1
|
Dadashazar H, Alipanah M, Hilario MRA, Crosbie E, Kirschler S, Liu H, Moore RH, Peters AJ, Scarino AJ, Shook M, Thornhill KL, Voigt C, Wang H, Winstead E, Zhang B, Ziemba L, Sorooshian A. Aerosol responses to precipitation along North American air trajectories arriving at Bermuda. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:16121-16141. [PMID: 34819950 PMCID: PMC8609468 DOI: 10.5194/acp-21-16121-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
North American pollution outflow is ubiquitous over the western North Atlantic Ocean, especially in winter, making this location a suitable natural laboratory for investigating the impact of precipitation on aerosol particles along air mass trajectories. We take advantage of observational data collected at Bermuda to seasonally assess the sensitivity of aerosol mass concentrations and volume size distributions to accumulated precipitation along trajectories (APT). The mass concentration of particulate matter with aerodynamic diameter less than 2.5 μm normalized by the enhancement of carbon monoxide above background (PM2.5/ΔCO) at Bermuda was used to estimate the degree of aerosol loss during transport to Bermuda. Results for December-February (DJF) show that most trajectories come from North America and have the highest APTs, resulting in a significant reduction (by 53 %) in PM2.5/ΔCO under high-APT conditions (> 13.5 mm) relative to low-APT conditions (< 0.9 mm). Moreover, PM2.5/ΔCO was most sensitive to increases in APT up to 5 mm (-0.044 μg m-3 ppbv-1 mm-1) and less sensitive to increases in APT over 5 mm. While anthropogenic PM2.5 constituents (e.g., black carbon, sulfate, organic carbon) decrease with high APT, sea salt, in contrast, was comparable between high- and low-APT conditions owing to enhanced local wind and sea salt emissions in high-APT conditions. The greater sensitivity of the fine-mode volume concentrations (versus coarse mode) to wet scavenging is evident from AErosol RObotic NETwork (AERONET) volume size distribution data. A combination of GEOS-Chem model simulations of the 210Pb submicron aerosol tracer and its gaseous precursor 222Rn reveals that (i) surface aerosol particles at Bermuda are most impacted by wet scavenging in winter and spring (due to large-scale precipitation) with a maximum in March, whereas convective scavenging plays a substantial role in summer; and (ii) North American 222Rn tracer emissions contribute most to surface 210Pb concentrations at Bermuda in winter (~75 %-80 %), indicating that air masses arriving at Bermuda experience large-scale precipitation scavenging while traveling from North America. A case study flight from the ACTIVATE field campaign on 22 February 2020 reveals a significant reduction in aerosol number and volume concentrations during air mass transport off the US East Coast associated with increased cloud fraction and precipitation. These results highlight the sensitivity of remote marine boundary layer aerosol characteristics to precipitation along trajectories, especially when the air mass source is continental outflow from polluted regions like the US East Coast.
Collapse
Affiliation(s)
- Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Majid Alipanah
- Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | | | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | - Simon Kirschler
- Institute for Atmospheric Physics, DLR, German Aerospace Center, Oberpfaffenhofen, Germany
- Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
| | - Hongyu Liu
- National Institute of Aerospace, Hampton, VA, USA
| | | | - Andrew J. Peters
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George’s, GE01, Bermuda
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | | | | | - Christiane Voigt
- Institute for Atmospheric Physics, DLR, German Aerospace Center, Oberpfaffenhofen, Germany
- Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward Winstead
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | - Bo Zhang
- National Institute of Aerospace, Hampton, VA, USA
| | - Luke Ziemba
- NASA Langley Research Center, Hampton, VA, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Abstract
Atmospheric aerosol deposition (wet and dry) is an important source of macro and micronutrients (N, P, C, Si, and Fe) to the oceans. Most of the mass flux of air particles is made of fine mineral particles emitted from arid or semi-arid areas (e.g., deserts) and transported over long distances until deposition to the oceans. However, this atmospheric deposition is affected by anthropogenic activities, which heavily impacts the content and composition of aerosol constituents, contributing to the presence of potentially toxic elements (e.g., Cu). Under this scenario, the deposition of natural and anthropogenic aerosols will impact the biogeochemical cycles of nutrients and toxic elements in the ocean, also affecting (positively or negatively) primary productivity and, ultimately, the marine biota. Given the importance of atmospheric aerosol deposition to the oceans, this paper reviews the existing knowledge on the impacts of aerosol deposition on the biogeochemistry of the upper ocean, and the different responses of marine biota to natural and anthropogenic aerosol input.
Collapse
|
3
|
Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P. Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:10.1029/2019jd031626. [PMID: 32699733 PMCID: PMC7375207 DOI: 10.1029/2019jd031626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | - Andrea F. Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Rachel A. Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | | | | | | | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | | | - David Painemal
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Joseph Schlosser
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | | | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
| |
Collapse
|
4
|
Baker AR, Landing WM, Bucciarelli E, Cheize M, Fietz S, Hayes CT, Kadko D, Morton PL, Rogan N, Sarthou G, Shelley RU, Shi Z, Shiller A, van Hulten MMP. Trace element and isotope deposition across the air-sea interface: progress and research needs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20160190. [PMID: 29035268 PMCID: PMC5069538 DOI: 10.1098/rsta.2016.0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 05/24/2023]
Abstract
The importance of the atmospheric deposition of biologically essential trace elements, especially iron, is widely recognized, as are the difficulties of accurately quantifying the rates of trace element wet and dry deposition and their fractional solubility. This paper summarizes some of the recent progress in this field, particularly that driven by the GEOTRACES, and other, international research programmes. The utility and limitations of models used to estimate atmospheric deposition flux, for example, from the surface ocean distribution of tracers such as dissolved aluminium, are discussed and a relatively new technique for quantifying atmospheric deposition using the short-lived radionuclide beryllium-7 is highlighted. It is proposed that this field will advance more rapidly by using a multi-tracer approach, and that aerosol deposition models should be ground-truthed against observed aerosol concentration data. It is also important to improve our understanding of the mechanisms and rates that control the fractional solubility of these tracers. Aerosol provenance and chemistry (humidity, acidity and organic ligand characteristics) play important roles in governing tracer solubility. Many of these factors are likely to be influenced by changes in atmospheric composition in the future. Intercalibration exercises for aerosol chemistry and fractional solubility are an essential component of the GEOTRACES programme.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
Collapse
Affiliation(s)
- A R Baker
- Centre for Ocean and Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - W M Landing
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - E Bucciarelli
- LEMAR/IUEM, UMR 6539 CNRS-UBO-IRD-IFREMER, Place Nicolas Copernic, Technopôle Brest Iroise, 29280 Plouzané, France
| | - M Cheize
- LEMAR/IUEM, UMR 6539 CNRS-UBO-IRD-IFREMER, Place Nicolas Copernic, Technopôle Brest Iroise, 29280 Plouzané, France
| | - S Fietz
- Department of Earth Sciences, Stellenbosch University, 7600 Stellenbosch, South Africa
| | - C T Hayes
- Department of Marine Science, University of Southern Mississippi, Stennis Space Center, Kiln, MS 39529, USA
| | - D Kadko
- Applied Research Center, Florida International University, 10555 West Flagler St., Engineering Center Suite 2100, Miami, FL 33174, USA
| | - P L Morton
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - N Rogan
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, 1-3 Wischhofstrasse, Kiel 24148, Germany
| | - G Sarthou
- LEMAR/IUEM, UMR 6539 CNRS-UBO-IRD-IFREMER, Place Nicolas Copernic, Technopôle Brest Iroise, 29280 Plouzané, France
| | - R U Shelley
- LEMAR/IUEM, UMR 6539 CNRS-UBO-IRD-IFREMER, Place Nicolas Copernic, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Z Shi
- School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - A Shiller
- Department of Marine Science, University of Southern Mississippi, Stennis Space Center, Kiln, MS 39529, USA
| | - M M P van Hulten
- Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, CEA-Orme des Merisiers, 91191 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Jiwen L, Starovoitova VN, Wells DP. Long-term variations in the surface air 7Be concentration and climatic changes. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2013; 116:42-47. [PMID: 23103574 DOI: 10.1016/j.jenvrad.2012.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/17/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
We have used EML Surface Air Sampling Program (SASP) data to analyze the long-term trend in (7)Be surface concentration and address possible correlation between this long-term trend and climatic changes, namely changes in precipitation patterns and temperature. In this paper we present (7)Be concentration data from 23 sites, spanning over 25 years, all over the world, and extract long-term trend parameter using two independent techniques. The (7)Be concentrations in most stations show a pronounced decreasing trend, potentially corresponding to statistically significant changes in transporting (7)Be from upper atmosphere source to these sites. Weak negative correlation between (7)Be concentration and amount of precipitation was also observed. However, more data from more representative sites around the world are needed the statistical robustness of this trend.
Collapse
Affiliation(s)
- Liu Jiwen
- Idaho State University, Idaho Accelerator Center, 1500 Alvin Ricken Dr., Pocatello, ID 83201, USA
| | | | | |
Collapse
|