Technology Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
20
|
SO 2 Emissions in China - Their Network and Hierarchical Structures. Sci Rep 2017; 7:46216. [PMID: 28387301 PMCID: PMC5384192 DOI: 10.1038/srep46216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/13/2017] [Indexed: 11/29/2022] Open
Abstract
SO2 emissions lead to various harmful effects on environment and human health. The SO2 emission in China has significant contribution to the global SO2 emission, so it is necessary to employ various methods to study SO2 emissions in China with great details in order to lay the foundation for policymaking to improve environmental conditions in China. Network analysis is used to analyze the SO2 emissions from power generation, industrial, residential and transportation sectors in China for 2008 and 2010, which are recently available from 1744 ground surface monitoring stations. The results show that the SO2 emissions from power generation sector were highly individualized as small-sized clusters, the SO2 emissions from industrial sector underwent an integration process with a large cluster contained 1674 places covering all industrial areas in China, the SO2 emissions from residential sector was not impacted by time, and the SO2 emissions from transportation sector underwent significant integration. Hierarchical structure is obtained by further combining SO2 emissions from all four sectors and is potentially useful to find out similar patterns of SO2 emissions, which can provide information on understanding the mechanisms of SO2 pollution and on designing different environmental measure to combat SO2 emissions.
Collapse
|
21
|
Tollenaar M, Fridgen J, Tyagi P, Stackhouse PW, Kumudini S. The Contribution of Solar Brightening to the US Maize Yield Trend. NATURE CLIMATE CHANGE 2017; 7:275-278. [PMID: 32021656 PMCID: PMC6999786 DOI: 10.1038/nclimate3234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Predictions of crop yield under future climate change are predicated on historical yield trends1-3, hence it is important to identify the contributors to historical yield gains and their potential for continued increase. The large gains in maize yield in the US Corn Belt have been attributed to agricultural technologies4, ignoring the potential contribution of solar brightening (decadal-scale increases in incident solar radiation) reported for much of the globe since the mid-1980s. In this study, using a novel biophysical/empirical approach, we show that solar brightening contributed approximately 27% of the US Corn Belt yield trend from 1984 to 2013. Accumulated solar brightening during the post-flowering phase of development of maize increased during the past 3 decades, causing the yield increase that previously had been attributed to agricultural technology. Several factors are believed to cause solar brightening, but their relative importance and future outlook are unknown5-9, making prediction of continued solar brightening and its future contribution to yield gain uncertain. Consequently, results of this study call into question the implicit use of historical yield trends in predicting yields under future climate change scenarios.
Collapse
Affiliation(s)
| | | | - Priyanka Tyagi
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
22
|
Mathur R, Xing J, Gilliam R, Sarwar G, Hogrefe C, Pleim J, Pouliot G, Roselle S, Spero TL, Wong DC, Young J. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:12449-12474. [PMID: 29681922 PMCID: PMC5907506 DOI: 10.5194/acp-17-12449-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency.
Collapse
Affiliation(s)
- Rohit Mathur
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jia Xing
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Robert Gilliam
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Golam Sarwar
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christian Hogrefe
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jonathan Pleim
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - George Pouliot
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shawn Roselle
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Tanya L. Spero
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David C. Wong
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey Young
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
Raman A, Arellano AF, Sorooshian A. Decreasing Aerosol Loading in the North American Monsoon Region. ATMOSPHERE 2016; 7:24. [PMID: 28491464 PMCID: PMC5422029 DOI: 10.3390/atmos7020024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examine the spatio-temporal variability of aerosol loading in the recent decade (2005-2014) over the North American Monsoon (NAM) region. Emerging patterns are characterized using aerosol optical depth (AOD) retrievals from the NASA Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) instrument along with a suite of satellite retrievals of atmospheric and land-surface properties. We selected 20 aerosol hotspots and classified them into fire, anthropogenic, dust, and NAM alley clusters based on the dominant driver influencing aerosol variability. We then analyzed multivariate statistics of associated anomalies during pre-, monsoon, and post-monsoon periods. Our results show a decrease in aerosol loading for the entire NAM region, confirming previous reports of a declining AOD trend over the continental United States. This is evident during pre-monsoon and monsoon for fire and anthropogenic clusters, which are associated with a decrease in the lower and upper quartile of fire counts and carbon monoxide, respectively. The overall pattern is obfuscated in the NAM alley, especially during monsoon and post-monsoon seasons. While the NAM alley is mostly affected by monsoon precipitation, the frequent occurrence of dust storms in the area modulates this trend. We find that aerosol loading in the dust cluster is associated with observed vegetation index and has only slightly decreased in the recent decade.
Collapse
Affiliation(s)
- Aishwarya Raman
- Department of Hydrology and Atmospheric Sciences, Tucson, AZ 85721, USA
| | | | - Armin Sorooshian
- Department of Hydrology and Atmospheric Sciences, Tucson, AZ 85721, USA
- Department of Chemical and Environmental Engineering, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Zhang K, Kimball JS, Nemani RR, Running SW, Hong Y, Gourley JJ, Yu Z. Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Sci Rep 2015; 5:15956. [PMID: 26514110 PMCID: PMC4626800 DOI: 10.1038/srep15956] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/06/2015] [Indexed: 11/17/2022] Open
Abstract
Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth’s climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982–2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr−2 (P < 0.001) over the 32-year period, mainly driven by vegetation greening (0.018% per year; P < 0.001) and rising atmosphere moisture demand (0.75 mm yr−2; P = 0.016). Our results indicate that reduced ET growth between 1998 and 2008 was an episodic phenomenon, with subsequent recovery of the ET growth rate after 2008. Terrestrial precipitation also shows a positive trend of 0.66 mm yr−2 (P = 0.08) over the same period consistent with expected water cycle intensification, but this trend is lower than coincident increases in evaporative demand and ET, implying a possibility of cumulative water supply constraint to ET. Continuation of these trends will likely exacerbate regional drought-induced disturbances, especially during regional dry climate phases associated with strong El Niño events.
Collapse
Affiliation(s)
- Ke Zhang
- Cooperative Institute for Mesosacle Meteorological Studies, The University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072, USA.,Hydrometeorology &Remote Sensing (HyDROS) Laboratory and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK.,State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 1 Xikang Road, Nanjing, Jiangsu Province, 210098, China
| | - John S Kimball
- Numerical Terradynamic Simulation Group, The University of Montana, 32 Campus Drive #1224, Missoula, MT 59812-1224, USA
| | | | - Steven W Running
- Numerical Terradynamic Simulation Group, The University of Montana, 32 Campus Drive #1224, Missoula, MT 59812-1224, USA
| | - Yang Hong
- Hydrometeorology &Remote Sensing (HyDROS) Laboratory and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK.,Department of Hydraulic Engineering, Tsinghua University, Beijing, China
| | | | - Zhongbo Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 1 Xikang Road, Nanjing, Jiangsu Province, 210098, China
| |
Collapse
|
25
|
Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronich S, Tourpali K. Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 2015; 14:19-52. [DOI: 10.1039/c4pp90032d] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Percentage changes in the UV Index (UVI) for 2090 relative to 2015 due to changes in ozone (left) and aerosols (right) only. Large decreases are projected over Antarctica due to stratospheric ozone recovery. Increases are projected for parts of Asia due to decreases in aerosols, partly reversing the possible large reductions in UVI after the 1950s.
Collapse
Affiliation(s)
- A. F. Bais
- Laboratory of Atmospheric Physics
- Aristotle University of Thessaloniki
- 54124 Thessaloniki
- Greece
| | - R. L. McKenzie
- National Institute of Water and Atmospheric Research
- PB 50061 Omakau, Central Otago
- New Zealand
| | | | - P. J. Aucamp
- Ptersa Environmental Management Consultants
- Faerie Glen
- South Africa
| | - M. Ilyas
- School of Environmental Engineering
- University Malaysia Perlis
- Kangar
- Malaysia
| | - S. Madronich
- National Center for Atmospheric Research
- Boulder
- USA
| | - K. Tourpali
- Laboratory of Atmospheric Physics
- Aristotle University of Thessaloniki
- 54124 Thessaloniki
- Greece
| |
Collapse
|
26
|
Gunaseelan I, Bhaskar BV, Muthuchelian K. The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8188-8197. [PMID: 24920428 DOI: 10.1007/s11356-014-2711-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment's impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.
Collapse
Affiliation(s)
- Indira Gunaseelan
- Department of Bioenergy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, India,
| | | | | |
Collapse
|
27
|
Contribution of solar radiation to decadal temperature variability over land. Proc Natl Acad Sci U S A 2013; 110:14877-82. [PMID: 23980136 DOI: 10.1073/pnas.1311433110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.
Collapse
|
28
|
Petrenko M, Kahn R, Chin M, Soja A, Kucsera T, Harshvardhan. The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017870] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Nyeki S, Halios CH, Baum W, Eleftheriadis K, Flentje H, Gröbner J, Vuilleumier L, Wehrli C. Ground-based aerosol optical depth trends at three high-altitude sites in Switzerland and southern Germany from 1995 to 2010. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Srivastava AK, Singh S, Tiwari S, Bisht DS. Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1144-58. [PMID: 22006505 DOI: 10.1007/s11356-011-0633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/29/2011] [Indexed: 05/15/2023]
Abstract
INTRODUCTION The present work is aimed to understand direct radiation effects due to aerosols over Delhi in the Indo-Gangetic Basin (IGB) region, using detailed chemical analysis of surface measured aerosols during the year 2007. METHODS An optically equivalent aerosol model was formulated on the basis of measured aerosol chemical compositions along with the ambient meteorological parameters to derive radiatively important aerosol optical parameters. The derived aerosol parameters were then used to estimate the aerosol direct radiative forcing at the top of the atmosphere, surface, and in the atmosphere. RESULTS The anthropogenic components measured at Delhi were found to be contributing ∼ 72% to the composite aerosol optical depth (AOD(0.5) ∼ 0.84). The estimated mean surface and atmospheric forcing for composite aerosols over Delhi were found to be about -69, -85, and -78 W m(-2) and about +78, +98, and +79 W m(-2) during the winter, summer, and post-monsoon periods, respectively. The anthropogenic aerosols contribute ∼ 90%, 53%, and 84% to the total aerosol surface forcing and ∼ 93%, 54%, and 88% to the total aerosol atmospheric forcing during the above respective periods. The mean (± SD) surface and atmospheric forcing for composite aerosols was about -79 (± 15) and +87 (± 26) W m(-2) over Delhi with respective anthropogenic contributions of ∼ 71% and 75% during the overall period of observation. CONCLUSIONS Aerosol induced large surface cooling, which was relatively higher during summer as compared to the winter suggesting an increase in dust loading over the station. The total atmospheric heating rate at Delhi averaged during the observation was found to be 2.42 ± 0.72 K day(-1), of which the anthropogenic fraction contributed as much as ∼ 73%.
Collapse
Affiliation(s)
- Atul K Srivastava
- Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi, India.
| | | | | | | |
Collapse
|
31
|
Folini D, Wild M. Aerosol emissions and dimming/brightening in Europe: Sensitivity studies with ECHAM5-HAM. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016227] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. Folini
- Institute for Atmospheric and Climate Science; ETH Zurich; Zurich Switzerland
| | - M. Wild
- Institute for Atmospheric and Climate Science; ETH Zurich; Zurich Switzerland
| |
Collapse
|
32
|
Kudo R, Uchiyama A, Yamazaki A, Sakami T, Ijima O. Decadal changes in aerosol optical thickness and single scattering albedo estimated from ground-based broadband radiometers: A case study in Japan. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014911] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Colarco P, da Silva A, Chin M, Diehl T. Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012820] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Dwyer JG, Norris JR, Ruckstuhl C. Do climate models reproduce observed solar dimming and brightening over China and Japan? ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012945] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
|