2
|
Scheller EL, Razzell Hollis J, Cardarelli EL, Steele A, Beegle LW, Bhartia R, Conrad P, Uckert K, Sharma S, Ehlmann BL, Abbey WJ, Asher SA, Benison KC, Berger EL, Beyssac O, Bleefeld BL, Bosak T, Brown AJ, Burton AS, Bykov SV, Cloutis E, Fairén AG, DeFlores L, Farley KA, Fey DM, Fornaro T, Fox AC, Fries M, Hickman-Lewis K, Hug WF, Huggett JE, Imbeah S, Jakubek RS, Kah LC, Kelemen P, Kennedy MR, Kizovski T, Lee C, Liu Y, Mandon L, McCubbin FM, Moore KR, Nixon BE, Núñez JI, Rodriguez Sanchez-Vahamonde C, Roppel RD, Schulte M, Sephton MA, Sharma SK, Siljeström S, Shkolyar S, Shuster DL, Simon JI, Smith RJ, Stack KM, Steadman K, Weiss BP, Werynski A, Williams AJ, Wiens RC, Williford KH, Winchell K, Wogsland B, Yanchilina A, Yingling R, Zorzano MP. Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry. Science 2022; 378:1105-1110. [PMID: 36417498 DOI: 10.1126/science.abo5204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.
Collapse
Affiliation(s)
- Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Razzell Hollis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,The Natural History Museum, London, UK
| | - Emily L Cardarelli
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Luther W Beegle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Pamela Conrad
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Kyle Uckert
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sunanda Sharma
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Bethany L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William J Abbey
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
| | - Eve L Berger
- Texas State University, San Marcos, TX, USA.,Jacobs Johnson Space Center Engineering, Technology and Science Contract, Houston, TX, USA.,NASA Johnson Space Center, Houston, TX, USA
| | - Olivier Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Sergei V Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ed Cloutis
- Geography, The University of Winnipeg, Winnipeg, MB, Canada
| | - Alberto G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY, USA
| | - Lauren DeFlores
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kenneth A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
| | | | - Marc Fries
- NASA Johnson Space Center, Houston, TX, USA
| | - Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | | | | | | | | | - Linda C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Peter Kelemen
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | | | - Tanya Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Carina Lee
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
| | - Yang Liu
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Lucia Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | | | - Kelsey R Moore
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Jorge I Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | - Ryan D Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitchell Schulte
- Mars Exploration Program, NASA Headquarters, Washington, DC, USA
| | - Mark A Sephton
- Earth Science and Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, UK
| | - Shiv K Sharma
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, MD, USA.,NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - David L Shuster
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | | | - Rebecca J Smith
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Kathryn M Stack
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kim Steadman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin P Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Roger C Wiens
- Los Alamos National Laboratory, Los Alamos, NM, USA.,Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Kenneth H Williford
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | | | - Brittan Wogsland
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | - Maria-Paz Zorzano
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain
| |
Collapse
|
4
|
Tarnas JD, Mustard JF, Sherwood Lollar B, Stamenković V, Cannon KM, Lorand JP, Onstott TC, Michalski JR, Warr O, Palumbo AM, Plesa AC. Earth-like Habitable Environments in the Subsurface of Mars. ASTROBIOLOGY 2021; 21:741-756. [PMID: 33885329 DOI: 10.1089/ast.2020.2386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Earth's deep continental subsurface, where groundwaters are often isolated for >106 to 109 years, energy released by radionuclides within rock produces oxidants and reductants that drive metabolisms of non-photosynthetic microorganisms. Similar processes could support past and present life in the martian subsurface. Sulfate-reducing microorganisms are common in Earth's deep subsurface, often using hydrogen derived directly from radiolysis of pore water and sulfate derived from oxidation of rock-matrix-hosted sulfides by radiolytically derived oxidants. Radiolysis thus produces redox energy to support a deep biosphere in groundwaters isolated from surface substrate input for millions to billions of years on Earth. Here, we demonstrate that radiolysis by itself could produce sufficient redox energy to sustain a habitable environment in the subsurface of present-day Mars, one in which Earth-like microorganisms could survive wherever groundwater exists. We show that the source localities for many martian meteorites are capable of producing sufficient redox nutrients to sustain up to millions of sulfate-reducing microbial cells per kilogram rock via radiolysis alone, comparable to cell densities observed in many regions of Earth's deep subsurface. Additionally, we calculate variability in supportable sulfate-reducing cell densities between the martian meteorite source regions. Our results demonstrate that martian subsurface groundwaters, where present, would largely be habitable for sulfate-reducing bacteria from a redox energy perspective via radiolysis alone. We present evidence for crustal regions that could support especially high cell densities, including zones with high sulfide concentrations, which could be targeted by future subsurface exploration missions.
Collapse
Affiliation(s)
- J D Tarnas
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J F Mustard
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | | | - V Stamenković
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - K M Cannon
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, USA
- Space Resources Program, Colorado School of Mines, Golden, Colorado, USA
| | - J-P Lorand
- Université de Nantes Laboratoire de Planétologie et Géodynamique de Nantes, Nantes, France
| | - T C Onstott
- Princeton University Department of Geosciences, Princeton, New Jersey, USA
| | - J R Michalski
- University of Hong Kong Division of Earth & Planetary Science, Hong Kong
| | - O Warr
- University of Toronto Department of Earth Sciences, Toronto, Canada
| | - A M Palumbo
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | - A-C Plesa
- German Aerospace Center (DLR) Institute of Planetary Research, Berlin, Germany
| |
Collapse
|