1
|
Zurkowski CC, Yang J, Miozzi F, Vitale S, O 'Bannon EF, Jenei Z, Chariton S, Prakapenka V, Fei Y. Exploring toroidal anvil profiles for larger sample volumes above 4 Mbar. Sci Rep 2024; 14:11412. [PMID: 38762593 PMCID: PMC11102561 DOI: 10.1038/s41598-024-61861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30-50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to our P-V data collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.
Collapse
Affiliation(s)
- Claire C Zurkowski
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC, 20015, USA.
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94600, USA.
| | - Jing Yang
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC, 20015, USA
| | - Francesca Miozzi
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC, 20015, USA
| | - Suzy Vitale
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC, 20015, USA
| | - Earl F O 'Bannon
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94600, USA
| | - Zsolt Jenei
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94600, USA
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Building 434A, Argonne, IL, 60439, USA
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Building 434A, Argonne, IL, 60439, USA
| | - Yingwei Fei
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC, 20015, USA.
| |
Collapse
|
2
|
Kong P, Minkov VS, Kuzovnikov MA, Drozdov AP, Besedin SP, Mozaffari S, Balicas L, Balakirev FF, Prakapenka VB, Chariton S, Knyazev DA, Greenberg E, Eremets MI. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat Commun 2021; 12:5075. [PMID: 34417471 PMCID: PMC8379216 DOI: 10.1038/s41467-021-25372-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
The discovery of superconducting H3S with a critical temperature Tc∼200 K opened a door to room temperature superconductivity and stimulated further extensive studies of hydrogen-rich compounds stabilized by high pressure. Here, we report a comprehensive study of the yttrium-hydrogen system with the highest predicted Tcs among binary compounds and discuss the contradictions between different theoretical calculations and experimental data. We synthesized yttrium hydrides with the compositions of YH3, YH4, YH6 and YH9 in a diamond anvil cell and studied their crystal structures, electrical and magnetic transport properties, and isotopic effects. We found superconductivity in the Im-3m YH6 and P63/mmc YH9 phases with maximal Tcs of ∼220 K at 183 GPa and ∼243 K at 201 GPa, respectively. Fm-3m YH10 with the highest predicted Tc > 300 K was not observed in our experiments, and instead, YH9 was found to be the hydrogen-richest yttrium hydride in the studied pressure and temperature range up to record 410 GPa and 2250 K.
Collapse
Affiliation(s)
- Panpan Kong
- Max-Planck-Institut für Chemie, Mainz, Germany
| | | | - Mikhail A Kuzovnikov
- Institute of Solid State Physics Russian Academy of Sciences, Chernogolovka, Moscow District, Russia
| | | | | | - Shirin Mozaffari
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Luis Balicas
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA
| | - Dmitry A Knyazev
- Max-Planck-Institut für Mikrostrukturphysik, Halle (Saale), Germany
| | - Eran Greenberg
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
3
|
Fratanduono DE, Millot M, Braun DG, Ali SJ, Fernandez-Pañella A, Seagle CT, Davis JP, Brown JL, Akahama Y, Kraus RG, Marshall MC, Smith RF, O’Bannon EF, McNaney JM, Eggert JH. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science 2021; 372:1063-1068. [DOI: 10.1126/science.abh0364] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 11/02/2022]
Affiliation(s)
| | - M. Millot
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - D. G. Braun
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - S. J. Ali
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | - C. T. Seagle
- Sandia National Laboratories, Albuquerque, NM 87185-1195, USA
| | - J.-P. Davis
- Sandia National Laboratories, Albuquerque, NM 87185-1195, USA
| | - J. L. Brown
- Sandia National Laboratories, Albuquerque, NM 87185-1195, USA
| | - Y. Akahama
- Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigohri 678-1297, Japan
| | - R. G. Kraus
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - M. C. Marshall
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - R. F. Smith
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - E. F. O’Bannon
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - J. M. McNaney
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - J. H. Eggert
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
4
|
Padilla Espinosa IM, Jacobs TDB, Martini A. Evaluation of Force Fields for Molecular Dynamics Simulations of Platinum in Bulk and Nanoparticle Forms. J Chem Theory Comput 2021; 17:4486-4498. [PMID: 34061519 DOI: 10.1021/acs.jctc.1c00434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the size- and shape-dependent properties of platinum nanoparticles is critical for enabling the design of nanoparticle-based applications with optimal and potentially tunable functionality. Toward this goal, we evaluated nine different empirical potentials with the purpose of accurately modeling faceted platinum nanoparticles using molecular dynamics simulation. First, the potentials were evaluated by computing bulk and surface properties-surface energy, lattice constant, stiffness constants, and the equation of state-and comparing these to prior experimental measurements and quantum mechanics calculations. Then, the potentials were assessed in terms of the stability of cubic and icosahedral nanoparticles with faces in the {100} and {111} planes, respectively. Although none of the force fields predicts all the evaluated properties with perfect accuracy, one potential-the embedded atom method formalism with a specific parameter set-was identified as best able to model platinum in both bulk and nanoparticle forms.
Collapse
Affiliation(s)
- Ingrid M Padilla Espinosa
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95340, United States
| | - Tevis D B Jacobs
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95340, United States
| |
Collapse
|
5
|
Heinen BJ, Drewitt JWE, Walter MJ, Clapham C, Qin F, Kleppe AK, Lord OT. Internal resistive heating of non-metallic samples to 3000 K and >60 GPa in the diamond anvil cell. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:063904. [PMID: 34243587 DOI: 10.1063/5.0038917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
High pressure-temperature experiments provide information on the phase diagrams and physical characteristics of matter at extreme conditions and offer a synthesis pathway for novel materials with useful properties. Experiments recreating the conditions of planetary interiors provide important constraints on the physical properties of constituent phases and are key to developing models of planetary processes and interpreting geophysical observations. The laser-heated diamond anvil cell (DAC) is currently the only technique capable of routinely accessing the Earth's lower-mantle geotherm for experiments on non-metallic samples, but large temperature uncertainties and poor temperature stability limit the accuracy of measured data and prohibits analyses requiring long acquisition times. We have developed a novel internal resistive heating (IRH) technique for the DAC and demonstrate stable heating of non-metallic samples up to 3000 K and 64 GPa, as confirmed by in situ synchrotron x-ray diffraction and simultaneous spectroradiometric temperature measurement. The temperature generated in our IRH-DAC can be precisely controlled and is extremely stable, with less than 20 K variation over several hours without any user intervention, resulting in temperature uncertainties an order of magnitude smaller than those in typical laser-heating experiments. Our IRH-DAC design, with its simple geometry, provides a new and highly accessible tool for investigating materials at extreme conditions. It is well suited for the rapid collection of high-resolution P-V-T data, precise demarcation of phase boundaries, and experiments requiring long acquisition times at high temperature. Our IRH technique is ideally placed to exploit the move toward coherent nano-focused x-ray beams at next-generation synchrotron sources.
Collapse
Affiliation(s)
- Benedict J Heinen
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS81RJ, United Kingdom
| | - James W E Drewitt
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS81RJ, United Kingdom
| | - Michael J Walter
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road NW, Washington, DC 20015, USA
| | - Charles Clapham
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS81RJ, United Kingdom
| | - Fei Qin
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS81RJ, United Kingdom
| | - Annette K Kleppe
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX110DE, United Kingdom
| | - Oliver T Lord
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS81RJ, United Kingdom
| |
Collapse
|
6
|
Pigott JS, Velisavljevic N, Moss EK, Popov D, Park C, Van Orman JA, Draganic N, Vohra YK, Sturtevant BT. Room-temperature compression and equation of state of body-centered cubic zirconium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:12LT02. [PMID: 31796651 DOI: 10.1088/1361-648x/ab5e6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zirconium (Zr) has properties conducive to nuclear applications and exhibits complex behavior at high pressure with respect to the effects of impurities, deviatoric stress, kinetics, and grain growth which makes it scientifically interesting. Here, we present experimental results on the 300 K equation of state of ultra-high purity Zr obtained using the diamond-anvil cell coupled with synchrotron-based x-ray diffraction and electrical resistance measurements. Based on quasi-hydrostatic room-temperature compression in helium to pressure P = 69.4(2) GPa, we constrain the bulk modulus and its pressure derivative of body-centered cubic (bcc) β-Zr to be K = 224(2) GPa and K' = 2.6(1) at P = 37.0(1) GPa. A Monte Carlo approach was developed to accurately quantify the uncertainties in K and K'. In the Monte Carlo simulations, both the unit-cell volume and pressure vary according to their experimental uncertainty. Our high-pressure studies do not indicate additional isostructural volume collapse in the bcc phase of Zr in the 56-58 GPa pressure range.
Collapse
Affiliation(s)
- Jeffrey S Pigott
- Shock & Detonation Physics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Picosecond Acoustics Technique to Measure the Sound Velocities of Fe-Si Alloys and Si Single-Crystals at High Pressure. MINERALS 2020. [DOI: 10.3390/min10030214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe here a time resolved pump-probe laser technique—picosecond interferometry—which has been combined with diamond anvil cells (DAC). This method enables the measurement of the longitudinal sound velocity up to Mbar pressure for any kind of material (solids, liquids, metals, insulators). We also provide a description of picosecond acoustics data analysis in order to determine the complete set of elastic constants for single crystals. To illustrate such capabilities, results are given on the pressure dependence of the acoustic properties for prototypical cases: polycrystal (hcp-Fe-5 wt% Si up to 115 GPa) and single-crystal (Si up to 10 GPa).
Collapse
|
8
|
Axial Compressibility and Thermal Equation of State of Hcp Fe–5wt% Ni–5wt% Si. MINERALS 2020. [DOI: 10.3390/min10020098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowledge of the elastic properties and equations of state of iron and iron alloys are of fundamental interest in Earth and planetary sciences as they are the main constituents of telluric planetary cores. Here, we present results of X-ray diffraction measurements on a ternary Fe–Ni–Si alloy with 5 wt% Ni and 5 wt% Si, quasi-hydrostatically compressed at ambient temperature up to 56 GPa, and under simultaneous high pressure and high temperature conditions, up to 74 GPa and 1750 K. The established pressure dependence of the c/a axial ratio at ambient temperature and the pressure–volume–temperature (P–V–T) equation of state are compared with previous work and literature studies. Our results show that Ni addition does not affect the compressibility and axial compressibility of Fe–Si alloys at ambient temperature, but we suggest that ternary Fe–Ni–Si alloys might have a reduced thermal expansion in respect to pure Fe and binary Fe–Si alloys. In particular, once the thermal equations of state are considered together with velocity measurements, we conclude that elements other than Si and Ni have to be present in the Earth’s inner core to account for both density and seismic velocities.
Collapse
|
9
|
O'Bannon EF, Jenei Z, Cynn H, Lipp MJ, Jeffries JR. Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:111501. [PMID: 30501343 DOI: 10.1063/1.5049720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/14/2018] [Indexed: 06/09/2023]
Abstract
Recently, static pressures of more than 1.0 TPa have been reported, which raises the question: what is the maximum static pressure that can be achieved using diamond anvil cell techniques? Here we compile culet diameters, bevel diameters, bevel angles, and reported pressures from the literature. We fit these data and find an expression that describes the maximum pressure as a function of the culet diameter. An extrapolation of our fit reveals that a culet diameter of 1 μm should achieve a pressure of ∼1.8 TPa. Additionally, for pressure generation of ∼400 GPa with a single beveled diamond anvil, the most commonly reported parameters are a culet diameter of ∼20 μm, a bevel angle of 8.5°, and a bevel diameter to culet diameter ratio between 14 and 18. Our analysis shows that routinely generating pressures more than ∼300 GPa likely requires diamond anvil geometries that are fundamentally different from a beveled or double beveled anvil (e.g., toroidal or double stage anvils) and culet diameters that are ≤20 μm.
Collapse
Affiliation(s)
- Earl F O'Bannon
- Physical and Life Sciences, Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Zsolt Jenei
- Physical and Life Sciences, Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Hyunchae Cynn
- Physical and Life Sciences, Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Magnus J Lipp
- Physical and Life Sciences, Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Jason R Jeffries
- Physical and Life Sciences, Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| |
Collapse
|
10
|
X-Ray Diffraction under Extreme Conditions at the Advanced Light Source. QUANTUM BEAM SCIENCE 2018. [DOI: 10.3390/qubs2010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Smirnov NA. Ab initio calculations of the elastic and thermodynamic properties of gold under pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:105402. [PMID: 28075332 DOI: 10.1088/1361-648x/aa58ca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin-orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: [Formula: see text]. The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.
Collapse
Affiliation(s)
- N A Smirnov
- Russian Federal Nuclear Center-Institute of Technical Physics, 456770, Snezhinsk, Russia
| |
Collapse
|
12
|
Hong X, Ehm L, Zhong Z, Ghose S, Duffy TS, Weidner DJ. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures. Sci Rep 2016; 6:21434. [PMID: 26902122 PMCID: PMC4763265 DOI: 10.1038/srep21434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 11/28/2022] Open
Abstract
We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.
Collapse
Affiliation(s)
- Xinguo Hong
- Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Ehm
- Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhong Zhong
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sanjit Ghose
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thomas S. Duffy
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Donald J. Weidner
- Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Hong X, Duffy TS, Ehm L, Weidner DJ. Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:485303. [PMID: 26570982 DOI: 10.1088/0953-8984/27/48/485303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au.
Collapse
Affiliation(s)
- Xinguo Hong
- Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|