1
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
DeFilippis EM, Moayedi Y, Reza N. Representation of Women Physicians in Heart Failure Clinical Practice. Card Fail Rev 2021; 7:e05. [PMID: 33889424 PMCID: PMC8054365 DOI: 10.15420/cfr.2020.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Women have been integral in the development of advanced heart failure (HF) and transplantation as a clinical subspecialty of cardiovascular medicine. However, women remain underrepresented in leadership positions, senior academic ranks and as researchers in HF. In recent years, there have been accelerating efforts to examine sex differences in the clinical and research domains of HF. The purpose of this review is to discuss the representation of women in HF training programmes and clinical practice, the demographics of HF clinicians compared with other cardiology subspecialties, the persistent sex disparities in HF practice and research environments and potential strategies to promote equity and inclusion for women in the field.
Collapse
Affiliation(s)
- Ersilia M DeFilippis
- Division of Cardiology, Columbia University Irving Medical Center New York, NY, US
| | - Yasbanoo Moayedi
- Ted Rogers Centre of Excellence for Heart Research, Peter Munk Cardiac Centre, University Health Network Toronto, Canada
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, US
| |
Collapse
|
3
|
Siddiqi N, Lamour JM, Hsu DT. The effect of MMF dose and trough levels on adverse effects in pediatric heart transplant recipients. Pediatr Transplant 2015; 19:618-22. [PMID: 26082342 DOI: 10.1111/petr.12542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/29/2022]
Abstract
Limited pharmacokinetic and safety data exist for MMF in pediatric HTR. Previously targeted MPA-TL are 1.5-3.0 μg/mL. The objective of this study was to assess the outcomes targeting MPA-TL of 0.8-2.0 μg/mL in pediatric HTR. MPA-TL were retrospectively collected 2-12 months post-transplant. Acute rejection, infection, leukopenia, and GI complaints were then correlated with MPA-TL. A total of 355 MPA-TL from 22 HTR were included. Median age was 2.5 yr. Primary indication for transplant was dilated cardiomyopathy (64%). Mean MPA-TL was 1.7 ± 0.9 μg/mL. African American patients received significantly higher doses (702 ± 235 mg/m(2) ) compared with other races (p = 0.035). Leukopenia was less common in patients with SUB MPA vs. others (p = 0.01). MMF was discontinued for GI complaints in one patient and leukopenia in two patients. One SUB patient had acute rejection, and one SUP patient had infection. One-yr survival was 100%. Targeting a lower range for MPA-TL was not associated with significant rejection or infection. Despite lower MPA-TL, MMF was discontinued in 3/22 patients for adverse effects.
Collapse
Affiliation(s)
- Nida Siddiqi
- Department of Pharmacy, Children's Hospital at Montefiore, Bronx, NY, USA
| | - Jacqueline M Lamour
- Cardiology Division, Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY, USA
| | - Daphne T Hsu
- Cardiology Division, Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY, USA
| |
Collapse
|
4
|
Cantarovich M, Brown NW, Ensom MHH, Jain A, Kuypers DRJ, Van Gelder T, Tredger JM. Mycophenolate monitoring in liver, thoracic, pancreas, and small bowel transplantation: a consensus report. Transplant Rev (Orlando) 2011; 25:65-77. [PMID: 21454066 DOI: 10.1016/j.trre.2010.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/07/2010] [Indexed: 12/21/2022]
Abstract
Assessing the value of mycophenolic acid (MPA) monitoring outside renal transplantation is hindered by the absence of any trial comparing fixed-dose and concentration-controlled therapy. However, in liver and thoracic transplantation particularly, clinical trials, observational studies with comparison groups, and case series have described MPA efficacy, exposure/efficacy relationships, pharmacokinetic variability, and clinical outcomes relating to plasma MPA concentrations. On the basis of this evidence, this report identifies MPA as an immunosuppressant for which the combination of variable disposition, efficacy, and adverse effects contributes to interindividual differences seemingly in excess of those optimal for a fixed-dosage mycophenolate regimen. Combined with experiences of MPA monitoring in other transplant indications, the data have been rationalized to define circumstances in which measurement of MPA concentrations can contribute to improved management of mycophenolate therapy in nonrenal transplant recipients.
Collapse
Affiliation(s)
- Marcelo Cantarovich
- Multi-Organ Transplant Program, McGill University Health Center, 687 Pine Avenue West (R2.58), Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Monchaud C, Marquet P. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part II. Clin Pharmacokinet 2010; 48:489-516. [PMID: 19705921 DOI: 10.2165/11317240-000000000-00000] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Part I of this article, which appeared in the previous issue of the Journal, reviewed calcineurin inhibitors--ciclosporin and tacrolimus. In part II, we review the pharmacokinetics and therapeutic drug monitoring of mycophenolate and mammalian target of rapamycin inhibitors--sirolimus and everolimus--in thoracic transplantation, and we provide an overall discussion and suggest various areas for future study.
Collapse
Affiliation(s)
- Caroline Monchaud
- INSERM Unit 850, CHU Limoges, University of Limoges, Limoges, France
| | | |
Collapse
|
6
|
Kuypers DR, Meur YL, Cantarovich M, Tredger MJ, Tett SE, Cattaneo D, Tönshoff B, Holt DW, Chapman J, Gelder TV. Consensus Report on Therapeutic Drug Monitoring of Mycophenolic Acid in Solid Organ Transplantation. Clin J Am Soc Nephrol 2010; 5:341-58. [DOI: 10.2215/cjn.07111009] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Monchaud C, Marquet P. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part I. Clin Pharmacokinet 2009; 48:419-62. [PMID: 19691367 DOI: 10.2165/11317230-000000000-00000] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although immunosuppressive treatments and therapeutic drug monitoring (TDM) have significantly contributed to the increased success of thoracic transplantation, there is currently no consensus on the best immunosuppressive strategies. Maintenance therapy typically consists of a triple-drug regimen including corticosteroids, a calcineurin inhibitor (ciclosporin or tacrolimus) and either a purine synthesis antagonist (mycophenolate mofetil or azathioprine) or a mammalian target of rapamycin inhibitor (sirolimus or everolimus). The incidence of acute and chronic rejection and of mortality after thoracic transplantation is still high compared with other types of solid organ transplantation. The high allogenicity and immunogenicity of the lungs justify the use of higher doses of immunosuppressants, putting lung transplant recipients at a higher risk of drug-induced toxicities. All immunosuppressants are characterized by large intra- and interindividual variability of their pharmacokinetics and by a narrow therapeutic index. It is essential to know their pharmacokinetic properties and to use them for treatment individualization through TDM in order to improve the treatment outcome. Unlike the kidneys and the liver, the heart and the lungs are not directly involved in drug metabolism and elimination, which may be the cause of pharmacokinetic differences between patients from all of these transplant groups. TDM is mandatory for most immunosuppressants and has become an integral part of immunosuppressive drug therapy. It is usually based on trough concentration (C(0)) monitoring, but other TDM tools include the area under the concentration-time curve (AUC) over the (12-hour) dosage interval or the AUC over the first 4 hours post-dose, as well as other single concentration-time points such as the concentration at 2 hours. Given the peculiarities of thoracic transplantation, a review of the pharmacokinetics and TDM of the main immunosuppressants used in thoracic transplantation is presented in this article. Even more so than in other solid organ transplant populations, their pharmacokinetics are characterized by wide intra- and interindividual variability in thoracic transplant recipients. The pharmacokinetics of ciclosporin in heart and lung transplant recipients have been explored in a number of studies, but less is known about the pharmacokinetics of mycophenolate mofetil and tacrolimus in these populations, and there are hardly any studies on the pharmacokinetics of sirolimus and everolimus. Given the increased use of these molecules in thoracic transplant recipients, their pharmacokinetics deserve to be explored in depth. There are very few data, some of which are conflicting, on the practices and outcomes of TDM of immunosuppressants after thoracic transplantation. The development of sophisticated TDM tools dedicated to thoracic transplantation are awaited in order to accurately evaluate the patients' exposure to drugs in general and, in particular, to immunosuppressants. Finally, large cohort TDM studies need to be conducted in thoracic transplant patients in order to identify the most predictive exposure indices and their target values, and to validate the clinical usefulness of improved TDM in these conditions. In part I of the article, we review the pharmacokinetics and TDM of calcineurin inhibitors. In part II, we will review the pharmacokinetics and TDM of mycophenolate and mammalian target of rapamycin inhibitors, and provide an overall discussion along with perspectives.
Collapse
Affiliation(s)
- Caroline Monchaud
- INSERM Unit 850, CHU Limoges, University of Limoges, Limoges, France
| | | |
Collapse
|
8
|
Zuk DM, Pearson GJ. Monitoring of mycophenolate mofetil in orthotopic heart transplant recipients—a systematic review. Transplant Rev (Orlando) 2009; 23:171-7. [DOI: 10.1016/j.trre.2009.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Hao C, Anwei M, Bing C, Baiyong S, Weixia Z, Chuan S, Erzhen C, Xiaxing D, Weihua Q, Weiping Y, Chenghong P, Hongwei L. Monitoring mycophenolic acid pharmacokinetic parameters in liver transplant recipients: prediction of occurrence of leukopenia. Liver Transpl 2008; 14:1165-73. [PMID: 18668650 DOI: 10.1002/lt.21600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mycophenolate mofetil (MMF) is a very powerful immunosuppressive drug used in preventing acute rejection in liver transplantation. However, MMF has some serious side effects, including hematologic and gastrointestinal disorders. This study was designed to investigate the relationship between the clinical events and the pharmacokinetics of mycophenolic acid (MPA) in Chinese liver transplant recipients. Sixty-three adult liver transplant recipients receiving 1.0 g of MMF twice daily in combination with tacrolimus were prospectively included. The MPA pharmacokinetic profiles (blood sampling time points: before the dose and 0.5, 1, 1.5, 2, 4, 6, 8, 10, and 12 hours after the dose) were monitored after transplantation. Every clinical event, including acute and MMF-related side effects, was monitored in all patients within 3 months. Two patients (3.2%) had an episode of acute rejection. Forty-two patients (66.7%) had 52 episodes of MMF-related side effects, including leukopenia, diarrhea, and infection. The 0-hour concentration (C(0h)), maximum (peak) concentration (C(max)), and area under the curve from 0 to 12 hours (AUC(0-12h)) in patients with side effects were significantly higher than those in patients without side effects (P < 0.05). The thresholds of side effects from receiver operating characteristic analysis were 2 mg/L (sensitivity, 52.4%; specificity, 90.5%) for C(0h), 10 mg/L (sensitivity, 45.2%; specificity, 85.7%) for C(max), and 40 mg h/L (sensitivity, 71.4%; specificity, 61.9%) for AUC(0-12h) (P < 0.05). Leukopenia was discriminated effectively in C(0h) and in C(max) (P < 0.05). These results demonstrate the close relationship between leukopenia and MPA pharmacokinetic parameters in the early period after liver transplantation. C(0h) and AUC(0-12h) of MPA could predict the subsequent occurrence of leukopenia. These values may be used in routine monitoring for MMF therapy.
Collapse
Affiliation(s)
- Chen Hao
- Center of Organ Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Does the Evidence Support the Use of Mycophenolate Mofetil Therapeutic Drug Monitoring in Clinical Practice? A Systematic Review. Transplantation 2008; 85:1675-85. [DOI: 10.1097/tp.0b013e3181744199] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Kaplan B. Mycophenolic acid trough level monitoring in solid organ transplant recipients treated with mycophenolate mofetil: association with clinical outcome. Curr Med Res Opin 2006; 22:2355-64. [PMID: 17257450 DOI: 10.1185/030079906x148481] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Mycophenolate mofetil (MMF) is widely and successfully used in immunosuppressive regimens for the prophylaxis of organ rejection following transplantation. Conventionally, it is administered at a fixed dose without serial measurements of plasma concentrations of mycophenolic acid (MPA), the active metabolite. Recently, there has been an increased interest in therapeutic drug monitoring (TDM) of MMF therapy to optimize the benefit/risk index of the drug. Predose trough samples of MPA are considered most convenient and economic, thereby allowing an increased use of TDM in the transplant setting. However, the added value of TDM for MMF therapy is still under debate. OBJECTIVE This paper reviews (based on a systematic PubMed and EMBASE search, 1995-June 2006) the current evidence of the usefulness and clinical relevance of MPA trough level monitoring during MMF therapy in solid organ transplantation. FINDINGS AND CONCLUSIONS Based on data available in the public domain, the contribution of MPA trough level monitoring during MMF therapy in solid organ transplant recipients remains unproven. Available studies have limitations and report conflicting results. There is a lack of prospective randomized trials, particularly in pediatric renal transplant recipients and in cardiac and liver transplantation. While there is a suggestion that there may be a relationship between efficacy and MPA trough levels, the majority of studies showed no correlation between MPA plasma concentrations and adverse effects. Based on current evidence, the adherence to presently recommended target ranges for MPA troughs in solid organ transplantation cannot assure an improved clinical outcome with MMF therapy. Whether MPA trough level monitoring leads to improved efficacy and less toxicity is currently subject to a large randomized trial; final results are eagerly awaited.
Collapse
Affiliation(s)
- Bruce Kaplan
- UIC Multiorgan Transplant Center, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Arns W, Cibrik DM, Walker RG, Mourad G, Budde K, Mueller EA, Vincenti F. Therapeutic Drug Monitoring of Mycophenolic Acid in Solid Organ Transplant Patients Treated With Mycophenolate Mofetil: Review of the Literature. Transplantation 2006; 82:1004-12. [PMID: 17060847 DOI: 10.1097/01.tp.0000232697.38021.9a] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mycophenolate mofetil (MMF) has conventionally been administered at a fixed dose without routinely monitoring blood levels of mycophenolic acid (MPA), the active metabolite. The contribution of therapeutic drug monitoring (TDM) during MMF therapy remains controversial. A literature review was performed to explore the usefulness of TDM for MPA in solid organ transplantation. In addition, emphasis was placed on the potential clinical benefits and limitations of TDM for MPA. Available studies have limitations and report conflicting results. Although early after transplantation MPA area under the curve might have predictive value for the risk of acute rejection, predose levels appear less reliable. With regard to MPA toxicity, most studies showed no correlation between MPA pharmacokinetics and adverse effects. TDM is hampered by several factors such as the considerable intra-subject variability of MPA pharmacokinetics and the increasing number of different drug combinations. Proposed target ranges are restricted to the early posttransplant period when MMF is used in combination with cyclosporine. The current review of the literature indicates no clear support for a substantial clinical benefit of TDM and more data from prospective randomized trials are needed.
Collapse
Affiliation(s)
- Wolfgang Arns
- Transplant Department, Merheim Medical Center, Cologne General Hospital, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Fuchs U, Tenderich G, Zittermann A, Szabados F, Minami K, Koerfer R. Clinical outcome of heart transplant recipients receiving tacrolimus with or without mycophenolate mofetil. Clin Transplant 2006; 20:450-6. [PMID: 16842520 DOI: 10.1111/j.1399-0012.2006.00504.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tacrolimus (TAC) is a calcineurin inhibitor that is used for cardiac allograft rejection. Efficacy and safety data of a combined TAC/mycophenolate mofetil (MMF) therapy in comparison with a TAC/cortisone therapy in heart recipients are lacking. We analysed the clinical outcome of 41 patients who received TAC in combination with MMF (TMF group) and of 41 patients who received TAC in combination with cortisone (TCO group). Outcomes were serum creatinine levels, cardiac rejections, cytomegalovirus infections, graft vasculopathy, malignancy rates and two-yr survival. Baseline characteristics were comparable in the two study groups. During follow-up, serum creatinine levels decreased slightly in the TMF group (p=0.039) but not in the TCO group. Compared with the TMF group, more clinically proven cardiac rejections which needed a cortisone bolus and more severe rejections that needed lymphoablative therapy with OKT occurred in the TCO group (p=0.001 and 0.04, respectively). In contrast, significantly more cytomegalovirus (CMV) infections occurred in the TMF group compared with the TCO group (p=0.01). The number of patients with graft vasculopathy as well as malignancy rates and overall survival did not differ significantly between the two study groups. The introduction of MMF was associated with an improvement of renal function and a more efficient immunosuppressive therapy. However, this treatment strategy also had led to a higher CMV infection rate compared with cortisone. Consequently, no general recommendation can be given at present whether TAC should be combined with MMF or with cortisone in heart transplant recipients.
Collapse
Affiliation(s)
- Uwe Fuchs
- Department of Cardio - Thoracic Surgery, Heart Center, North-Rhine Westfalia, Ruhr University of Bochum, Oeynhausen, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Therapeutic drug monitoring of mycophenolic acid in cardiac transplant recipients: does it make sense? Curr Opin Organ Transplant 2005. [DOI: 10.1097/01.mot.0000188314.34781.1a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kobashigawa JA, Meiser BM. Review of Major Clinical Trials with Mycophenolate Mofetil in Cardiac Transplantation. Transplantation 2005; 80:S235-43. [PMID: 16251856 DOI: 10.1097/01.tp.0000186383.22264.b3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Over the past 10 years, the addition of mycophenolate mofetil (MMF) to combination immunosuppressive regimens in cardiac transplant patients has resulted in significant outcomes benefits. Randomized trials and other studies have demonstrated that the use of MMF is associated with a decreased risk of rejection and improved survival. This article will provide an overview of these trials, as well as those evaluating MMF in renal-sparing regimens and in pediatric cardiac transplant recipients. In addition, emerging evidence demonstrating that MMF may provide long-term benefits in reducing cardiac allograft vasculopathy and those evaluating the role of MMF therapeutic drug monitoring in cardiac transplant recipients will be discussed.
Collapse
Affiliation(s)
- Jon A Kobashigawa
- Division of Cardiology, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
16
|
Manito N, Kaplinsky EJ, Roca J, Castells E, Saura E, Gomez-Hospital JA, Esplugas E. Heart transplant recipient clinical profile improvement following mycophenolate mofetil late incorporation into the treatment schedule. Clin Transplant 2005; 19:304-8. [PMID: 15877789 DOI: 10.1111/j.1399-0012.2005.00238.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycophenolate mofetil (MMF) has a better clinical profile than azathioprine in heart transplantation (HT). Forty-five recipients (aged 53 +/- 9 yr) were retrospectively evaluated (first year of follow-up) post-MMF introduction since its advent in 1997 (mean daily dose: 1.97 +/- 0.2 g). MMF was used (mean post-HT time: 40 +/- 27 months) for: (i) renal insufficiency attenuation (group 1 = 20); (ii) steroid reduction because of osteoporosis (group 2 = 12); (iii) treatment of persistent cellular rejection (group 3 = 7) and vascular graft disease (VGD) (group 4 = 6). Mean changes (groups 1-2) were: creatinine 172 +/- 59, 158 +/- 51, 153 +/- 57 mumol/L (at baseline, 6 and 12 months, respectively; p < 0.001). Cyclosporine daily dose: 219 +/- 37, 166 +/- 46, 176 +/- 98 mg, respectively (p < 0.001). Cyclosporine blood concentration: 151 +/- 40, 103 +/- 41, 83 +/- 34 ng/mL, respectively (p < 0.004). Prednisone daily dose: 8.3 +/- 2, 5.2 +/- 1, 4.1 +/- 1 mg, respectively (p < 0.001). Cellular rejection (group 3) was successfully treated (86%) but the outcome of VGD did not improve after the switch (group 4). Our limited experience (with caution) confirms the reported benefits of MMF particularly attenuating renal insufficiency.
Collapse
Affiliation(s)
- Nicolás Manito
- Heart Transplant Unit, Bellvitge Hospital, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
17
|
Le Guellec C, Bourgoin H, Büchler M, Le Meur Y, Lebranchu Y, Marquet P, Paintaud G. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet 2004; 43:253-66. [PMID: 15005639 DOI: 10.2165/00003088-200443040-00004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Therapeutic drug monitoring of mycophenolic acid (MPA) may minimise the risk of acute rejection after transplantation. Area under the curve (AUC) rather than trough concentration-based monitoring is recommended and models for AUC estimation are needed. OBJECTIVES To develop a population pharmacokinetic model suitable for Bayesian estimation of individual AUC in stable renal transplant patients. PATIENTS AND METHODS The population pharmacokinetics of MPA were studied using nonlinear mixed effects modelling (NONMEM) in 60 patients (index group) receiving MPA on a twice-daily basis. Ten blood samples were collected at fixed timepoints from ten patients and four blood samples were collected at sparse timepoints from 50 patients. Bayesian estimation of individual AUC was made on the basis of three blood concentration measurements and covariates. The predictive performances of the Bayesian procedure were evaluated in an independent group of patients (test group) comprising ten subjects in whom ten blood samples were collected at fixed timepoints. RESULTS A two-compartment model with zero-order absorption best fitted the data. Covariate analysis showed that bodyweight was positively correlated with oral clearance. However, the weak magnitude of the reduction in variability (from 34.8 to 28.2%) indicates that administration on a per kilogram basis would be of limited value in decreasing interindividual variability in MPA exposure. Bayesian estimation of pharmacokinetic parameters using samples drawn at 20 minutes and 1 and 3 hours enabled estimation of individual AUC with satisfactory accuracy (bias 7.7%, range of prediction errors 0.43-15.1%) and precision (root mean squared error 12.4%) as compared with the reference value obtained using the trapezoidal method. CONCLUSION This paper reports for the first time population pharmacokinetic data for MPA in stable renal transplant patients, and shows that Bayesian estimation can allow accurate prediction of AUC with only three samples. This method provides a tool for therapeutic drug monitoring of MPA or for concentration-effect studies. Its application to MPA monitoring in the early period post-transplantation needs to be evaluated.
Collapse
|