1
|
Dadashazar H, Alipanah M, Hilario MRA, Crosbie E, Kirschler S, Liu H, Moore RH, Peters AJ, Scarino AJ, Shook M, Thornhill KL, Voigt C, Wang H, Winstead E, Zhang B, Ziemba L, Sorooshian A. Aerosol responses to precipitation along North American air trajectories arriving at Bermuda. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:16121-16141. [PMID: 34819950 PMCID: PMC8609468 DOI: 10.5194/acp-21-16121-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
North American pollution outflow is ubiquitous over the western North Atlantic Ocean, especially in winter, making this location a suitable natural laboratory for investigating the impact of precipitation on aerosol particles along air mass trajectories. We take advantage of observational data collected at Bermuda to seasonally assess the sensitivity of aerosol mass concentrations and volume size distributions to accumulated precipitation along trajectories (APT). The mass concentration of particulate matter with aerodynamic diameter less than 2.5 μm normalized by the enhancement of carbon monoxide above background (PM2.5/ΔCO) at Bermuda was used to estimate the degree of aerosol loss during transport to Bermuda. Results for December-February (DJF) show that most trajectories come from North America and have the highest APTs, resulting in a significant reduction (by 53 %) in PM2.5/ΔCO under high-APT conditions (> 13.5 mm) relative to low-APT conditions (< 0.9 mm). Moreover, PM2.5/ΔCO was most sensitive to increases in APT up to 5 mm (-0.044 μg m-3 ppbv-1 mm-1) and less sensitive to increases in APT over 5 mm. While anthropogenic PM2.5 constituents (e.g., black carbon, sulfate, organic carbon) decrease with high APT, sea salt, in contrast, was comparable between high- and low-APT conditions owing to enhanced local wind and sea salt emissions in high-APT conditions. The greater sensitivity of the fine-mode volume concentrations (versus coarse mode) to wet scavenging is evident from AErosol RObotic NETwork (AERONET) volume size distribution data. A combination of GEOS-Chem model simulations of the 210Pb submicron aerosol tracer and its gaseous precursor 222Rn reveals that (i) surface aerosol particles at Bermuda are most impacted by wet scavenging in winter and spring (due to large-scale precipitation) with a maximum in March, whereas convective scavenging plays a substantial role in summer; and (ii) North American 222Rn tracer emissions contribute most to surface 210Pb concentrations at Bermuda in winter (~75 %-80 %), indicating that air masses arriving at Bermuda experience large-scale precipitation scavenging while traveling from North America. A case study flight from the ACTIVATE field campaign on 22 February 2020 reveals a significant reduction in aerosol number and volume concentrations during air mass transport off the US East Coast associated with increased cloud fraction and precipitation. These results highlight the sensitivity of remote marine boundary layer aerosol characteristics to precipitation along trajectories, especially when the air mass source is continental outflow from polluted regions like the US East Coast.
Collapse
Affiliation(s)
- Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Majid Alipanah
- Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | | | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | - Simon Kirschler
- Institute for Atmospheric Physics, DLR, German Aerospace Center, Oberpfaffenhofen, Germany
- Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
| | - Hongyu Liu
- National Institute of Aerospace, Hampton, VA, USA
| | | | - Andrew J. Peters
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George’s, GE01, Bermuda
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | | | | | - Christiane Voigt
- Institute for Atmospheric Physics, DLR, German Aerospace Center, Oberpfaffenhofen, Germany
- Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Edward Winstead
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | - Bo Zhang
- National Institute of Aerospace, Hampton, VA, USA
| | - Luke Ziemba
- NASA Langley Research Center, Hampton, VA, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P. Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:10.1029/2019jd031626. [PMID: 32699733 PMCID: PMC7375207 DOI: 10.1029/2019jd031626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | - Andrea F. Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Rachel A. Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | | | | | | | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | | | - David Painemal
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Joseph Schlosser
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | | | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
| |
Collapse
|
3
|
Wang H, Zhuang Y, Wang Y, Sun Y, Yuan H, Zhuang G, Hao Z. Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J Environ Sci (China) 2008; 20:1323-7. [PMID: 19202871 DOI: 10.1016/s1001-0742(08)62228-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During 2001-2006, PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) site, China, and in 2006, at a background site in Duolun (DL). The long-term monitoring data of elements, ions, and black carbon showed that the major constituents of PM2.5 were black carbon (BC) crustal elements, nitrates, ammonium salts, and sulfates. These five major components accounted for 20%-80% of the total PM2.5. During this period, levels of Pb and S in PM remained rather high, as compared with the levels in other large cities in the world. Source apportionment results suggest that there were 6 common sources for PM2.5 and PM10, i.e., soil dust, vehicular emission, coal combustion, secondary aerosol, industrial emission, and biomass burning. Coal combustion was the largest contributor of PM2.5 with a percentage of 16.6%, whereas soil dust played the most important role in PM10 with a percentage of 27%. In contrast, only three common types of sources could be resolved at the background DL site, namely, soil dust, biomass combustion, and secondary aerosol from combustion sources.
Collapse
Affiliation(s)
- Hailin Wang
- Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Lammel G, Röhrl A, Schreiber H. Atmospheric lead and bromine in Germany: post-abatement levels, variabilities and trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2002; 9:397-404. [PMID: 12515348 DOI: 10.1007/bf02987589] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
INTENTION, GOAL, SCOPE, BACKGROUND Abatement measures since the 1970s have depleted lead and bromine levels in the atmosphere over large parts of Europe. Our knowledge of the atmospheric cycling of these elements while a several decade-long period of intensive mobilization reaches its end is incomplete. OBJECTIVE We have characterized the trends in the atmospheric levels of Pb and Br and present-day temporal and spatial variabilities. METHODS This was achieved by short-term (weeks) and long-term (years) measurements of particulate Pb and Br at various sites in Germany. Samples of atmospheric particulate matter were collected on filter membranes and analyzed by x-ray fluorescence. RESULTS AND DISCUSSION Average Pb levels at rural and urban inland sites did not exceed concentrations in background aerosols, sampled at a Baltic Sea coastal site, by more than a factor of 3. Due to sea salt, bromide inland particulate Br levels are below those at a coastal site. There, non-sea salt Br, however, is significant as well. Urban Pb and Br levels are not necessarily higher than rural levels. The concentration levels have decreased in such a way that the previously common source, local vehicular traffic emissions, is no longer predominant. Regional rather than local sources have been increasingly determining the concentrations since the 1990s. This is more pronounced for Br than for Pb. We found indications for coal burning and long-range transport as significant Pb sources. For particulate Pb species, a range of ages (elapsed time since Pb emission) has been found. This range shows two maxima corresponding to characteristic times of 72 and 24 h. CONCLUSIONS The (mean) atmospheric residence time of particulate Pb is longer than the residence time of Br, in particular in the wintertime. The chemical species contributing to atmospheric Pb should be addressed in future studies. RECOMMENDATION AND OUTLOOK Clearly, despite effective abatement measures, atmospheric Pb will continue to be dominated by anthropogenic mobilization. The influence from long-range transport can be expected to decrease with the effectiveness of abatement programmes in neighbouring countries of the region.
Collapse
Affiliation(s)
- Gerhard Lammel
- Max Planck Institute for Meteorology, Bundesstrasse 55, D-20146 Hamburg, Germany.
| | | | | |
Collapse
|