1
|
Xiao C, Du Z, Handley MJ, Mayewski PA, Cao J, Schüpbach S, Zhang T, Petit JR, Li C, Han Y, Li Y, Ren J. Iron in the NEEM ice core relative to Asian loess records over the last glacial-interglacial cycle. Natl Sci Rev 2020; 8:nwaa144. [PMID: 34691679 PMCID: PMC8310736 DOI: 10.1093/nsr/nwaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Mineral dust can indirectly affect the climate by supplying bioavailable iron (Fe) to the ocean. Here, we present the records of dissolved Fe (DFe) and total Fe (TDFe) in North Greenland Eemian Ice Drilling (NEEM) ice core over the past 110 kyr BP. The Fe records are significantly negatively correlated with the carbon-dioxide (CO2) concentrations during cold periods. The results suggest that the changes in Fe fluxes over the past 110 kyr BP in the NEEM ice core are consistent with those in Chinese loess records because the mineral-dust distribution is controlled by the East Asian deserts. Furthermore, the variations in the dust input on a global scale are most likely driven by changes in solar radiation during the last glacial-interglacial cycle in response to Earth's orbital cycles. In the last glacial-interglacial cycle, the DFe/TDFe ratios were higher during the warm periods (following the post-Industrial Revolution and during the Holocene and last interglacial period) than during the main cold period (i.e. the last glacial maximum (LGM)), indicating that the aeolian input of iron and the iron fertilization effect on the oceans have a non-linear relationship during different periods. Although the burning of biomass aerosols has released large amounts of DFe since the Industrial Revolution, no significant responses are observed in the DFe and TDFe variations during this period, indicating that severe anthropogenic contamination has no significant effect on the DFe (TDFe) release in the NEEM ice core.
Collapse
Affiliation(s)
- Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Zhiheng Du
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Mike J Handley
- Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA
| | - Paul A Mayewski
- Climate Change Institute, School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA
| | - Junji Cao
- Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Simon Schüpbach
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern 3012, Switzerland
| | - Tong Zhang
- Institute of Tibetan Plateau and Polar Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jean-Robert Petit
- Institut des Geosciences de I'Environment (IGE), University Grenoble Alpes, Grenoble F38000, France
| | - Chuanjin Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | | - Yuefang Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiawen Ren
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Schüpbach S, Fischer H, Bigler M, Erhardt T, Gfeller G, Leuenberger D, Mini O, Mulvaney R, Abram NJ, Fleet L, Frey MM, Thomas E, Svensson A, Dahl-Jensen D, Kettner E, Kjaer H, Seierstad I, Steffensen JP, Rasmussen SO, Vallelonga P, Winstrup M, Wegner A, Twarloh B, Wolff K, Schmidt K, Goto-Azuma K, Kuramoto T, Hirabayashi M, Uetake J, Zheng J, Bourgeois J, Fisher D, Zhiheng D, Xiao C, Legrand M, Spolaor A, Gabrieli J, Barbante C, Kang JH, Hur SD, Hong SB, Hwang HJ, Hong S, Hansson M, Iizuka Y, Oyabu I, Muscheler R, Adolphi F, Maselli O, McConnell J, Wolff EW. Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nat Commun 2018; 9:1476. [PMID: 29662058 PMCID: PMC5902614 DOI: 10.1038/s41467-018-03924-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/21/2018] [Indexed: 11/16/2022] Open
Abstract
The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little. Past climate changes in Greenland ice were accompanied by large aerosol concentration changes. Here, the authors show that by correcting for transport effects, reliable source changes for biogenic aerosol from North America, sea salt aerosol from the North Atlantic, and dust from East Asian deserts can be derived.
Collapse
Affiliation(s)
- S Schüpbach
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - H Fischer
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland.
| | - M Bigler
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - T Erhardt
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - G Gfeller
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - D Leuenberger
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - O Mini
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - R Mulvaney
- British Antarctic Survey, National Environment Research Council, High Cross Madingley Road, Cambridge, CB3 0ET, UK
| | - N J Abram
- British Antarctic Survey, National Environment Research Council, High Cross Madingley Road, Cambridge, CB3 0ET, UK.,Research School of Earth Sciences, The Australian National University, Canberra, ACT 2602, Australia
| | - L Fleet
- British Antarctic Survey, National Environment Research Council, High Cross Madingley Road, Cambridge, CB3 0ET, UK
| | - M M Frey
- British Antarctic Survey, National Environment Research Council, High Cross Madingley Road, Cambridge, CB3 0ET, UK
| | - E Thomas
- British Antarctic Survey, National Environment Research Council, High Cross Madingley Road, Cambridge, CB3 0ET, UK
| | - A Svensson
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - D Dahl-Jensen
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - E Kettner
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - H Kjaer
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - I Seierstad
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - J P Steffensen
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - S O Rasmussen
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - P Vallelonga
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - M Winstrup
- Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100, Copenhagen K, Denmark
| | - A Wegner
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - B Twarloh
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - K Wolff
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - K Schmidt
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - K Goto-Azuma
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - T Kuramoto
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan.,Fukushima Prefectural Centre for Environmental Creation, 10-2 Fukasaku, Miharu Town, Fukushima, 963-7700, Japan
| | - M Hirabayashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - J Uetake
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan.,Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO, 80523-1371, USA
| | - J Zheng
- Natural Resources Canada, Geological Survey of Canada, 601 Booth Street, Ottawa, K1A 0E8, Canada
| | - J Bourgeois
- Natural Resources Canada, Geological Survey of Canada, 601 Booth Street, Ottawa, K1A 0E8, Canada
| | - D Fisher
- Department of Earth Sciences, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - D Zhiheng
- State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - C Xiao
- State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - M Legrand
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CS 40 700, 38058, Grenoble Cedex 9, France
| | - A Spolaor
- Institute for the Dynamics of Environmental Processes-CNR, University of Venice, via Torino, 155, 30172, Venice-Mestre, Italy
| | - J Gabrieli
- Institute for the Dynamics of Environmental Processes-CNR, University of Venice, via Torino, 155, 30172, Venice-Mestre, Italy
| | - C Barbante
- Institute for the Dynamics of Environmental Processes-CNR, University of Venice, via Torino, 155, 30172, Venice-Mestre, Italy
| | - J-H Kang
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - S D Hur
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - S B Hong
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - H J Hwang
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - S Hong
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - M Hansson
- Department of Physical Geography, Stockholm University, S-106 91, Stockholm, Sweden
| | - Y Iizuka
- Department of Physical Geography, Stockholm University, S-106 91, Stockholm, Sweden
| | - I Oyabu
- Department of Physical Geography, Stockholm University, S-106 91, Stockholm, Sweden
| | - R Muscheler
- Department of Geology, Lund University, Solvegatan 12, SE-22362, Lund, Sweden
| | - F Adolphi
- Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland.,Department of Geology, Lund University, Solvegatan 12, SE-22362, Lund, Sweden
| | - O Maselli
- Desert Research Institute, Nevada System of Higher Education, Reno, NV, 89512, USA
| | - J McConnell
- Desert Research Institute, Nevada System of Higher Education, Reno, NV, 89512, USA
| | - E W Wolff
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|