1
|
Lewis JMT, Bower DM, Pavlov AA, Li X, Wahl SZ, Eigenbrode JL, McAdam AC. Organic Products of Fatty Acid and Magnesium Sulfate Mixtures after Gamma Radiolysis: Implications for Missions to Europa. ASTROBIOLOGY 2024; 24:1166-1186. [PMID: 39587956 DOI: 10.1089/ast.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
If ocean-derived materials are present at Europa's surface, they would represent accessible records of ocean chemistry and habitability, but such materials would be further processed by Europa's harsh radiation environment. In this study, saturated fatty acids were precipitated onto a Europa-relevant hydrated magnesium sulfate and exposed to gamma radiation doses up to 2 MGy at -196°C. Alkane chains, with carbon numbers one less than those of the starting fatty acids, were the most abundant radiolysis products in solvent and thermal extracts analyzed by gas chromatography mass spectrometry. Detections of monounsaturated fatty acids and combined radiolysis products were attributed to the experiment's Europa-like parameters. Additionally, elevated concentrations of shorter-chain saturated fatty acids suggest that gamma radiation induced charge remote fragmentation of the alkyl chains of some starting fatty acids under these experimental conditions. Quantitation of fatty acid concentrations in the irradiated samples enabled the calculation of a radiolysis constant that indicated exposure to a 5 MGy dose of gamma radiation would have resulted in a ∼90% loss of the initial fatty acid population. The samples were further studied by Raman spectroscopy and laser desorption and ionization mass spectrometry, which characterized the distribution of fatty acids and their radiolysis products on sulfate surfaces. The substantial loss of starting fatty acids typically seen with increasing radiation dose, along with the remarkable diversity of radiolysis products identified, suggests that the detection of fatty acids in irradiated sulfate deposits on Europa will be challenged by rapid destruction of any initial fatty acid populations and scrambling of their residual signals by a myriad of organic radiolysis products. If missions to Europa encounter sulfate deposits, targeting minimally irradiated units may still enable the detection of surviving fatty acid signatures that could inform about Europa's subsurface chemistry and habitability.
Collapse
Affiliation(s)
- James M T Lewis
- Department of Physics and Astronomy, Howard University, Washington, District of Columbia, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
| | - Dina M Bower
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
| | | | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Sarinah Z Wahl
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Southeastern Universities Research Association, Washington, District of Columbia, USA
| | | | - Amy C McAdam
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
2
|
Godts S, Steiger M, Orr SA, De Kock T, Desarnaud J, De Clercq H, Cnudde V. Charge balance calculations for mixed salt systems applied to a large dataset from the built environment. Sci Data 2022; 9:324. [PMID: 35715411 PMCID: PMC9205874 DOI: 10.1038/s41597-022-01445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding salt mixtures in the built environment is crucial to evaluate damage phenomena. This contribution presents charge balance calculations applied to a dataset of 11412 samples taken from 338 sites, building materials showing signs of salt deterioration. Each sample includes ion concentrations of Na+, K+, Mg2+, Ca2+, Cl-, NO3-, and SO42- adjusted to reach charge balance for data evaluation. The calculation procedure follows two distinct pathways: i) an equal adjustment of all ions, ii) adjustments to the cations in sequence related to the solubility of the theoretical solids. The procedure applied to the dataset illustrates the quantification of salt mixture compositions and highlights the extent of adjustments applied in relation to the sample mass to aid interpretation. The data analysis allows the identification of theoretical carbonates that could influence the mixture behavior. Applying the charge balance calculations to the dataset validated common ions found in the built environment and the identification of three typical mixture compositions. Additionally, the data can be used as direct input for thermodynamic modeling.
Collapse
Affiliation(s)
- Sebastiaan Godts
- Monuments Lab, Royal Institute for Cultural Heritage (KIK-IRPA), Brussels, Belgium.
- Antwerp Cultural Heritage Sciences, ARCHES, University of Antwerp, Antwerp, Belgium.
- Department of Geology, PProGRess, Ghent University, Ghent, Belgium.
| | - Michael Steiger
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Scott Allan Orr
- Institute for Sustainable Heritage, University College London (UCL), London, United Kingdom
| | - Tim De Kock
- Antwerp Cultural Heritage Sciences, ARCHES, University of Antwerp, Antwerp, Belgium
| | - Julie Desarnaud
- Monuments Lab, Royal Institute for Cultural Heritage (KIK-IRPA), Brussels, Belgium
- Renovation & Heritage Lab, Belgium Building Research Institute (BBRI), Saint-Gilles, Belgium
| | - Hilde De Clercq
- Monuments Lab, Royal Institute for Cultural Heritage (KIK-IRPA), Brussels, Belgium
| | - Veerle Cnudde
- Department of Geology, PProGRess, Ghent University, Ghent, Belgium
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Rolling Ironstones from Earth and Mars: Terrestrial Hydrothermal Ooids as a Potential Analogue of Martian Spherules. MINERALS 2021. [DOI: 10.3390/min11050460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-resolution images of Mars from National Aeronautics and Space Administration (NASA) rovers revealed mm-size loose haematite spherulitic deposits (nicknamed “blueberries”) similar to terrestrial iron-ooids, for which both abiotic and biotic genetic hypotheses have been proposed. Understanding the formation mechanism of these haematite spherules can thus improve our knowledge on the possible geologic evolution and links to life development on Mars. Here, we show that shape, size, fabric and mineralogical composition of the Martian spherules share similarities with corresponding iron spherules currently forming on the Earth over an active submarine hydrothermal system located off Panarea Island (Aeolian Islands, Mediterranean Sea). Hydrothermal fluids associated with volcanic activity enable these terrestrial spheroidal grains to form and grow. The recent exceptional discovery of a still working iron-ooid source on the Earth provides indications that past hydrothermal activity on the Red Planet is a possible scenario to be considered as the cause of formation of these enigmatic iron grains.
Collapse
|
4
|
Leask EK, Ehlmann BL, Dundar MM, Murchie SL, Seelos FP. Challenges in the Search for Perchlorate and Other Hydrated Minerals With 2.1-μm Absorptions on Mars. GEOPHYSICAL RESEARCH LETTERS 2018; 45:12180-12189. [PMID: 31536048 PMCID: PMC6750048 DOI: 10.1029/2018gl080077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/05/2018] [Indexed: 06/10/2023]
Abstract
UNLABELLED A previously unidentified artifact has been found in Compact Reconnaissance Imaging Spectrometer for Mars targeted I/F data. It exists in a small fraction (<0.05%) of pixels within 90% of images investigated and occurs in regions of high spectral/spatial variance. This artifact mimics real mineral absorptions in width and depth and occurs most often at 1.9 and 2.1 μm, thus interfering in the search for some mineral phases, including alunite, kieserite, serpentine, and perchlorate. A filtering step in the data processing pipeline, between radiance and I/F versions of the data, convolves narrow artifacts ("spikes") with real atmospheric absorptions in these wavelength regions to create spurious absorption-like features. The majority of previous orbital detections of alunite, kieserite, and serpentine we investigated can be confirmed using radiance and raw data, but few to none of the perchlorate detections reported in published literature remain robust over the 1.0- to 2.65-μm wavelength range. PLAIN LANGUAGE SUMMARY Many minerals can be identified with remote sensing data by their characteristic absorptions in visible-shortwave infrared data. This type of data has allowed geological interpretation of much of Mars' surface, using satellite-based observation. We have discovered an issue with the Compact Reconnaissance Imaging Spectrometer for Mars instrument's data processing pipeline. In ~ <0.05% of pixels in almost all images, noise in the data is smoothed in such a way that it mimics real mineral absorptions, falsely making it look as though certain minerals are present on Mars' surface. The vast majority of previously identified minerals are still confirmed after accounting for the artifact, but some to all perchlorate detections and a few serpentine detections were not confirmed, suggesting that the artifact created false detections. This means concentrated regions of perchlorate may not occur on Mars and so may not be available to generate possibly habitable salty liquid water at very cold temperatures.
Collapse
Affiliation(s)
- E. K. Leask
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - B. L. Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M. M. Dundar
- Computer and Information Sciences Department, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - S. L. Murchie
- Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA
| | - F. P. Seelos
- Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA
| |
Collapse
|
5
|
Wang A, Sobron P, Kong F, Zheng M, Zhao YYS. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: II. Preservation of Salts with High Hydration Degrees in Subsurface. ASTROBIOLOGY 2018; 18:1254-1276. [PMID: 30152704 DOI: 10.1089/ast.2018.1829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Based on a field expedition to the Dalangtan (DLT) saline playa located in a hyperarid region (Qaidam Basin) on the Tibet Plateau and follow-up investigations, we report the mineralogy and geochemistry of the salt layers in two vertical stratigraphic cross sections in the DLT playa. Na-, Ca-, Mg-, KCaMg-sulfates; Na-, K-, KMg-chlorides; mixed (K, Mg)-chloride-sulfate; and chlorate and perchlorate were identified in the collected samples. This mineral assemblage represents the last-stage precipitation products from Na-K-Mg-Ca-Cl-SO4 brine and the oxychlorine formation from photochemistry reaction similar to other hyperarid regions on Earth. The spatial distributions of these salts in both stratigraphic cross sections suggest very limited brine volumes during the precipitation episodes in the Holocene era. More importantly, sulfates and chlorides with a high degree of hydrations were found preserved within the subsurface salt-rich layers of DLT saline playa, where the environmental conditions at the surface are controlled by the hyperaridity in the Qaidam Basin on the Tibet Plateau. Our findings suggest a very different temperature and relative humidity environment maintained by the hydrous salts in a subsurface salty layer, where the climatic conditions at surface have very little or no influence. This observation bears some similarities with four observations on Mars, which implies not only a large humidity reservoir in midlatitude and equatorial regions on Mars but also habitability potential that warrants further investigation.
Collapse
Affiliation(s)
- Alian Wang
- 1 Department of Earth and Planetary Sciences, McDonnell Center for Space Sciences, Washington University in St. Louis , St. Louis, Missouri
| | - Pablo Sobron
- 2 SETI Institute , Mountain View, California
- 3 Impossible Sensing , St. Louis, Missouri
| | - Fanjing Kong
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Mianping Zheng
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Yu-Yan Sara Zhao
- 5 Institute of Geochemistry , Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
6
|
Sklute EC, Jensen HB, Rogers AD, Reeder RJ. Morphological, structural, and spectral characteristics of amorphous iron sulfates. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2015; 120:809-830. [PMID: 29675340 PMCID: PMC5903680 DOI: 10.1002/2014je004784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.
Collapse
Affiliation(s)
- E. C. Sklute
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
- Now at Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - H. B. Jensen
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - A. D. Rogers
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - R. J. Reeder
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
7
|
Martin D, Cockell CS. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments. ASTROBIOLOGY 2015; 15:111-118. [PMID: 25651097 DOI: 10.1089/ast.2014.1240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.
Collapse
Affiliation(s)
- Derek Martin
- School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | | |
Collapse
|
8
|
Grevel KD, Majzlan J, Benisek A, Dachs E, Steiger M, Fortes AD, Marler B. Experimentally determined standard thermodynamic properties of synthetic MgSO(4)·4H(2)O (Starkeyite) and MgSO(4)·3H(2)O: a revised internally consistent thermodynamic data set for magnesium sulfate hydrates. ASTROBIOLOGY 2012; 12:1042-54. [PMID: 23095098 PMCID: PMC3491617 DOI: 10.1089/ast.2012.0823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The enthalpies of formation of synthetic MgSO(4)·4H(2)O (starkeyite) and MgSO(4)·3H(2)O were obtained by solution calorimetry at T=298.15 K. The resulting enthalpies of formation from the elements are [Formula: see text] (starkeyite)=-2498.7±1.1 kJ·mol(-1) and [Formula: see text] (MgSO(4)·3H(2)O)=-2210.3±1.3 kJ·mol(-1). The standard entropy of starkeyite was derived from low-temperature heat capacity measurements acquired with a physical property measurement system (PPMS) in the temperature range 5 K<T<300 K: [Formula: see text] (starkeyite)=254.48±2.0 J·K(-1)·mol(-1). Additionally, differential scanning calorimetry (DSC) measurements with a Perkin Elmer Diamond DSC in the temperature range 270 K<T<300 K were performed to check the reproducibility of the PPMS measurements around ambient temperature. The experimental C(p) data of starkeyite between 229 and 303 K were fitted with a Maier-Kelley polynomial, yielding C(p)(T)=107.925+0.5532·T-1048894·T(-2). The hydration state of all Mg sulfate hydrates changes in response to local temperature and humidity conditions. Based on recently reported equilibrium relative humidities and the new standard properties described above, the internally consistent thermodynamic database for the MgSO(4)·nH(2)O system was refined by a mathematical programming (MAP) analysis. As can be seen from the resulting phase diagrams, starkeyite is metastable in the entire T-%RH range. Due to kinetic limitations of kieserite formation, metastable occurrence of starkeyite might be possible under martian conditions.
Collapse
Affiliation(s)
- Klaus-Dieter Grevel
- Institute of Geosciences, Mineralogy, Friedrich-Schiller University, D-07745 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Weitz CM, Noe Dobrea EZ, Lane MD, Knudson AT. Geologic relationships between gray hematite, sulfates, and clays in Capri Chasma. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004092] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Wang A, Freeman JJ, Chou IM, Jolliff BL. Stability of Mg-sulfates at −10°C and the rates of dehydration/rehydration processes under conditions relevant to Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011je003818] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Wang A, Ling ZC. Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Lichtenberg KA, Arvidson RE, Morris RV, Murchie SL, Bishop JL, Fernandez Remolar D, Glotch TD, Noe Dobrea E, Mustard JF, Andrews-Hanna J, Roach LH. Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003353] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Bishop JL, Parente M, Weitz CM, Noe Dobrea EZ, Roach LH, Murchie SL, McGuire PC, McKeown NK, Rossi CM, Brown AJ, Calvin WM, Milliken R, Mustard JF. Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003352] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Murchie SL, Seelos FP, Hash CD, Humm DC, Malaret E, McGovern JA, Choo TH, Seelos KD, Buczkowski DL, Morgan MF, Barnouin-Jha OS, Nair H, Taylor HW, Patterson GW, Harvel CA, Mustard JF, Arvidson RE, McGuire P, Smith MD, Wolff MJ, Titus TN, Bibring JP, Poulet F. Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003344] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL, McKeown NK, Noe Dobrea EZ, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE, Wray JJ, Swayze G, Clark RN, Des Marais DJ, McEwen AS, Bibring JP. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003342] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Murchie S, Roach L, Seelos F, Milliken R, Mustard J, Arvidson R, Wiseman S, Lichtenberg K, Andrews-Hanna J, Bishop J, Bibring JP, Parente M, Morris R. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003343] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|