1
|
Dickerson RR, Stratton P, Ren X, Kelley P, Heaney CD, Deanes L, Aubourg M, Spicer K, Dreessen J, Auvil R, Sawtell G, Thomas M, Campbell S, Sanchez C. Mobile laboratory measurements of air pollutants in Baltimore, MD elucidate issues of environmental justice. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:753-770. [PMID: 39186306 PMCID: PMC11697762 DOI: 10.1080/10962247.2024.2393178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
The City of Baltimore, MD has a history of problems with environmental justice (EJ), air pollution, and the urban heat island (UHI) effect. Current chemical transport models lack the resolution to simulate concentrations on the scale needed, about 100 m, to identify the neighborhoods with anomalously high air pollution levels. In this paper we introduce the capabilities of a mobile laboratory and an initial survey of several pollutants in Baltimore to identify which communities are exposed to disproportionate concentrations of air pollution and to which species. High concentrations of black carbon (BC) stood out at some locations - near major highways, downtown, and in the Curtis Bay neighborhood of Baltimore. Results from the mobile lab are confirmed with longer-term, low-cost monitoring. In Curtis Bay, higher concentrations of BC were measured along Pennington Ave. (mean [5th to 95th percentiles] = 2.08 [2.0-10.9] μg m-3) than along Curtis Ave. just ~ 150 m away (0.67[0.1 - 1.8] μg m-3). Other species, including criteria pollutants ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and fine particulate matter (PM2.5), showed little gradient. Observations with high spatial and temporal resolution help isolate the mechanisms leading to locally high pollutant concentrations. The difference in BC appears to result not from heavier truck traffic or slower dispersion but from the interruptions in traffic flow. Pennington Ave. has three stoplights while Curtis Ave. has none. As heavy-duty diesel-powered vehicles accelerate, they experience turbo-lag and the resulting rich air-fuel mixture exacerbates BC emissions. Immediate mediation might be achieved through smoother traffic flow, and the long-term solution through replacing heavy-duty trucks with electric vehicles.Implications: We present results documenting the locations within Baltimore of high concentrations of Black Carbon pollution and identify the likely source - diesel exhaust emissions exacerbated by stop-and-go traffic and associated turbo-lag. This suggests solutions (smoother traffic, retrofit particulate filters, replacement of diesel with electric vehicles) that would enhance Environmental Justice (EJ) and could be applied to other cities with EJ problems.Synopsis: This paper presents observations of atmospheric black carbon aerosol showing impacts on environmental justice, then identifies causes and suggests solutions.
Collapse
Affiliation(s)
- Russell R Dickerson
- Department of Atmospheric and Oceanic Science, The University of Maryland, College Park, MD, USA
| | - Phillip Stratton
- Department of Atmospheric and Oceanic Science, The University of Maryland, College Park, MD, USA
| | - Xinrong Ren
- Atmospheric Sciences and Modeling Division, NOAA Air Resources Laboratory, College Park, MD, USA
| | - Paul Kelley
- Atmospheric Sciences and Modeling Division, NOAA Air Resources Laboratory, College Park, MD, USA
| | | | - Lauren Deanes
- Johns Hopkins Bloomberg, School of Public Health, Baltimore, MD, USA
| | - Matthew Aubourg
- Johns Hopkins Bloomberg, School of Public Health, Baltimore, MD, USA
| | - Kristoffer Spicer
- Johns Hopkins Bloomberg, School of Public Health, Baltimore, MD, USA
| | - Joel Dreessen
- Air Monitoring Program, Air and Radiation Administration, Maryland Department of the Environment, Baltimore, MD, USA
| | - Ryan Auvil
- Air Monitoring Program, Air and Radiation Administration, Maryland Department of the Environment, Baltimore, MD, USA
| | - Gregory Sawtell
- South Baltimore Community Land Trust, Community of Curtis Bay Association, SB7 Coalition, Baltimore, MD, USA
| | - Meleny Thomas
- South Baltimore Community Land Trust, Community of Curtis Bay Association, SB7 Coalition, Baltimore, MD, USA
| | - Shashawnda Campbell
- South Baltimore Community Land Trust, Community of Curtis Bay Association, SB7 Coalition, Baltimore, MD, USA
| | - Carlos Sanchez
- South Baltimore Community Land Trust, Community of Curtis Bay Association, SB7 Coalition, Baltimore, MD, USA
| |
Collapse
|
2
|
Mathur R, Kang D, Napelenok SL, Xing J, Hogrefe C, Sarwar G, Itahashi S, Henderson BH. How have Divergent Global Emission Trends Influenced Long-range Transported Ozone to North America? JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:0. [PMID: 36275858 PMCID: PMC9580341 DOI: 10.1029/2022jd036926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/07/2022] [Indexed: 05/31/2023]
Abstract
Several locations across the United States in non-compliance with the national standard for ground-level ozone (O3) are thought to have sizeable influences from distant extra-regional emission sources or natural stratospheric O3, which complicates design of local emission control measures. To quantify the amount of long-range transported O3 (LRT O3), its origin, and change over time, we conduct and analyze detailed sensitivity calculations characterizing the response of O3 to emissions from different source regions across the Northern Hemisphere in conjunction with multi-decadal simulations of tropospheric O3 distributions and changes. Model calculations show that the amount of O3 at any location attributable to sources outside North America varies both spatially and seasonally. On a seasonal-mean basis, during 1990-2010, LRT O3 attributable to international sources steadily increased by 0.06-0.2 ppb yr-1 at locations across the United States and arose from superposition of unequal and contrasting trends in individual source-region contributions, which help inform attribution of the trend evident in O3 measurements. Contributions of emissions from Europe steadily declined through 2010, while those from Asian emissions increased and remained dominant. Steadily rising NOx emissions from international shipping resulted in increasing contributions to LRT O3, comparable to those from Asian emissions in recent years. Central American emissions contribute a significant fraction of LRT O3 in southwestern United States. In addition to the LRT O3 attributable to emissions outside of North America, background O3 across the continental United States is comprised of a sizeable and spatially variable fraction that is of stratospheric origin (29-78%).
Collapse
Affiliation(s)
- Rohit Mathur
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Daiwen Kang
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Sergey L. Napelenok
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Jia Xing
- Tsinghua University, Beijing, China
| | - Christian Hogrefe
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Golam Sarwar
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Syuichi Itahashi
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Japan
| | - Barron H. Henderson
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, RTP, NC, USA
| |
Collapse
|
3
|
Campbell PC, Tang Y, Lee P, Baker B, Tong D, Saylor R, Stein A, Huang J, Huang HC, Strobach E, McQueen J, Pan L, Stajner I, Sims J, Tirado-Delgado J, Jung Y, Yang F, Spero TL, Gilliam RC. Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16. GEOSCIENTIFIC MODEL DEVELOPMENT 2022; 15:3281-3313. [PMID: 35664957 PMCID: PMC9157742 DOI: 10.5194/gmd-15-3281-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new dynamical core, known as the Finite-Volume Cubed-Sphere (FV3) and developed at both NASA and NOAA, is used in NOAA's Global Forecast System (GFS) and in limited-area models for regional weather and air quality applications. NOAA has also upgraded the operational FV3GFS to version 16 (GFSv16), which includes a number of significant developmental advances to the model configuration, data assimilation, and underlying model physics, particularly for atmospheric composition to weather feedback. Concurrent with the GFSv16 upgrade, we couple the GFSv16 with the Community Multiscale Air Quality (CMAQ) model to form an advanced version of the National Air Quality Forecasting Capability (NAQFC) that will continue to protect human and ecosystem health in the US. Here we describe the development of the FV3GFSv16 coupling with a "state-of-the-science" CMAQ model version 5.3.1. The GFS-CMAQ coupling is made possible by the seminal version of the NOAA-EPA Atmosphere-Chemistry Coupler (NACC), which became a major piece of the next operational NAQFC system (i.e., NACC-CMAQ) on 20 July 2021. NACC-CMAQ has a number of scientific advancements that include satellite-based data acquisition technology to improve land cover and soil characteristics and inline wildfire smoke and dust predictions that are vital to predictions of fine particulate matter (PM2.5) concentrations during hazardous events affecting society, ecosystems, and human health. The GFS-driven NACC-CMAQ model has significantly different meteorological and chemical predictions compared to the previous operational NAQFC, where evaluation of NACC-CMAQ shows generally improved near-surface ozone and PM2.5 predictions and diurnal patterns, both of which are extended to a 72 h (3 d) forecast with this system.
Collapse
Affiliation(s)
- Patrick C. Campbell
- NOAA Air Resources Laboratory (ARL), College Park, MD, USA
- Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA, USA
| | - Youhua Tang
- NOAA Air Resources Laboratory (ARL), College Park, MD, USA
- Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA, USA
| | - Pius Lee
- NOAA Air Resources Laboratory (ARL), College Park, MD, USA
| | - Barry Baker
- NOAA Air Resources Laboratory (ARL), College Park, MD, USA
| | - Daniel Tong
- NOAA Air Resources Laboratory (ARL), College Park, MD, USA
- Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA, USA
| | - Rick Saylor
- NOAA Air Resources Laboratory (ARL), College Park, MD, USA
| | - Ariel Stein
- NOAA Air Resources Laboratory (ARL), College Park, MD, USA
| | - Jianping Huang
- NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA
- I.M. Systems Group Inc., Rockville, MD, USA
| | - Ho-Chun Huang
- NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA
- I.M. Systems Group Inc., Rockville, MD, USA
| | - Edward Strobach
- NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA
- I.M. Systems Group Inc., Rockville, MD, USA
| | - Jeff McQueen
- NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA
| | - Li Pan
- NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA
- I.M. Systems Group Inc., Rockville, MD, USA
| | - Ivanka Stajner
- NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA
| | | | - Jose Tirado-Delgado
- NOAA NWS/STI, College Park, MD, USA
- Eastern Research Group, Inc. (ERG), College Park, MD, USA
| | | | - Fanglin Yang
- NOAA National Centers for Environmental Prediction (NCEP), College Park, MD, USA
| | - Tanya L. Spero
- US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | |
Collapse
|
4
|
Wang K, Zhang Y, Yu S, Wong DC, Pleim J, Mathur R, Kelly JT, Bell M. A comparative study of two-way and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous US: performance evaluation and impacts of chemistry-meteorology feedbacks on air quality. GEOSCIENTIFIC MODEL DEVELOPMENT 2021; 14:7189-7221. [PMID: 35237388 DOI: 10.5194/gmd-2020-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The two-way coupled Weather Research and Forecasting and Community Multiscale Air Quality (WRF-CMAQ) model has been developed to more realistically represent the atmosphere by accounting for complex chemistry-meteorology feedbacks. In this study, we present a comparative analysis of two-way (with consideration of both aerosol direct and indirect effects) and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous US. Long-term (5 years from 2008 to 2012) simulations using WRF-CMAQ with both offline and two-way coupling modes are carried out with anthropogenic emissions based on multiple years of the U.S. National Emission Inventory and chemical initial and boundary conditions derived from an advanced Earth system model (i.e., a modified version of the Community Earth System Model/Community Atmospheric Model). The comprehensive model evaluations show that both two-way WRF-CMAQ and WRF-only simulations perform well for major meteorological variables such as temperature at 2 m, relative humidity at 2 m, wind speed at 10 m, precipitation (except for against the National Climatic Data Center data), and shortwave and longwave radiation. Both two-way and offline CMAQ also show good performance for ozone (O3) and fine particulate matter (PM2.5). Due to the consideration of aerosol direct and indirect effects, two-way WRF-CMAQ shows improved performance over offline coupled WRF and CMAQ in terms of spatiotemporal distributions and statistics, especially for radiation, cloud forcing, O3, sulfate, nitrate, ammonium, elemental carbon, tropospheric O3 residual, and column nitrogen dioxide (NO2). For example, the mean biases have been reduced by more than 10 W m-2 for shortwave radiation and cloud radiative forcing and by more than 2 ppb for max 8 h O3. However, relatively large biases still exist for cloud predictions, some PM2.5 species, and PM10 that warrant follow-up studies to better understand those issues. The impacts of chemistry-meteorological feedbacks are found to play important roles in affecting regional air quality in the US by reducing domain-average concentrations of carbon monoxide (CO), O3, nitrogen oxide (NO x ), volatile organic compounds (VOCs), and PM2.5 by 3.1% (up to 27.8%), 4.2% (up to 16.2%), 6.6% (up to 50.9%), 5.8% (up to 46.6%), and 8.6% (up to 49.1%), respectively, mainly due to reduced radiation, temperature, and wind speed. The overall performance of the two-way coupled WRF-CMAQ model achieved in this work is generally good or satisfactory and the improved performance for two-way coupled WRF-CMAQ should be considered along with other factors in developing future model applications to inform policy making.
Collapse
Affiliation(s)
- Kai Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yang Zhang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Shaocai Yu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - David C Wong
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - Jonathan Pleim
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - Rohit Mathur
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - James T Kelly
- Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - Michelle Bell
- School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
5
|
Wang K, Zhang Y, Yu S, Wong DC, Pleim J, Mathur R, Kelly JT, Bell M. A comparative study of two-way and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous US: performance evaluation and impacts of chemistry-meteorology feedbacks on air quality. GEOSCIENTIFIC MODEL DEVELOPMENT 2021; 14:7189-7221. [PMID: 35237388 PMCID: PMC8883479 DOI: 10.5194/gmd-14-7189-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The two-way coupled Weather Research and Forecasting and Community Multiscale Air Quality (WRF-CMAQ) model has been developed to more realistically represent the atmosphere by accounting for complex chemistry-meteorology feedbacks. In this study, we present a comparative analysis of two-way (with consideration of both aerosol direct and indirect effects) and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous US. Long-term (5 years from 2008 to 2012) simulations using WRF-CMAQ with both offline and two-way coupling modes are carried out with anthropogenic emissions based on multiple years of the U.S. National Emission Inventory and chemical initial and boundary conditions derived from an advanced Earth system model (i.e., a modified version of the Community Earth System Model/Community Atmospheric Model). The comprehensive model evaluations show that both two-way WRF-CMAQ and WRF-only simulations perform well for major meteorological variables such as temperature at 2 m, relative humidity at 2 m, wind speed at 10 m, precipitation (except for against the National Climatic Data Center data), and shortwave and longwave radiation. Both two-way and offline CMAQ also show good performance for ozone (O3) and fine particulate matter (PM2.5). Due to the consideration of aerosol direct and indirect effects, two-way WRF-CMAQ shows improved performance over offline coupled WRF and CMAQ in terms of spatiotemporal distributions and statistics, especially for radiation, cloud forcing, O3, sulfate, nitrate, ammonium, elemental carbon, tropospheric O3 residual, and column nitrogen dioxide (NO2). For example, the mean biases have been reduced by more than 10 W m-2 for shortwave radiation and cloud radiative forcing and by more than 2 ppb for max 8 h O3. However, relatively large biases still exist for cloud predictions, some PM2.5 species, and PM10 that warrant follow-up studies to better understand those issues. The impacts of chemistry-meteorological feedbacks are found to play important roles in affecting regional air quality in the US by reducing domain-average concentrations of carbon monoxide (CO), O3, nitrogen oxide (NO x ), volatile organic compounds (VOCs), and PM2.5 by 3.1% (up to 27.8%), 4.2% (up to 16.2%), 6.6% (up to 50.9%), 5.8% (up to 46.6%), and 8.6% (up to 49.1%), respectively, mainly due to reduced radiation, temperature, and wind speed. The overall performance of the two-way coupled WRF-CMAQ model achieved in this work is generally good or satisfactory and the improved performance for two-way coupled WRF-CMAQ should be considered along with other factors in developing future model applications to inform policy making.
Collapse
Affiliation(s)
- Kai Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yang Zhang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Shaocai Yu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - David C. Wong
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - Jonathan Pleim
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - Rohit Mathur
- Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - James T. Kelly
- Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC 27711, USA
| | - Michelle Bell
- School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Itahashi S, Mathur R, Hogrefe C, Napelenok SL, Zhang Y. Incorporation of volcanic SO 2 emissions in the Hemispheric CMAQ (H-CMAQ) version 5.2 modeling system and assessing their impacts on sulfate aerosol over the Northern Hemisphere. GEOSCIENTIFIC MODEL DEVELOPMENT 2021; 14:5751-5768. [PMID: 35350842 PMCID: PMC8958998 DOI: 10.5194/gmd-14-5751-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The state-of-the-science Community Multiscale Air Quality (CMAQ) Modeling System has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ). In this study, satellite-constrained estimation of the degassing SO2 emissions from 50 volcanoes over the Northern Hemisphere is incorporated into H-CMAQ, and their impact on tropospheric sulfate aerosol ( SO 4 2 - ) levels is assessed for 2010. The volcanic degassing improves predictions of observations from the Acid Deposition Monitoring Network in East Asia (EANET), the United States Clean Air Status and Trends Network (CASTNET), and the United States Integrated Monitoring of Protected Visual Environments (IMPROVE). Over Asia, the increased SO 4 2 - concentrations were seen to correspond to the locations of volcanoes, especially over Japan and Indonesia. Over the USA, the largest impacts that occurred over the central Pacific were caused by including the Hawaiian Kilauea volcano, while the impacts on the continental USA were limited to the western portion during summertime. The emissions of the Soufrière Hills volcano located on the island of Montserrat in the Caribbean Sea affected the southeastern USA during the winter season. The analysis at specific sites in Hawaii and Florida also confirmed improvements in regional performance for modeled SO 4 2 - by including volcanoes SO2 emissions. At the edge of the western USA, monthly averaged SO 4 2 - enhancements greater than 0.1μgm-3 were noted within the boundary layer (defined as surface to 750hPa) during June- September. Investigating the change on SO 4 2 - concentration throughout the free troposphere revealed that although the considered volcanic SO2 emissions occurred at or below the middle of free troposphere (500hPa), compared to the simulation without the volcanic source, SO 4 2 - enhancements of more than 10% were detected up to the top of the free troposphere (250hPa). Our model simulations and comparisons with measurements across the Northern Hemisphere indicate that the degassing volcanic SO2 emissions are an important source and should be considered in air quality model simulations assessing background SO 4 2 - levels and their source attribution.
Collapse
Affiliation(s)
- Syuichi Itahashi
- Sustainable System Research Laboratory (SSRL), Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko, Chiba 270–1194, Japan
| | - Rohit Mathur
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Christian Hogrefe
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Sergey L. Napelenok
- Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Yang Zhang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Chen X, Zhang Y, Wang K, Tong D, Lee P, Tang Y, Huang J, Campbell PC, Mcqueen J, Pye HOT, Murphy BN, Kang D. Evaluation of the offline-coupled GFSv15-FV3-CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States. GEOSCIENTIFIC MODEL DEVELOPMENT 2021; 14:10.5194/gmd-14-3969-2021. [PMID: 34367521 PMCID: PMC8340608 DOI: 10.5194/gmd-14-3969-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As a candidate for the next-generation National Air Quality Forecast Capability (NAQFC), the meteorological forecast from the Global Forecast System with the new Finite Volume Cube-Sphere dynamical core (GFS-FV3) will be applied to drive the chemical evolution of gases and particles described by the Community Multiscale Air Quality modeling system. CMAQv5.0.2, a historical version of CMAQ, has been coupled with the North American Mesoscale Forecast System (NAM) model in the current operational NAQFC. An experimental version of the NAQFC based on the offline-coupled GFS-FV3 version 15 with CMAQv5.0.2 modeling system (GFSv15-CMAQv5.0.2) has been developed by the National Oceanic and Atmospheric Administration (NOAA) to provide real-time air quality forecasts over the contiguous United States (CONUS) since 2018. In this work, comprehensive region-specific, time-specific, and categorical evaluations are conducted for meteorological and chemical forecasts from the offline-coupled GFSv15-CMAQv5.0.2 for the year 2019. The forecast system shows good overall performance in forecasting meteorological variables with the annual mean biases of -0.2 °C for temperature at 2 m, 0.4% for relative humidity at 2 m, and 0.4 m s-1 for wind speed at 10 m compared to the METeorological Aerodrome Reports (METAR) dataset. Larger biases occur in seasonal and monthly mean forecasts, particularly in spring. Although the monthly accumulated precipitation forecasts show generally consistent spatial distributions with those from the remote-sensing and ensemble datasets, moderate-to-large biases exist in hourly precipitation forecasts compared to the Clean Air Status and Trends Network (CASTNET) and METAR. While the forecast system performs well in forecasting ozone (O3) throughout the year and fine particles with a diameter of 2.5 μm or less (PM2.5) for warm months (May-September), it significantly overpredicts annual mean concentrations of PM2.5. This is due mainly to the high predicted concentrations of fine fugitive and coarse-mode particle components. Underpredictions in the southeastern US and California during summer are attributed to missing sources and mechanisms of secondary organic aerosol formation from biogenic volatile organic compounds (VOCs) and semivolatile or intermediate-volatility organic compounds. This work demonstrates the ability of FV3-based GFS in driving the air quality forecasting. It identifies possible underlying causes for systematic region- and time-specific model biases, which will provide a scientific basis for further development of the next-generation NAQFC.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yang Zhang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Kai Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Daniel Tong
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030, USA
- IM Systems Group, Rockville, MD 20852, USA
| | - Pius Lee
- Center for Spatial Information Science and System, George Mason University, Fairfax, VA 22030, USA
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA
| | - Youhua Tang
- Center for Spatial Information Science and System, George Mason University, Fairfax, VA 22030, USA
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA
| | - Jianping Huang
- National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction/Environmental Modeling Center, College Park, MD 20740, USA
- IM Systems Group, Rockville, MD 20852, USA
| | - Patrick C. Campbell
- Center for Spatial Information Science and System, George Mason University, Fairfax, VA 22030, USA
- Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA
| | - Jeff Mcqueen
- National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction/Environmental Modeling Center, College Park, MD 20740, USA
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daiwen Kang
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
8
|
Lu H, Lyu X, Cheng H, Ling Z, Guo H. Overview on the spatial-temporal characteristics of the ozone formation regime in China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:916-929. [PMID: 31089656 DOI: 10.1039/c9em00098d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution.
Collapse
Affiliation(s)
- Haoxian Lu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | | | | | | | | |
Collapse
|
9
|
Di Q, Rowland S, Koutrakis P, Schwartz J. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:39-52. [PMID: 27332675 PMCID: PMC5741295 DOI: 10.1080/10962247.2016.1200159] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/28/2016] [Indexed: 05/21/2023]
Abstract
UNLABELLED Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. The authors propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. The authors used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. The authors trained the model with the Air Quality System (AQS) 8-hr daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km × 1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. IMPLICATIONS Ozone monitors do not provide full data coverage over the United States, which is an obstacle to assess the health effect of ozone when monitoring data are not available. This paper used a hybrid approach to combine satellite-based ozone measurements, chemical transport model simulations, land-use terms, and other auxiliary variables to obtain spatially and temporally resolved ground-level ozone estimation.
Collapse
Affiliation(s)
- Qian Di
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Sebastian Rowland
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Petros Koutrakis
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Joel Schwartz
- a Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
10
|
Zhang Y, Wang K, Jena C. Impact of Projected Emission and Climate Changes on Air Quality in the U.S.: from National to State Level. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procs.2017.06.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhang Y, Karamchandani P, Glotfelty T, Streets DG, Grell G, Nenes A, Yu F, Bennartz R. Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem). ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017966] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Muntaseer Billah Ibn Azkar MA, Chatani S, Sudo K. Simulation of urban and regional air pollution in Bangladesh. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Zhao Y, McElroy MB, Xing J, Duan L, Nielsen CP, Lei Y, Hao J. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:5177-5187. [PMID: 21944199 DOI: 10.1016/j.scitotenv.2011.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 08/01/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
Policies to control emissions of criteria pollutants in China may have conflicting impacts on public health, soil acidification, and climate. Two scenarios for 2020, a base case without anticipated control measures and a more realistic case including such controls, are evaluated to quantify the effects of the policies on emissions and resulting environmental outcomes. Large benefits to public health can be expected from the controls, attributed mainly to reduced emissions of primary PM and gaseous PM precursors, and thus lower ambient concentrations of PM2.5. Approximately 4% of all-cause mortality in the country can be avoided (95% confidence interval: 1-7%), particularly in eastern and north-central China, regions with large population densities and high levels of PM2.5. Surface ozone levels, however, are estimated to increase in parts of those regions, despite NOX reductions. This implies VOC-limited conditions. Even with significant reduction of SO2 and NOX emissions, the controls will not significantly mitigate risks of soil acidification, judged by the exceedance levels of critical load (CL). This is due to the decrease in primary PM emissions, with the consequent reduction in deposition of alkaline base cations. Compared to 2005, even larger CL exceedances are found for both scenarios in 2020, implying that PM control may negate any recovery from soil acidification due to SO2 reductions. Noting large uncertainties, current polices to control emissions of criteria pollutants in China will not reduce climate warming, since controlling SO2 emissions also reduces reflective secondary aerosols. Black carbon emission is an important source of uncertainty concerning the effects of Chinese control policies on global temperature change. Given these conflicts, greater consideration should be paid to reconciling varied environmental objectives, and emission control strategies should target not only criteria pollutants but also species such as VOCs and CO2.
Collapse
Affiliation(s)
- Yu Zhao
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Morino Y, Ohara T, Kurokawa J, Kuribayashi M, Uno I, Hara H. Temporal variations of nitrogen wet deposition across Japan from 1989 to 2008. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015205] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Yang ES, Christopher SA, Kondragunta S, Zhang X. Use of hourly Geostationary Operational Environmental Satellite (GOES) fire emissions in a Community Multiscale Air Quality (CMAQ) model for improving surface particulate matter predictions. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Hogrefe C, Isukapalli SS, Tang X, Georgopoulos PG, He S, Zalewsky EE, Hao W, Ku JY, Key T, Sistla G. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2011; 61:92-108. [PMID: 21305893 PMCID: PMC3079461 DOI: 10.3155/1047-3289.61.1.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.
Collapse
Affiliation(s)
- Christian Hogrefe
- New York State Department of Environmental Conservation, Albany, NY; and Atmospheric Sciences Research Center, University at Albany, Albany, NY 12233-3259, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Wen XY, Wang K, Vijayaraghavan K, Jacobson MZ. Probing into regional O3and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011900] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|