1
|
Liu X, He X, Zhang C, Song Y, Xie S, Liu C, Liu P, Zhang Y, Mu Y, Liu J. Characteristics and sources of peroxyacetyl nitrate (PAN) in the rural North China Plain: Results from 1-year continuous observations. J Environ Sci (China) 2024; 138:719-731. [PMID: 38135434 DOI: 10.1016/j.jes.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 12/24/2023]
Abstract
Peroxyacetyl nitrate (PAN) is an important photochemical pollutant in the troposphere, whereas long-term measurements are scarce in rural areas in North China Plain (NCP), resulting in unclear seasonal variations and sources of PAN in rural NCP. In this study, we conducted a 1-year observation of PAN during 2021-2022 at the rural NCP site. The average concentrations of PAN were 1.10, 0.75, 0.65, and 0.88 ppbv in spring, summer, autumn, and winter, respectively, with a 1-year average of 0.81 ± 0.60 ppbv. Calculations indicate that the loss of PAN through thermal decomposition in summer accounts for 43.2% of the total formed PAN, which is an important reason for the low concentration of PAN in summer. We speculate that since the correlation between PAN and O3 in winter is significantly lower than that in other seasons, the observed regional transport of PAN cannot be ignored in winter. Through budget analysis, regional transport accounted for 12.8% and 55.9% of the observed PAN on the spring and winter pollution days, respectively, which showed that regional transport played key roles during the photochemical pollution of the rural NCP in winter. The potential source contribution function revealed that the transported PAN mainly comes from southern Hebei in spring. In winter, the transported PAN was mainly from Langfang, Hengshui, and southern Beijing. Our findings may aid in understanding PAN variations in different seasons in rural areas and highlight the impact of regional transport on the PAN budget.
Collapse
Affiliation(s)
- Xin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyang Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Xu W, Zhang G, Wang Y, Tong S, Zhang W, Ma Z, Lin W, Kuang Y, Yin L, Xu X. Aerosol Promotes Peroxyacetyl Nitrate Formation During Winter in the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3568-3581. [PMID: 33656863 DOI: 10.1021/acs.est.0c08157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peroxyacetyl nitrate (PAN) is an important indicator for photochemical pollution, formed similar to ozone in the photochemistry of certain volatile organic compounds (VOCs) in the presence of nitrogen oxides, and has displayed surprisingly high concentrations during wintertime that were better correlated to particulate rather than ozone concentrations, for which the reasons remained unknown. In this study, wintertime observations of PAN, VOCs, PM2.5, HONO, and various trace gases were investigated to find the relationship between aerosols and wintertime PAN formation. Wintertime photochemical pollution was affirmed by the high PAN concentrations (average: 1.2 ± 1.1 ppb, maximum: 7.1 ppb), despite low ozone concentrations. PAN concentrations were determined by its oxygenated VOC (OVOC) precursor concentrations and the NO/NO2 ratios and can be well parameterized based on the understanding of their chemical relationship. Data analysis and box modeling results suggest that PAN formation was mostly contributed by VOC aging processes involving OH oxidation or photolysis rather than ozonolysis pathways. Heterogeneous reactions on aerosols have supplied key photochemical oxidants such as HONO, which produced OH radicals upon photolysis, promoting OVOC formation and thereby enhancing PAN production, explaining the observed PM2.5-OVOC-PAN intercorrelation. In turn, parts of these OVOCs might participate in the formation of secondary organic aerosol, further aggravating haze pollution as a feedback. Low wintertime temperatures enable the long-range transport of PAN to downwind regions, and how that will impact their oxidation capacity and photochemical pollution requires further assessment in future studies.
Collapse
Affiliation(s)
- Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ying Wang
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Shengrui Tong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenqian Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiqiang Ma
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Weili Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Liyuan Yin
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaobin Xu
- State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Zhang G, Xia L, Zang K, Xu W, Zhang F, Liang L, Yao B, Lin W, Mu Y. The abundance and inter-relationship of atmospheric peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), O 3, and NO y during the wintertime in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137388. [PMID: 32105937 DOI: 10.1016/j.scitotenv.2020.137388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Although atmospheric peroxyacetyl nitrate (PAN) and O3 have been extensively measured in Beijing during the summertime, the abundances of PAN, peroxypropionyl nitrate (PPN) and the total odd-reactive nitrogen budget (NOy) and their inter-relationship have been studied comparatively less in the winter. Here we measured atmospheric PAN, PPN, O3, NOx, and NOy in Beijing from Nov. 2012 to Jan. 2013. Compared with our previous results in the summertime, much lower levels were observed in the winter, with the mean and maximum values of 311.8 and 1465 pptv for PAN, 52.8 and 850.6 pptv for PPN, and 11.6 and 36.7 ppbv for O3. In contrast, high levels were found as 94.2 and 374.9 ppbv for NOy, with a major constituent of NOx (75.9%). The source to the west and northwest made the significant contribution to the relatively high O3 concentrations during nighttime. PAN concentrations were highly related with the PAN-rich air mass transported from the southeast during the nighttime, whereas predominated by local photochemical production during the daylight. The distributions of NOx and NOy were dominated by local emission and photochemical production during daylight but also influenced by air masses transported from south direction during nighttime. Significant positive correlation (R2 = 0.9, p < 0.0001) between PAN and PPN with a slope (∆PPN/∆PAN) of 0.17 indicated that anthropogenic volatile organic compounds (AVOCs) dominated the photochemical formation of PANs in Beijing, and the independent relationship between the PPN/PAN ratio and PAN (>500 pptv) implied a steady state between PAN and PPN achieving rapidly in the polluted air masses. Negative correlation and slopes between PAN and O3 likely resulted from their weak photochemical productions in the winter, coupled with the large NO sources which acted as a local sink for O3, but much less so for PAN due to its enhanced thermal stability under low temperature.
Collapse
Affiliation(s)
- Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lingjun Xia
- Jiangxi Ecological Meteorology Center, Nanchang 330096, Jiangxi, China
| | - Kunpeng Zang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Fang Zhang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Linlin Liang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Bo Yao
- Meteorological Observation Centre (MOC), China Meteorological Administration (CMA), Beijing 100081, China
| | - Weili Lin
- Minzu University of China, Beijing 100081, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Zhu H, Gao T, Zhang J. Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23143-23156. [PMID: 29860696 DOI: 10.1007/s11356-018-2412-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Atmospheric concentrations of peroxyacetyl nitrate (PAN) were measured in Ziyang in December 2012 to provide basic knowledge of PAN in the Chengyu district and offer recommendations for air pollution management. The PAN pollution was relatively severe in Ziyang in winter, with the maximum and average PAN concentrations of 1.61 and 0.55 ppbv, respectively, and a typical single-peak diurnal trend in PAN and theoretical PAN lost by thermal decomposition (TPAN) were observed. PAN and O3 concentrations were correlated (R2 = 0.52) and the ratios of daily maximum PAN to O3 ([PAN]/[O3] ratio) ranged from 0.013 to 0.108, with an average of 0.038. Both acetone and methyl ethyl ketone (MEK) were essential for producing the acetylperoxy radicals (PA) and subsequently PAN in Ziyang in winter, and PAN concentrations at the sampling site exhibited more sensitivity to volatile organic compound (VOC) concentrations than nitrogen oxide (NOx) levels. Therefore, management should focus on reducing VOCs emissions, in particular those that produce acetone and MEK through photolysis and oxidizing reactions. In addition, the influence of relative humidity (RH) on the heterogeneous reactions between PAN and PM2.5 in the atmospheric environment may have led to the strong correlation between observed PM2.5 and PAN in Ziyang in winter. Furthermore, a typical air pollution event was observed on 17-18 December 2012, which Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and PSCF simulations suggest that it was caused by the local formation and the regional transport of polluted air masses from Hanzhong, Nanchong, and Chengdu.
Collapse
Affiliation(s)
- Honglin Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Haidian District, Beijing, 100871, China
| | - Tianyu Gao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Haidian District, Beijing, 100871, China
| | - Jianbo Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Haidian District, Beijing, 100871, China.
| |
Collapse
|
5
|
Zhang G, Mu Y, Liu J, Zhang C, Zhang Y, Zhang Y, Zhang H. Seasonal and diurnal variations of atmospheric peroxyacetyl nitrate, peroxypropionyl nitrate, and carbon tetrachloride in Beijing. J Environ Sci (China) 2014; 26:65-74. [PMID: 24649692 DOI: 10.1016/s1001-0742(13)60382-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Atmospheric peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), and carbon tetrachloride (CCl4) were measured from September 2010 to August 2011 in Beijing. PAN exhibited low values from mid-autumn to early spring (October to March) with monthly average concentrations ranging from 0.28 to 0.73 ppbV, and increased from early spring to summer (March to August), ranging from 1.37-3.79 ppbV. The monthly variation of PPN was similar to PAN, with low values (below detection limit to 0.18 ppbV) from mid-autumn to early spring, and a monthly maximum in September (1.14 ppbV). The monthly variation of CCl4 was tightly related to the variation of temperature, exhibiting a minimum in winter (69.3 pptV) and a maximum of 180.6 pptV in summer. Due to weak solar intensity and short duration, PAN and O3 showed no distinct diurnal patterns from morning to night during winter, whereas for other seasons, they both exhibited maximal values in the late afternoon (ca. 15:00 to 16:00 local time) and minimal values during early morning and midnight. Good linear correlations between PAN and PPN were found in autumn (R = 0.91), spring (R = 0.94), and summer (R = 0.81), with slopes of 0.130, 0.222, and 0.133, respectively, suggesting that anthropogenic hydrocarbons dominated the photochemical formation of PANs in Beijing. Positive correlation between PAN and O3 in summer with the low slopes (deltaO3/deltaPAN) ranging from 9.92 to 18.0 indicated serious air pollution in Beijing, and strong negative correlation in winter reflected strong O3 consumption by NO titration and less thermal decompositin of PAN.
Collapse
|
6
|
Pippin M, Bertman S, Thornberry T, Town M, Carroll MA, Sillman S. Seasonal variations of PAN, PPN, and O3at the upper Midwest PROPHET site. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jd900222] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Maricq MM, Szente JJ. Kinetics of the Reaction between Acetylperoxy and Ethylperoxy Radicals. J Phys Chem A 2000. [DOI: 10.1021/jp9930649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Matti Maricq
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| | - Joseph J. Szente
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| |
Collapse
|
8
|
Luria M, Tanner RL, Imhoff RE, Valente RJ, Bailey EM, Mueller SF. Influence of natural hydrocarbons on ozone formation in an isolated power plant plume. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999jd901018] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Crawford MA, Wallington TJ, Szente JJ, Maricq MM, Francisco JS. Kinetics and Mechanism of the Acetylperoxy + HO2 Reaction. J Phys Chem A 1999. [DOI: 10.1021/jp983150t] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mary A. Crawford
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| | - Timothy J. Wallington
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| | - Joseph J. Szente
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| | - M. Matti Maricq
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| | - Joseph S. Francisco
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1397
| |
Collapse
|
10
|
Horowitz LW, Liang J, Gardner GM, Jacob DJ. Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/97jd03142] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Antonovsky VL, Bozhenko KV. Ab initio study of the ground state and conformational stability of peroxyacetyl nitrate in internal rotation about the peroxide bond. Russ Chem Bull 1998. [DOI: 10.1007/bf02495956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Kirchner F, Stockwell WR. Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96jd01519] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Maricq MM, Szente JJ. Temperature-Dependent Study of the CH3C(O)O2 + NO Reaction. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp960792c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Matti Maricq
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| | - Joseph J. Szente
- Research Laboratory, Ford Motor Company, P.O. Box 2053, Drop 3083, Dearborn, Michigan 48121
| |
Collapse
|