1
|
MacDonald AB, Hossein Mardi A, Dadashazar H, Azadi Aghdam M, Crosbie E, Jonsson HH, Flagan RC, Seinfeld JH, Sorooshian A. On the relationship between cloud water composition and cloud droplet number concentration. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:7645-7665. [PMID: 33273899 PMCID: PMC7709908 DOI: 10.5194/acp-20-7645-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aerosol-cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (N d). Even though rigorous first-principle approaches exist to calculate N d, the cloud and aerosol research community also relies on empirical approaches such as relating N d to aerosol mass concentration. Here we analyze relationships between N d and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log-log linear regressions were performed to predict N d using chemical composition. Single-species regressions reveal that the species that best predicts N d is total sulfate (R adj 2 = 0.40 ). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with N d was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition-N d correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between N d with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with N d for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with N d at cloud top, whereas iron and oxalate correlated best with N d at cloud base.
Collapse
Affiliation(s)
- Alexander B. MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Mojtaba Azadi Aghdam
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Ewan Crosbie
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | | | - Richard C. Flagan
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - John H. Seinfeld
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Koike M, Takegawa N, Moteki N, Kondo Y, Nakamura H, Kita K, Matsui H, Oshima N, Kajino M, Nakajima TY. Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Hayden KL, Macdonald AM, Gong W, Toom-Sauntry D, Anlauf KG, Leithead A, Li SM, Leaitch WR, Noone K. Cloud processing of nitrate. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009732] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Li SM, Macdonald AM, Leithead A, Leaitch WR, Gong W, Anlauf KG, Toom-Sauntry D, Hayden K, Bottenheim J, Wang D. Investigation of carbonyls in cloudwater during ICARTT. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Hill KA, Shepson PB, Galbavy ES, Anastasio C, Kourtev PS, Konopka A, Stirm BH. Processing of atmospheric nitrogen by clouds above a forest environment. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Leaitch WR, Isaac GA, Strapp JW, Banic CM, Wiebe HA. The relationship between cloud droplet number concentrations and anthropogenic pollution: Observations and climatic implications. ACTA ACUST UNITED AC 1992. [DOI: 10.1029/91jd02739] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Brimblecombe P, Clegg SL. Equilibrium partial pressures of strong acids over concentrated solutions—III. The temperature variation of HNO3 solubility. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0960-1686(90)90528-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Strapp JW, Leaitch WR, Anlauf KG, Bottenheim JW, Joe P, Schemenauer RS, Wiebe HA, Isaac GA, Kelly TJ, Daum PH. Winter cloud water and air composition in central Ontario. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/jd093id04p03760] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Leaitch WR, Bottenheim JW, Strapp JW. Possible contribution of N2O5scavenging to HNO3observed in winter stratiform cloud. ACTA ACUST UNITED AC 1988. [DOI: 10.1029/jd093id10p12569] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Daum PH, Kelly TJ, Strapp JW, Leaitch WR, Joe P, Schemenauer RS, Isaac GA, Anlauf KG, Wiebe HA. Chemistry and physics of a winter stratus cloud layer: A case study. ACTA ACUST UNITED AC 1987. [DOI: 10.1029/jd092id07p08426] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Isaac G, Leaitch W, Strapp J, Anlauf K. Summer aerosol profiles over Algonquin Park, Canada. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0004-6981(86)90217-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|