1
|
Gregson FKA, Gerrebos NGA, Schervish M, Nikkho S, Schnitzler EG, Schwartz C, Carlsten C, Abbatt JPD, Kamal S, Shiraiwa M, Bertram AK. Phase Behavior and Viscosity in Biomass Burning Organic Aerosol and Climatic Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14548-14557. [PMID: 37729583 DOI: 10.1021/acs.est.3c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.
Collapse
Affiliation(s)
- Florence K A Gregson
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nealan G A Gerrebos
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Meredith Schervish
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sepehr Nikkho
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Elijah G Schnitzler
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Jahl LG, Brubaker TA, Polen MJ, Jahn LG, Cain KP, Bowers BB, Fahy WD, Graves S, Sullivan RC. Atmospheric aging enhances the ice nucleation ability of biomass-burning aerosol. SCIENCE ADVANCES 2021; 7:7/9/eabd3440. [PMID: 33627419 PMCID: PMC7904250 DOI: 10.1126/sciadv.abd3440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Ice-nucleating particles (INPs) in biomass-burning aerosol (BBA) that affect cloud glaciation, microphysics, precipitation, and radiative forcing were recently found to be driven by the production of mineral phases. BBA experiences extensive chemical aging as the smoke plume dilutes, and we explored how this alters the ice activity of the smoke using simulated atmospheric aging of authentic BBA in a chamber reactor. Unexpectedly, atmospheric aging enhanced the ice activity for most types of fuels and aging schemes. The removal of organic carbon particle coatings that conceal the mineral-based ice-active sites by evaporation or oxidation then dissolution can increase the ice activity by greater than an order of magnitude. This represents a different framework for the evolution of INPs from biomass burning where BBA becomes more ice active as it dilutes and ages, making a larger contribution to the INP budget, resulting cloud microphysics, and climate forcing than is currently considered.
Collapse
Affiliation(s)
- Lydia G Jahl
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Thomas A Brubaker
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Michael J Polen
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Leif G Jahn
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Kerrigan P Cain
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Bailey B Bowers
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - William D Fahy
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Sara Graves
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Ryan C Sullivan
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the emissions from wildland fires are important for understanding the role of these events in the production, transport, and fate of emitted gases and particulate matter, and, consequently, their impact on atmospheric and ecological processes, and on human health and wellbeing. Wildland fire emission research provides the quantitative information needed for the understanding and management of wildland fire emissions impacts based on human needs. Recent work to characterize emissions from specific fuel types, or those from specific areas, has implicitly been driven by the recognition of the importance of those fuel types in the context of wildland fire science; however, the importance of specific fuels in driving investigations of biomass-burning emissions has not been made explicit thus far. Here, we make a first attempt to discuss the development and application of criteria to answer the question, “What are the most important fuels for biomass-burning emissions investigations to inform wildland fire science and management?” Four criteria for fuel selection are proposed: “(1) total emissions, (2) impacts, (3) availability and uncertainty, and (4) potential for future importance.” Attempting to develop and apply these criteria, we propose a list of several such fuels, based on prior investigations and the body of wildland-fire emission research.
Collapse
|
4
|
Hodshire AL, Akherati A, Alvarado MJ, Brown-Steiner B, Jathar SH, Jimenez JL, Kreidenweis SM, Lonsdale CR, Onasch TB, Ortega AM, Pierce JR. Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10007-10022. [PMID: 31365241 DOI: 10.1021/acs.est.9b02588] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biomass burning is a major source of atmospheric particulate matter (PM) with impacts on health, climate, and air quality. The particles and vapors within biomass burning plumes undergo chemical and physical aging as they are transported downwind. Field measurements of the evolution of PM with plume age range from net decreases to net increases, with most showing little to no change. In contrast, laboratory studies tend to show significant mass increases on average. On the other hand, similar effects of aging on the average PM composition (e.g., oxygen-to-carbon ratio) are reported for lab and field studies. Currently, there is no consensus on the mechanisms that lead to these observed similarities and differences. This review summarizes available observations of aging-related biomass burning aerosol mass concentrations and composition markers, and discusses four broad hypotheses to explain variability within and between field and laboratory campaigns: (1) variability in emissions and chemistry, (2) differences in dilution/entrainment, (3) losses in chambers and lines, and (4) differences in the timing of the initial measurement, the baseline from which changes are estimated. We conclude with a concise set of research needs for advancing our understanding of the aging of biomass burning aerosol.
Collapse
Affiliation(s)
- Anna L Hodshire
- Department of Atmospheric Science , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Ali Akherati
- Department of Mechanical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Matthew J Alvarado
- Atmospheric and Environmental Research, Inc. , Lexington , Massachusetts 02421 , United States
| | - Benjamin Brown-Steiner
- Atmospheric and Environmental Research, Inc. , Lexington , Massachusetts 02421 , United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Jose L Jimenez
- Dept. of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Sonia M Kreidenweis
- Department of Atmospheric Science , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Chantelle R Lonsdale
- Atmospheric and Environmental Research, Inc. , Lexington , Massachusetts 02421 , United States
| | - Timothy B Onasch
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | - Amber M Ortega
- Dept. Atmospheric and Oceanic Sciences Department and Cooperative Institute for Research in Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
5
|
Charnawskas JC, Alpert PA, Lambe AT, Berkemeier T, O'Brien RE, Massoli P, Onasch TB, Shiraiwa M, Moffet RC, Gilles MK, Davidovits P, Worsnop DR, Knopf DA. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation. Faraday Discuss 2018; 200:165-194. [PMID: 28574555 DOI: 10.1039/c7fd00010c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.
Collapse
Affiliation(s)
- Joseph C Charnawskas
- Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Tarn MD, Sikora SNF, Porter GCE, O’Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:52. [PMID: 29720926 PMCID: PMC5915516 DOI: 10.1007/s10404-018-2069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Mike Adams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | | | - Jesús Vergara-Temprado
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Theodore W. Wilson
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Owlstone Medical Ltd., 127 Science Park, Cambridge, CB4 0GD UK
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
8
|
Lack DA, Moosmüller H, McMeeking GR, Chakrabarty RK, Baumgardner D. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Anal Bioanal Chem 2014; 406:99-122. [PMID: 24297322 PMCID: PMC3877426 DOI: 10.1007/s00216-013-7402-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 12/05/2022]
Abstract
Elemental-, equivalent black- and refractory black-carbon are terms that have been defined in order to dissect the more general term, black carbon, into its component parts related to its specific chemical and optical properties and its impact on climate and health. Recent publications have attempted to clarify the meaning of these terms with respect to their environmental impact, particularly on climate. Here, we focus on the measurement aspects, reviewing the most commonly implemented techniques for the direct and indirect derivation of black carbon properties, their strengths, limitations, and uncertainties, and provide a non-exhaustive bibliography where the reader can find more detailed information. This review paper is designed as a guide for those wishing to learn about the current state of black carbon measurement instrumentation, how calibration is carried out, when one instrument may have the advantage over another, and where new techniques are needed to fill important knowledge gaps.
Collapse
Affiliation(s)
- Daniel A. Lack
- NOAA Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305-3337 USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309 USA
| | | | - Gavin R. McMeeking
- Droplet Measurement Technologies, 2545 Central Avenue, Boulder, CO 80301 USA
| | | | - Darrel Baumgardner
- Droplet Measurement Technologies, 2545 Central Avenue, Boulder, CO 80301 USA
| |
Collapse
|
9
|
Gettelman A, Liu X, Barahona D, Lohmann U, Chen C. Climate impacts of ice nucleation. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017950] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Garcia E, Hill TCJ, Prenni AJ, DeMott PJ, Franc GD, Kreidenweis SM. Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018343] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Lienhard DM, Zobrist B, Zuend A, Krieger UK, Peter T. Experimental evidence for excess entropy discontinuities in glass-forming solutions. J Chem Phys 2012; 136:074515. [DOI: 10.1063/1.3685902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Hendricks J, Kärcher B, Lohmann U. Effects of ice nuclei on cirrus clouds in a global climate model. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015302] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Knopf DA, Rigg YJ. Homogeneous Ice Nucleation From Aqueous Inorganic/Organic Particles Representative of Biomass Burning: Water Activity, Freezing Temperatures, Nucleation Rates. J Phys Chem A 2011; 115:762-73. [DOI: 10.1021/jp109171g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel A. Knopf
- Institute for Terrestrial and Planetary Atmospheres/School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
| | - Yannick J. Rigg
- Institute for Terrestrial and Planetary Atmospheres/School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
14
|
Bogdan A, Molina MJ. Aqueous Aerosol May Build Up an Elevated Upper Tropospheric Ice Supersaturation and Form Mixed-Phase Particles after Freezing. J Phys Chem A 2010; 114:2821-9. [DOI: 10.1021/jp9086656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- A. Bogdan
- Department of Physics, P.O. Box 48, and Laboratory of Polymer Chemistry, Department of Chemistry, P.O. Box 55, University of Helsinki, FI-00014 Helsinki, Finland, Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria, and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356
| | - M. J. Molina
- Department of Physics, P.O. Box 48, and Laboratory of Polymer Chemistry, Department of Chemistry, P.O. Box 55, University of Helsinki, FI-00014 Helsinki, Finland, Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria, and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0356
| |
Collapse
|
15
|
McMeeking GR, Kreidenweis SM, Baker S, Carrico CM, Chow JC, Collett JL, Hao WM, Holden AS, Kirchstetter TW, Malm WC, Moosmüller H, Sullivan AP, Wold CE. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011836] [Citation(s) in RCA: 291] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|