1
|
Xia C, Sun J, Hu X, Shen X, Zhang Y, Zhang S, Wang J, Liu Q, Lu J, Liu S, Zhang X. Effects of hygroscopicity on aerosol optical properties and direct radiative forcing in Beijing: Based on two-year observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159233. [PMID: 36208762 DOI: 10.1016/j.scitotenv.2022.159233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The influence of relative humidity on aerosol properties and the direct radiative forcing of PM10 and PM1 were investigated in Beijing from January 2018 to December 2019. The annual mean scattering hygroscopic growth factor at RH = 80 % [f(80 %)] of PM10 and PM1 were 1.60 ± 0.24 and 1.58 ± 0.22, respectively. The variation of aerosol hygroscopic growth factors of PM10 and PM1 aerosols was similar, which is mainly due to the fact that aerosol scattering in Beijing is dominated by fine particles. The seasonal mean f(80 %) of PM10 from spring to winter were 1.66 ± 0.23, 1.71 ± 0.25, 1.51 ± 0.20, 1.49 ± 0.16, respectively, which were higher in spring and summer, and lower in autumn and winter. The diurnal variation of f(80 %) was relatively higher from 12:00 to 18:00, which could be related to the formation of secondary aerosols by photochemical reactions. f(80 %) shows a strong positive relationship with both the scattering Angström exponent (SAE) and the single scattering albedo (ω0) under dry conditions; therefore, the scattering hygroscopic growth factor could be estimated using these two parameters. The upscatter fraction (β) and single scattering albedo, which are the key aerosol optical properties for the calculation of direct radiative forcing, are also RH-dependent. As RH increases, the upscatter fraction (backscatter fraction) decreases and ω0 increases. The aerosol radiative forcing at RH 80 % was 1.48 times as that in the dry state. The sensitivity experiment showed that the variation in the scattering coefficient with relative humidity had the greatest influence on radiation forcing, followed by β and ω0. The seasonal variation of ΔF(80 %)/ΔF(dry) coincides with that of the aerosol hygroscopic growth factor. Our study suggests that understanding the influence of relative humidity on aerosol properties and direct radiative forcing is important for accurately estimating the radiative forcing of aerosols.
Collapse
Affiliation(s)
- Can Xia
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Junying Sun
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Xinyao Hu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Shen
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Sinan Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jialing Wang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Quan Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jiayuan Lu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Shuo Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Xia C, Sun J, Qi X, Shen X, Zhong J, Zhang X, Wang Y, Zhang Y, Hu X. Observational study of aerosol hygroscopic growth on scattering coefficient in Beijing: A case study in March of 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:239-247. [PMID: 31174121 DOI: 10.1016/j.scitotenv.2019.05.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/19/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
A humidified nephelometer system was deployed to measure the aerosol scattering coefficients at RH < 30% and RH in the range of 40 to 85% simultaneously in megacity Beijing in March 2018. The aerosol optical properties and aerosol hygroscopicity of two sizes (PM10 and PM1) during the pollution period, dust period and a new particle formation event (NPF) were analyzed. During the pollution period, the scattering and absorption coefficients increased dramatically with the accumulation of pollutants, while scattering Ångström exponent (SAE), submicron scattering fraction (Rsp), submicron absorption fraction (Rap) decreased, as well as single scattering albedo (SSA) rose slightly, which indicated the increasing contribution of larger particle to scattering and absorption, and enhanced the scattering ability of aerosols. The average PM10 mass scattering efficiency is 3.86 ± 1.19 m2 g-1 with a range of 2.05-5.74 m2 g-1 during the pollution period, and 0.40 ± 0.05 m2 g-1 during the dust period. Rsp at wavelength of 550 nm varied from 55.8% to 89.3% during the measurement period, with the average of 64.8% ± 5.2% and 73.1% ± 6.8% during the pollution period and dust period, respectively, which suggests that the aerosol scattering coefficient is mainly affected by fine particles. The average PM10 and PM1 aerosol scattering hygroscopic growth factors f(80%) are 1.75 ± 0.05 and 1.75 ± 0.04 during the pollution period, 1.14 ± 0.09 and 1.15 ± 0.06 during the dust period, 1.59 ± 0.05 and 1.60 ± 0.06 during the NPF event period, respectively. Aerosol scattering hygroscopic growth factors showed a strong correlation with the scattering Ångström exponent which suggests the hygroscopicity is much stronger for fine particles (SAE > 1.5) than the coarse particles (SAE < 1.0).
Collapse
Affiliation(s)
- Can Xia
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Junying Sun
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xuefei Qi
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaojing Shen
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Junting Zhong
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yaqiang Wang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xinyao Hu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Burgos MA, Andrews E, Titos G, Alados-Arboledas L, Baltensperger U, Day D, Jefferson A, Kalivitis N, Mihalopoulos N, Sherman J, Sun J, Weingartner E, Zieger P. A global view on the effect of water uptake on aerosol particle light scattering. Sci Data 2019; 6:157. [PMID: 31439840 PMCID: PMC6706437 DOI: 10.1038/s41597-019-0158-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
A reference dataset of multi-wavelength particle light scattering and hemispheric backscattering coefficients for different relative humidities (RH) between RH = 30 and 95% and wavelengths between λ = 450 nm and 700 nm is described in this work. Tandem-humidified nephelometer measurements from 26 ground-based sites around the globe, covering multiple aerosol types, have been re-analysed and harmonized into a single dataset. The dataset includes multi-annual measurements from long-term monitoring sites as well as short-term field campaign data. The result is a unique collection of RH-dependent aerosol light scattering properties, presented as a function of size cut. This dataset is important for climate and atmospheric model-measurement inter-comparisons, as a means to improve model performance, and may be useful for satellite and remote sensing evaluation using surface-based, in-situ measurements. Design Type(s) | spectral data collection and processing objective • data integration objective • time series design | Measurement Type(s) | light scattering | Technology Type(s) | Nephelometry | Factor Type(s) | geographic location • instrument • Environment • temporal_interval | Sample Characteristic(s) | United States of America • climate system • Canada • The Netherlands • Greece • Germany • Portuguese Republic • South Korea • China • United Kingdom • Finland • Switzerland • Maldives Archipelago • Brazil • Republic of Ireland • Niger • India • Kingdom of Spain • Kingdom of Norway |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
Affiliation(s)
- María A Burgos
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden. .,Bolin Centre for Climate Research, SE-10691, Stockholm, Sweden.
| | - Elisabeth Andrews
- Cooperative Institute for Research in Environmental Studies, University of Colorado, Boulder, USA
| | - Gloria Titos
- Andalusian Institute for Earth System Research, University of Granada, Granada, Spain
| | | | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Derek Day
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, USA
| | - Anne Jefferson
- Cooperative Institute for Research in Environmental Studies, University of Colorado, Boulder, USA.,Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
| | - Nikos Kalivitis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece
| | - James Sherman
- Department of Physics and Astronomy, Appalachian State University, Boone, USA
| | - Junying Sun
- Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Ernest Weingartner
- Institute for Sensing and Electronics, University of Applied Sciences, Windisch, Switzerland
| | - Paul Zieger
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691, Stockholm, Sweden. .,Bolin Centre for Climate Research, SE-10691, Stockholm, Sweden.
| |
Collapse
|
4
|
Dumka UC, Kaskaoutis DG, Sagar R, Chen J, Singh N, Tiwari S. First results from light scattering enhancement factor over central Indian Himalayas during GVAX campaign. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:124-138. [PMID: 28662426 DOI: 10.1016/j.scitotenv.2017.06.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
The present work examines the influence of relative humidity (RH), physical and optical aerosol properties on the light-scattering enhancement factor [f(RH=85%)] over central Indian Himalayas during the Ganges Valley Aerosol Experiment (GVAX). The aerosol hygroscopic properties were measured by means of DoE/ARM (US Department of Energy, Atmospheric Radiation Measurement) mobile facility focusing on periods with the regular instrumental operation (November-December 2011). The measured optical properties include aerosol light-scattering (σsp) and absorption (σap) coefficients and the intensive parameters i.e., single scattering albedo (SSA), scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and light scattering enhancement factor (f(RH)=σsp(RH, λ)/σsp(RHdry, λ)). The measurements were separated for sub-micron (<1μm, D1μm) and particles with diameter<10μm (D10μm) in order to examine the influence of particle size on f(RH) and enhancement rate (γ). The particle size affects the aerosol hygroscopicity since mean f(RH=85%) of 1.27±0.12 and 1.32±0.14 are found for D10μm and D1μm, respectively. These f(RH) values are relatively low suggesting the enhanced presence of soot and carbonaceous particles from biomass burning activities, which is verified via backward air-mass trajectories. Similarly, the light-scattering enhancement rates are ~0.20 and 0.17 for the D1μm and D10μm particles, respectively. However, a general tendency for increasing f(RH) and γ is shown for higher σsp and σap values indicating the presence of rather aged smoke plumes, coated with industrial aerosols over northern India, with mean SSA, SAE and AAE values of 0.92, 1.00 and 1.15 respectively. On the other hand, a moderate-to-small dependence of f(RH) and γ on SAE, AAE, and SSA was observed for both particle sizes. Furthermore, f(RH) exhibits an increasing tendency with the number of cloud condensation nuclei (NCCN) indicating larger particle hygroscopicity but without significant dependence on the activation ratio.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of observational Sciences, Nainital 263 001, India.
| | - D G Kaskaoutis
- Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 118 10 Athens, Greece
| | - Ram Sagar
- Aryabhatta Research Institute of observational Sciences, Nainital 263 001, India; NASI-Senior Scientist Platinum Jubilee Fellow, Indian Institute of Astrophysics, Bangalore 560 034, India
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200 433, China; Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing 210 023, China
| | - Narendra Singh
- Aryabhatta Research Institute of observational Sciences, Nainital 263 001, India
| | - Suresh Tiwari
- Indian Institute of Tropical Meteorology, Pune, New Delhi Branch, New Delhi 110 060, India
| |
Collapse
|
5
|
Wu Y, Wang X, Yan P, Zhang L, Tao J, Liu X, Tian P, Han Z, Zhang R. Investigation of hygroscopic growth effect on aerosol scattering coefficient at a rural site in the southern North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:76-84. [PMID: 28463703 DOI: 10.1016/j.scitotenv.2017.04.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Aerosol optical properties and the effect of hygroscopic growth on the scattering coefficients at a rural site in the southern North China Plain were investigated based on a two-month observation conducted in the summer of 2014. The scattering coefficient of dry aerosols was high, with a mean (±standard deviation) of 338.8±209.9Mm-1 (520nm) during the observation period. A noticeable enhancement in aerosol scattering due to hygroscopic growth was observed, e.g., by a factor of 2.28±0.69 at RH of 80% (referred to as f(RH=80%)) and 3.39±1.14 at RH of 85% (f(RH=85%)). The high content of water-soluble secondary inorganic aerosols (SIAs), accounting for 53.1% of fine particulate matter (i.e., PM2.5) on average, was mainly responsible for the high hygroscopicity. f(RH=80%) increased with increasing SIA mass fraction in PM2.5. This was especially the case when SIAs were mainly in finer particulate matter, i.e., PM1. A number of considerably low f(RH=80%) values was observed due to relatively low mass fraction of SIAs in PM1 despite high fraction in PM2.5. Particle size distributions, especially those of SIAs, also played a remarkable role in the hygroscopicity of ambient aerosols. No significant difference in hygroscopicity was found between different pollution episodes due to the dominance of SIAs in all the cases. Slightly higher hygroscopic growth factors were observed during the clean episode, which were attributed to the smaller particle sizes.
Collapse
Affiliation(s)
- Yunfei Wu
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Xiaojia Wang
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Yan
- CAWAS, Meteorological Observation Center of Chinese Meteorological Administration, Beijing, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Jun Tao
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Xinyu Liu
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China
| | - Ping Tian
- Beijing Weather Modification Office, Beijing, China
| | - Zhiwei Han
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Renjian Zhang
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|