1
|
Sarkango Y, Slavin JA, Jia X, DiBraccio GA, Clark GB, Sun W, Mauk BH, Kurth WS, Hospodarsky GB. Properties of Ion-Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022; 127:e2021JA030181. [PMID: 35865743 PMCID: PMC9286786 DOI: 10.1029/2021ja030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/15/2023]
Abstract
We expand on previous observations of magnetic reconnection in Jupiter's magnetosphere by constructing a survey of ion-inertial scale plasmoids in the Jovian magnetotail. We developed an automated detection algorithm to identify reversals in the B θ component and performed the minimum variance analysis for each identified plasmoid to characterize its helical structure. The magnetic field observations were complemented by data collected using the Juno Waves instrument, which is used to estimate the total electron density, and the JEDI energetic particle detectors. We identified 87 plasmoids with "peak-to-peak" durations between 10 and 300 s. Thirty-one plasmoids possessed a core field and were classified as flux-ropes. The other 56 plasmoids had minimum field strength at their centers and were termed O-lines. Out of the 87 plasmoids, 58 had in situ signatures shorter than 60 s, despite the algorithm's upper limit being 300 s, suggesting that smaller plasmoids with shorter durations were more likely to be detected by Juno. We estimate the diameter of these plasmoids assuming a circular cross section and a travel speed equal to the Alfven speed in the surrounding lobes. Using the electron density inferred by Waves, we contend that these plasmoid diameters were within an order of the local ion-inertial length. Our results demonstrate that magnetic reconnection in the Jovian magnetotail occurs at ion scales like in other space environments. We show that ion-scale plasmoids would need to be released every 0.1 s or less to match the canonical 1 ton/s rate of plasma production due to Io.
Collapse
Affiliation(s)
| | | | | | | | - George B. Clark
- Johns Hopkins University – Applied Physics LaboratoryLawrelMDUSA
| | | | - Barry H. Mauk
- Johns Hopkins University – Applied Physics LaboratoryLawrelMDUSA
| | | | | |
Collapse
|
2
|
Wang Y, Blanc M, Louis C, Wang C, André N, Adriani A, Allegrini F, Blelly P, Bolton S, Bonfond B, Clark G, Dinelli BM, Gérard J, Gladstone R, Grodent D, Kotsiaros S, Kurth W, Lamy L, Louarn P, Marchaudon A, Mauk B, Mura A, Tao C. A Preliminary Study of Magnetosphere-Ionosphere-Thermosphere Coupling at Jupiter: Juno Multi-Instrument Measurements and Modeling Tools. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2021; 126:e2021JA029469. [PMID: 35846729 PMCID: PMC9285026 DOI: 10.1029/2021ja029469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 06/15/2023]
Abstract
The dynamics of the Jovian magnetosphere are controlled by the interplay of the planet's fast rotation, its main iogenic plasma source and its interaction with the solar wind. Magnetosphere-Ionosphere-Thermosphere (MIT) coupling processes controlling this interplay are significantly different from their Earth and Saturn counterparts. At the ionospheric level, they can be characterized by a set of key parameters: ionospheric conductances, electric currents and fields, exchanges of particles along field lines, Joule heating and particle energy deposition. From these parameters, one can determine (a) how magnetospheric currents close into the ionosphere, and (b) the net deposition/extraction of energy into/out of the upper atmosphere associated to MIT coupling. We present a new method combining Juno multi-instrument data (MAG, JADE, JEDI, UVS, JIRAM and Waves) and modeling tools to estimate these key parameters along Juno's trajectories. We first apply this method to two southern hemisphere main auroral oval crossings to illustrate how the coupling parameters are derived. We then present a preliminary statistical analysis of the morphology and amplitudes of these key parameters for eight among the first nine southern perijoves. We aim to extend our method to more Juno orbits to progressively build a comprehensive view of Jovian MIT coupling at the level of the main auroral oval.
Collapse
Affiliation(s)
- Yuxian Wang
- State Key Laboratory of Space WeatherNational Space Science CenterChinese Academy of SciencesBeijingChina
- College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - Michel Blanc
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - Corentin Louis
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - Chi Wang
- State Key Laboratory of Space WeatherNational Space Science CenterChinese Academy of SciencesBeijingChina
- College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Nicolas André
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - Alberto Adriani
- INAF‐Istituto di Astrofisica e Planetologia SpazialiRomeItaly
| | - Frederic Allegrini
- Southwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | | | | | - Bertrand Bonfond
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | - George Clark
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | | | - Jean‐Claude Gérard
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | | | - Denis Grodent
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | | | - William Kurth
- Department of Physics and AstronomyUniversity of IowaIowa CityIAUSA
| | - Laurent Lamy
- Laboratoire d'études spatiales et d'instrumentation en astrophysiqueMeudonFrance
- Laboratoire d’Astrophysique de MarseilleMarseilleFrance
| | - Philippe Louarn
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | | | - Barry Mauk
- The Johns Hopkins University Applied Physics LaboratoryLaurelMDUSA
| | - Alessandro Mura
- INAF‐Istituto di Astrofisica e Planetologia SpazialiRomeItaly
| | - Chihiro Tao
- National Institute of Information and Communications Technology (NICT)KoganeiJapan
| |
Collapse
|
3
|
Artemyev AV, Clark G, Mauk B, Vogt MF, Zhang XJ. Juno Observations of Heavy Ion Energization During Transient Dipolarizations in Jupiter Magnetotail. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2020; 125:e2020JA027933. [PMID: 32874822 PMCID: PMC7458100 DOI: 10.1029/2020ja027933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Transient magnetic reconnection and associated fast plasma flows led by dipolarization fronts play a crucial role in energetic particle acceleration in planetary magnetospheres. Despite large statistical observations on this phenomenon in the Earth's magnetotail, many important characteristics (e.g., mass or charge dependence of acceleration efficiency and acceleration scaling with the spatial scale of the system) of transient reconnection cannot be fully investigated with the limited parameter range of the Earth's magnetotail. The much larger Jovian magnetodisk, filled by a mixture of various heavy ions and protons, provides a unique opportunity for such investigations. In this study, we use recent Juno observations in Jupiter's magnetosphere to examine the properties of reconnection associated dipolarization fronts and charged particle acceleration. High-energy fluxes of sulfur, oxygen, and hydrogen ions show clear mass-dependent acceleration with energy ~ m 1/3. We compare Juno observations with similar observations in the Earth's magnetotail and discuss possible mechanism for the observed ion acceleration.
Collapse
Affiliation(s)
- A. V. Artemyev
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA
- Space Research Institute of Russian Academy of Sciences, Moscow, Russia
| | - G. Clark
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - B. Mauk
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - M. F. Vogt
- Center for Space Physics, Boston University, Boston, MA, USA
| | - X.-J. Zhang
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Vogt MF, Connerney JEP, DiBraccio GA, Wilson RJ, Thomsen MF, Ebert RW, Clark GB, Paranicas C, Kurth WS, Allegrini F, Valek PW, Bolton SJ. Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2020; 125:e2019JA027486. [PMID: 32874821 PMCID: PMC7458104 DOI: 10.1029/2019ja027486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/24/2020] [Indexed: 05/24/2023]
Abstract
At Jupiter, tail reconnection is thought to be driven by an internal mass loading and release process called the Vasyliunas cycle. Galileo data have shown hundreds of reconnection events occurring in Jupiter's magnetotail. Here we present a survey of reconnection events observed by Juno during its first 16 orbits of Jupiter (July 2016-October 2018). The events are identified using Juno magnetic field data, which facilitates comparison to the Vogt et al. (2010, https://doi.org/10.1029/2009JA015098) survey of reconnection events from Galileo magnetometer data, but we present data from Juno's other particle and fields instruments for context. We searched for field dipolarizations or reversals and found 232 reconnection events in the Juno data, most of which featured an increase in |B θ |, the magnetic field meridional component, by a factor of 3 over background values. We found that most properties of the Juno reconnection events, like their spatial distribution and duration, are comparable to Galileo, including the presence of a ~3-day quasi-periodicity in the recurrence of Juno tail reconnection events and in Juno JEDI, JADE, and Waves data. However, unlike with Galileo we were unable to clearly define a statistical x-line separating planetward and tailward Juno events. A preliminary analysis of plasma velocities during five magnetic field reconnection events showed that the events were accompanied by fast radial flows, confirming our interpretation of these magnetic signatures as reconnection events. We anticipate that a future survey covering other Juno datasets will provide additional insight into the nature of tail reconnection at Jupiter.
Collapse
Affiliation(s)
- Marissa F Vogt
- Center for Space Physics, Boston University, Boston, MA, USA
| | | | | | - Rob J Wilson
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | | | - Robert W Ebert
- Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - George B Clark
- The Johns Hopkins University Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Christopher Paranicas
- The Johns Hopkins University Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - William S Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - Frédéric Allegrini
- Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Phil W Valek
- Southwest Research Institute, San Antonio, TX, USA
| | | |
Collapse
|
5
|
Vogt MF, Connerney JEP, DiBraccio GA, Wilson RJ, Thomsen MF, Ebert RW, Clark GB, Paranicas C, Kurth WS, Allegrini F, Valek PW, Bolton SJ. Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2020; 125:e2019JA027486. [PMID: 32874821 DOI: 10.1029/2018ja026169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/29/2019] [Indexed: 05/24/2023]
Abstract
At Jupiter, tail reconnection is thought to be driven by an internal mass loading and release process called the Vasyliunas cycle. Galileo data have shown hundreds of reconnection events occurring in Jupiter's magnetotail. Here we present a survey of reconnection events observed by Juno during its first 16 orbits of Jupiter (July 2016-October 2018). The events are identified using Juno magnetic field data, which facilitates comparison to the Vogt et al. (2010, https://doi.org/10.1029/2009JA015098) survey of reconnection events from Galileo magnetometer data, but we present data from Juno's other particle and fields instruments for context. We searched for field dipolarizations or reversals and found 232 reconnection events in the Juno data, most of which featured an increase in |B θ |, the magnetic field meridional component, by a factor of 3 over background values. We found that most properties of the Juno reconnection events, like their spatial distribution and duration, are comparable to Galileo, including the presence of a ~3-day quasi-periodicity in the recurrence of Juno tail reconnection events and in Juno JEDI, JADE, and Waves data. However, unlike with Galileo we were unable to clearly define a statistical x-line separating planetward and tailward Juno events. A preliminary analysis of plasma velocities during five magnetic field reconnection events showed that the events were accompanied by fast radial flows, confirming our interpretation of these magnetic signatures as reconnection events. We anticipate that a future survey covering other Juno datasets will provide additional insight into the nature of tail reconnection at Jupiter.
Collapse
Affiliation(s)
- Marissa F Vogt
- Center for Space Physics, Boston University, Boston, MA, USA
| | | | | | - Rob J Wilson
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | | | - Robert W Ebert
- Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - George B Clark
- The Johns Hopkins University Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Christopher Paranicas
- The Johns Hopkins University Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - William S Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - Frédéric Allegrini
- Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Phil W Valek
- Southwest Research Institute, San Antonio, TX, USA
| | | |
Collapse
|
6
|
Smith AW, Jackman CM, Frohmaier CM, Fear RC, Slavin JA, Coxon JC. Evaluating Single Spacecraft Observations of Planetary Magnetotails With Simple Monte Carlo Simulations: 2. Magnetic Flux Rope Signature Selection Effects. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2018; 123:10124-10138. [PMID: 31008004 PMCID: PMC6472627 DOI: 10.1029/2018ja025959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
A Monte Carlo method of investigating the effects of placing selection criteria on the magnetic signature of in situ encounters with flux ropes is presented. The technique is applied to two recent flux rope surveys of MESSENGER data within the Hermean magnetotail. It is found that the different criteria placed upon the signatures will preferentially identify slightly different subsets of the underlying population. Quantifying the selection biases first allows the distributions of flux rope parameters to be corrected, allowing a more accurate estimation of the intrinsic distributions. This is shown with regard to the distribution of flux rope radii observed. When accounting for the selection criteria, the mean radius of Hermean magnetotail quasi-force-free flux ropes is found to be 58 9 - 269 + 273 km. Second, it is possible to weight the known identifications in order to determine a rate of recurrence that accounts for the presence of the structures that will not be identified. In the case of the Hermean magnetotail, the average rate of quasi-force-free flux ropes is found to 0.12 min-1 when selection effects are accounted for (up from 0.05 min-1 previously inferred from observations).
Collapse
Affiliation(s)
- A. W. Smith
- Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
| | - C. M. Jackman
- Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
| | - C. M. Frohmaier
- Institute of Cosmology and GravitationUniversity of PortsmouthPortsmouthUK
| | - R. C. Fear
- Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
| | - J. A. Slavin
- Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - J. C. Coxon
- Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
7
|
Smith AW, Jackman CM, Thomsen MF. Magnetic reconnection in Saturn's magnetotail: A comprehensive magnetic field survey. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2016; 121:2984-3005. [PMID: 27867795 PMCID: PMC5111619 DOI: 10.1002/2015ja022005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/01/2016] [Accepted: 03/03/2016] [Indexed: 05/04/2023]
Abstract
Reconnection within planetary magnetotails is responsible for locally energizing particles and changing the magnetic topology. Its role in terms of global magnetospheric dynamics can involve changing the mass and flux content of the magnetosphere. We have identified reconnection related events in spacecraft magnetometer data recorded during Cassini's exploration of Saturn's magnetotail. The events are identified from deflections in the north-south component of the magnetic field, significant above a background level. Data were selected to provide full tail coverage, encompassing the dawn and dusk flanks as well as the deepest midnight orbits. Overall 2094 reconnection related events were identified, with an average rate of 5.0 events per day. The majority of events occur in clusters (within 3 h of other events). We examine changes in this rate in terms of local time and latitude coverage, taking seasonal effects into account. The observed reconnection rate peaks postmidnight with more infrequent but steady loss seen on the dusk flank. We estimate the mass loss from the event catalog and find it to be insufficient to balance the input from the moon Enceladus. Several reasons for this discrepancy are discussed. The reconnection X line location appears to be highly variable, though a statistical separation between events tailward and planetward of the X line is observed at a radial distance of between 20 and 30RS downtail. The small sample size at dawn prevents comprehensive statistical comparison with the dusk flank observations in terms of flux closure.
Collapse
Affiliation(s)
- A. W. Smith
- Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
| | - C. M. Jackman
- Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
| | | |
Collapse
|
8
|
Bagenal F, Delamere PA. Flow of mass and energy in the magnetospheres of Jupiter and Saturn. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010ja016294] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fran Bagenal
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| | - Peter A. Delamere
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| |
Collapse
|
9
|
Radioti A, Grodent D, Gérard JC, Vogt MF, Lystrup M, Bonfond B. Nightside reconnection at Jupiter: Auroral and magnetic field observations from 26 July 1998. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010ja016200] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. Radioti
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - D. Grodent
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - J.-C. Gérard
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - M. F. Vogt
- Department of Earth and Space Sciences; University of California; Los Angeles California USA
| | - M. Lystrup
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| | - B. Bonfond
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| |
Collapse
|
10
|
Affiliation(s)
- P. A. Delamere
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| | - F. Bagenal
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| |
Collapse
|