Chen PS, Huang SD. Coupled two-step microextraction devices with derivatizations to identify hydroxycarbonyls in rain samples by gas chromatography-mass spectrometry.
J Chromatogr A 2006;
1118:161-7. [PMID:
16643930 DOI:
10.1016/j.chroma.2006.03.122]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/31/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
Coupling a two-step liquid-phase microextraction (LPME) with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine/bis(trimethylsilyl)trifluoroacetamide (PFBHA)/(BSTFA) derivatization was developed to detect hydroxycarbonyls in rainwater samples using gas chromatography-mass spectrometry (GC-MS). LPME provides a fast and inexpensive pre-concentration, and miniaturized extraction to analyze the target compounds rainwater samples. Derivatization techniques offer a clear method to identify target compounds. The hydroxycarbonyls were determined using two-step derivatizations. Dynamic-LPME was applied in the first derivatization, and head-space single drop derivatization was employed in the second reaction. The LODs varied from 0.023 to 4.75 microg/l. The calibration curves were linear for at least two orders of magnitude with R2>or=0.994. The precision was within 6.5-12%, and the relative recoveries in rainwater were more than 89% (the amount added ranged from 0.3 to 15 microg/l). A field sample was found to contain 2.54 microg/l of hydroxyacetone and 0.110 microg/l of 3-hydroxy-2-butanone. Hydroxyacetone was also detected in one of the tested samples at a concentration of 2.39 microg/l.
Collapse