1
|
GPS Precipitable Water Vapor Estimations over Costa Rica: A Comparison against Atmospheric Sounding and Moderate Resolution Imaging Spectrometer (MODIS). CLIMATE 2019. [DOI: 10.3390/cli7050063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The quantification of water vapor in tropical regions like Central America is necessary to estimate the influence of climate change on its distribution and the formation of precipitation. This work reports daily estimations of precipitable water vapor (PWV) using Global Positioning System (GPS) delay data over the Pacific region of Costa Rica during 2017. The GPS PWV measurements were compared against atmospheric sounding and Moderate Resolution Imaging Spectrometer (MODIS) data. When GPS PWV was calculated, relatively small biases between the mean atmospheric temperatures (Tm) from atmospheric sounding and the Bevis equation were found. The seasonal PWV fluctuations were controlled by two of the main circulation processes in Central America: the northeast trade winds and the latitudinal migration of the Intertropical Convergence Zone (ITCZ). No significant statistical differences were found for MODIS Terra during the dry season with respect GPS-based calculations (p > 0.05). A multiple linear regression model constructed based on surface meteorological variables can predict the GPS-based measurements with an average relative bias of −0.02 ± 0.19 mm/day (R2 = 0.597). These first results are promising for incorporating GPS-based meteorological applications in Central America where the prevailing climatic conditions offer a unique scenario to study the influence of maritime moisture inputs on the seasonal water vapor distribution.
Collapse
|
2
|
Schoeberl MR, Jensen EJ, Pfister L, Ueyama R, Wang T, Selkirk H, Avery M, Thornberry T, Dessler AE. Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:3984-4003. [PMID: 33868885 PMCID: PMC8051107 DOI: 10.1029/2018jd029849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/06/2019] [Indexed: 06/12/2023]
Abstract
The goal of this investigation is to understand the mechanism behind the observed high relative humidity with respect to ice (RHi) in the tropical region between ~14 km (150 hPa) and the tropopause, often referred to as the tropical tropopause layer (TTL). As shown by satellite, aircraft and balloon observations, high (>80%) RHi regions are widespread within the TTL. Regions with the highest RHi are co-located with extensive cirrus. During boreal winter, the TTL RHi is highest over the Tropical Western Pacific (TWP) with a weaker maximum over South America and Africa. In the winter, TTL temperatures are coldest and upward motion is the greatest in the TWP. It is this upward motion, driving humid air into the colder upper troposphere that produces the persistent high RHi and cirrus formation. Back trajectory calculations show that comparable adiabatic and diabatic processes contribute to this upward motion. We construct a bulk model of TWP TTL water vapor transport that includes cloud nucleation and ice microphysics that quantifies how upward motion drives the persistent high RHi in the TTL region. We find that atmospheric waves triggering cloud formation regulate the RHi, and that convection dehydrates the TTL. Our forward domain-filling trajectory (FDF) model is used to more precisely simulate the TTL spatial and vertical distribution of RHi. The observed RHi distribution is reproduced by the model and we show that convection increases RHi below the base of the TTL with little impact on the RHi in the TTL region.
Collapse
Affiliation(s)
| | - E. J. Jensen
- NASA Ames Research Center, Moffett Field, CA, USA
| | - L. Pfister
- NASA Ames Research Center, Moffett Field, CA, USA
| | - R. Ueyama
- NASA Ames Research Center, Moffett Field, CA, USA
| | - T. Wang
- Goddard Space Flight Center, Greenbelt, MD, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - H. Selkirk
- Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | | | - T. Thornberry
- NOAA Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO, USA
| | | |
Collapse
|
3
|
Barahona D, Molod A, Kalesse H. Direct estimation of the global distribution of vertical velocity within cirrus clouds. Sci Rep 2017; 7:6840. [PMID: 28754986 PMCID: PMC5533806 DOI: 10.1038/s41598-017-07038-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/21/2017] [Indexed: 12/03/2022] Open
Abstract
Cirrus clouds determine the radiative balance of the upper troposphere and the transport of water vapor across the tropopause. The representation of vertical wind velocity, W, in atmospheric models constitutes the largest source of uncertainty in the calculation of the cirrus formation rate. Using global atmospheric simulations with a spatial resolution of 7 km we obtain for the first time a direct estimate of the distribution of W at the scale relevant for cirrus formation, validated against long-term observations at two different ground sites. The standard deviation in W, σw, varies widely over the globe with the highest values resulting from orographic uplift and convection, and the lowest occurring in the Arctic. Globally about 90% of the simulated σw values are below 0.1 m s−1 and about one in 104 cloud formation events occur in environments with σw > 0.8 m s−1. Combining our estimate with reanalysis products and an advanced cloud formation scheme results in lower homogeneous ice nucleation frequency than previously reported, and a decreasing average ice crystal concentration with decreasing temperature. These features are in agreement with observations and suggest that the correct parameterization of σw is critical to simulate realistic cirrus properties.
Collapse
Affiliation(s)
- Donifan Barahona
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA.
| | - Andrea Molod
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Heike Kalesse
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
| |
Collapse
|
4
|
Davis SM, Rosenlof KH, Hassler B, Hurst DF, Read WG, Vömel H, Selkirk H, Fujiwara M, Damadeo R. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies. EARTH SYSTEM SCIENCE DATA 2016; 8:461-490. [PMID: 28966693 PMCID: PMC5619261 DOI: 10.5194/essd-8-461-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a "reference" satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at doi:10.7289/V5TD9VBX.
Collapse
Affiliation(s)
- Sean M. Davis
- NOAA Earth Systems Research Laboratory (ESRL), Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA
| | | | - Birgit Hassler
- NOAA Earth Systems Research Laboratory (ESRL), Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA
| | - Dale F. Hurst
- NOAA Earth Systems Research Laboratory (ESRL), Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado at Boulder, Boulder, CO, USA
| | - William G. Read
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Holger Vömel
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Henry Selkirk
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | | | | |
Collapse
|
5
|
Thompson AM, Miller SK, Tilmes S, Kollonige DW, Witte JC, Oltmans SJ, Johnson BJ, Fujiwara M, Schmidlin FJ, Coetzee GJR, Komala N, Maata M, bt Mohamad M, Nguyo J, Mutai C, Ogino SY, Da Silva FR, Leme NMP, Posny F, Scheele R, Selkirk HB, Shiotani M, Stübi R, Levrat G, Calpini B, Thouret V, Tsuruta H, Canossa JV, Vömel H, Yonemura S, Diaz JA, Tan Thanh NT, Thuy Ha HT. Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016911] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Jensen AA, Thompson AM, Schmidlin FJ. Classification of Ascension Island and Natal ozonesondes using self-organizing maps. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016573] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Feng S, Fu Y, Xiao Q. Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sha Feng
- Laboratory of Satellite Remote Sensing and Climate Environment, School of Earth and Space Sciences; University of Science and Technology of China; Hefei China
| | - Yunfei Fu
- Laboratory of Satellite Remote Sensing and Climate Environment, School of Earth and Space Sciences; University of Science and Technology of China; Hefei China
| | - Qingnong Xiao
- Laboratory of Satellite Remote Sensing and Climate Environment, School of Earth and Space Sciences; University of Science and Technology of China; Hefei China
- College of Marine Science; University of South Florida; St. Petersburg Florida USA
| |
Collapse
|
8
|
Pan LL, Munchak LA. Relationship of cloud top to the tropopause and jet structure from CALIPSO data. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015462] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Thompson AM, Allen AL, Lee S, Miller SK, Witte JC. Gravity and Rossby wave signatures in the tropical troposphere and lower stratosphere based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998–2007. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2009jd013429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Thompson AM, MacFarlane AM, Morris GA, Yorks JE, Miller SK, Taubman BF, Verver G, Vömel H, Avery MA, Hair JW, Diskin GS, Browell EV, Canossa JV, Kucsera TL, Klich CA, Hlavka DL. Convective and wave signatures in ozone profiles over the equatorial Americas: Views from TC4 2007 and SHADOZ. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012909] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Pfister L, Selkirk HB, Starr DO, Rosenlof K, Newman PA. A meteorological overview of the TC4 mission. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013316] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Toon OB, Starr DO, Jensen EJ, Newman PA, Platnick S, Schoeberl MR, Wennberg PO, Wofsy SC, Kurylo MJ, Maring H, Jucks KW, Craig MS, Vasques MF, Pfister L, Rosenlof KH, Selkirk HB, Colarco PR, Kawa SR, Mace GG, Minnis P, Pickering KE. Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013073] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|