1
|
Aziz S, Barratt J, Wilson-Baig N, Lachowycz K, Major R, Barnard EB, Rees P. A protocol for the ERICA-ARREST feasibility study of Emergency Resuscitative Endovascular Balloon occlusion of the Aorta in Out-of-Hospital Cardiac Arrest. Resusc Plus 2024; 19:100688. [PMID: 38974930 PMCID: PMC11225899 DOI: 10.1016/j.resplu.2024.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Background Fewer than one in ten out-of-hospital cardiac arrest (OHCA) patients survive to hospital discharge in the UK. For prehospital teams to improve outcomes in patients who remain in refractory OHCA despite advanced life support (ALS); novel strategies that increase the likelihood of return of spontaneous circulation, whilst preserving cerebral circulation, should be investigated. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) has been shown to improve coronary and cerebral perfusion during cardiopulmonary resuscitation. Early, prehospital initiation of REBOA may improve outcomes in patients who do not respond to standard ALS. However, there are significant clinical, technical, and logistical challenges with rapidly delivering prehospital REBOA in OHCA; and the feasibility of delivering this intervention in the UK urban-rural setting has not been evaluated. Methods The Emergency Resuscitative Endovascular Balloon Occlusion of the Aorta in Out-of-Hospital Cardiac Arrest (ERICA-ARREST) study is a prospective, single-arm, interventional feasibility study. The trial will enrol 20 adult patients with non-traumatic OHCA. The primary objective is to assess the feasibility of performing Zone I (supra-coeliac) aortic occlusion in patients who remain in OHCA despite standard ALS in the UK prehospital setting. The trial's secondary objectives are to describe the hemodynamic and physiological responses to aortic occlusion; to report key time intervals; and to document adverse events when performing REBOA in this context. Discussion Using compressed geography, and targeted dispatch, alongside a well-established femoral arterial access programme, the ERICA-ARREST study will assess the feasibility of deploying REBOA in OHCA in a mixed UK urban and rural setting.Trial registration.ClinicalTrials.gov (NCT06071910), registration date October 10, 2023, https://classic.clinicaltrials.gov/ct2/show/NCT06071910.
Collapse
Affiliation(s)
- Shadman Aziz
- Department of Research, Audit, Innovation, and Development (RAID). East Anglian Air Ambulance, Norwich, UK
| | - Jon Barratt
- Department of Research, Audit, Innovation, and Development (RAID). East Anglian Air Ambulance, Norwich, UK
- Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine (Research & Clinical Innovation), Birmingham, UK
- Emergency Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Noamaan Wilson-Baig
- Department of Research, Audit, Innovation, and Development (RAID). East Anglian Air Ambulance, Norwich, UK
- Departments of Anaesthesia and Critical Care, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | - Kate Lachowycz
- Department of Research, Audit, Innovation, and Development (RAID). East Anglian Air Ambulance, Norwich, UK
| | - Rob Major
- Department of Research, Audit, Innovation, and Development (RAID). East Anglian Air Ambulance, Norwich, UK
| | - Ed B.G. Barnard
- Department of Research, Audit, Innovation, and Development (RAID). East Anglian Air Ambulance, Norwich, UK
- Academic Department of Military Emergency Medicine, Royal Centre for Defence Medicine (Research & Clinical Innovation), Birmingham, UK
- Emergency and Urgent Care Research in Cambridge (EUReCa), PACE Section, Department of Medicine, Cambridge University, Cambridge, UK
| | - Paul Rees
- Department of Research, Audit, Innovation, and Development (RAID). East Anglian Air Ambulance, Norwich, UK
- Academic Department of Military Medicine, Royal Centre for Defence Medicine(Research & Clinical Innovation), Birmingham, UK
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Brede JR, Rehn M. The end of balloons? Our take on the UK-REBOA trial. Scand J Trauma Resusc Emerg Med 2023; 31:69. [PMID: 37908007 PMCID: PMC10619299 DOI: 10.1186/s13049-023-01142-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Resuscitative endovascular balloon occlusion of the aorta (REBOA) is increasingly used. The recently published UK-REBOA trial aimed to investigate patients suffering haemorrhagic shock and randomized to standard care alone or REBOA as adjunct to standard care and concludes that REBOA may increase the mortality. MAIN BODY In this commentary we try to balance the discussion on use of REBOA and address limitations in the UK-REBOA trial that may have influenced the outcome of the study. CONCLUSION The situation is complex, and the patients are in extremis. In summary, we do not think this is the end of balloons.
Collapse
Affiliation(s)
- Jostein Rødseth Brede
- Department of Emergency Medicine and Pre-Hospital Services, St. Olav's University Hospital, Prinsesse Kristinas Gate 3, 7006, Trondheim, Norway.
- Department of Research and Development, Norwegian Air Ambulance Foundation, Oslo, Norway.
- Department of Anaesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Trondheim, Norway.
| | - Marius Rehn
- Department of Research and Development, Norwegian Air Ambulance Foundation, Oslo, Norway
- Division of Prehospital Services, Air Ambulance Department, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Extremity tourniquets raise blood pressure and maintain heart rate. Am J Emerg Med 2023; 65:12-15. [PMID: 36577207 DOI: 10.1016/j.ajem.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tourniquets have been modified and used for centuries to occlude blood flow to control hemorrhage. More recently, the occlusion of peripheral vessels has been linked to resultant increases in blood pressure, which may provide additional therapeutic potential, particularly during states of low cardiac output. OBJECTIVE The objective of this study was to investigate a causal relationship between tourniquet application and blood pressure in healthy adults. METHODS Healthy adult volunteers were recruited to participate in this IRB-approved study. Each participant met inclusion criteria and demonstrated baseline normotension. Brachial cuff blood pressure and heart rate were recorded pre- and post-tourniquet application to the bilateral legs. RESULTS Twenty-seven adults aged 22 to 35 years participated and were included in analysis. The average systolic blood pressure was 122 ± 7 mmHg, diastolic blood pressure was 72 ± 9 mmHg, and heart rate was 70 ± 13 bpm. Following bilateral tourniquet application over the femoral vasculature, we observed a statistically significant increase in systolic (7 mmHg, p < 0.001) and diastolic (4 mmHg, p = 0.05) blood pressures with no significant change in heart rate (2 bpm, p > 0.05). CONCLUSIONS The elevations in systolic and diastolic blood pressures establish a dependent relationship between tourniquet application to the lower extremities and blood pressure elevation. These results may support new indications for tourniquet-use or extremity vessel occlusion in settings of hemodynamic instability.
Collapse
|
4
|
Seigler SW, Quinn KM, Holman HL, Kim JY, Rajab TK. A single-center, nonblinded, clinical trial comparing blood pressures before and after tourniquet application in healthy humans: A study protocol. PLoS One 2023; 18:e0280139. [PMID: 36608001 PMCID: PMC9821481 DOI: 10.1371/journal.pone.0280139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Cardiac arrest is the leading cause of natural death in the United States, and most surviving patients suffer from neurological dysfunction. Although this is recognized as a problem, there have been very few changes to the cardiopulmonary resuscitation (CPR) procedure. Tourniquets have been recognized for their ability to increase truncal blood pressure and have been shown to improve CPR outcomes in animal models. However, the relationship between tourniquet application and blood pressure elevation has not been adequately explored in healthy human adults. OBJECTIVES The objective of this study is to demonstrate that bilateral, non-invasive, peripheral vascular occlusion in the thighs results in an increased proximal systolic blood pressure ≥ 10 mmHg. METHODS This is a single-center, non-blinded clinical trial. Volunteers will be screened for eligibility at least 24 hours before the day of the trial. On the day of the trial, volunteers will undergo an informed consent process. If they choose to participate in the trial after informed consent, their baseline blood pressure will be measured. Volunteers will then have a Combat Application Tourniquet (CAT) applied to each thigh, and the windlasses will be tightened by IRB-approved personnel. Once no pulse can be felt in the lower extremity, blood pressure will be measured in the arm. This will be replicated three times, and the tourniquets will be loosened between trials to allow the volunteers to rest. Any complications that arise during the trial will be handled by the physician that is present. ANALYSIS Changes in systolic blood pressure and diastolic blood pressure will be analyzed using a Shapiro-Wilk test. Then, a one-way repeated measures analysis of variance (ANOVA) will be performed with a Holm-Sidak post-hoc test to determine the mean differences. The significance level will be set to 5% for statistical significance. REGISTRY AND REGISTRATION NUMBER Clinicaltrials.gov, NCT05324306.
Collapse
Affiliation(s)
- Samuel W. Seigler
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| | - Kristen M. Quinn
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Heather L. Holman
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joshua Y. Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Human-Centered Design, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Taufiek K. Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
5
|
Ronaldi AE, Madurska MJ, Bozzay JD, Polcz JE, Baer DG, Burmeister DM, White PW, Rasmussen TE, White JM. Targeted Regional Optimization: Increasing the Therapeutic Window for Endovascular Aortic Occlusion In Traumatic Hemorrhage. Shock 2021; 56:493-506. [PMID: 34014887 DOI: 10.1097/shk.0000000000001814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Resuscitative endovascular balloon occlusion of the aorta (REBOA) allows for effective temporization of exsanguination from non-compressible hemorrhage (NCTH) below the diaphragm. However, the therapeutic window for aortic occlusion is time-limited given the ischemia-reperfusion injury generated. Significant effort has been put into translational research to develop new strategies to alleviate the ischemia-reperfusion injury and extend the application of endoaortic occlusion. Targeted regional optimization (TRO) is a partial REBOA strategy to augment proximal aortic and cerebral blood flow while targeting minimal threshold of distal perfusion beyond the zone of partial aortic occlusion. The objective of TRO is to reduce the degree of ischemia caused by complete aortic occlusion while providing control of distal hemorrhage. This review provides a synopsis of the concept of TRO, pre-clinical, translational experiences with TRO and early clinical outcomes. Early results from TRO strategies are promising; however, further studies are needed prior to large-scale implementation into clinical practice.
Collapse
Affiliation(s)
- Alley E Ronaldi
- Walter Reed National Military Medical Center, The Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Marta J Madurska
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Maryland
| | - Joseph D Bozzay
- Walter Reed National Military Medical Center, The Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jeanette E Polcz
- Walter Reed National Military Medical Center, The Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - David M Burmeister
- Walter Reed National Military Medical Center, The Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paul W White
- Walter Reed National Military Medical Center, The Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Todd E Rasmussen
- Walter Reed National Military Medical Center, The Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joseph M White
- Walter Reed National Military Medical Center, The Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
6
|
REBOARREST, resuscitative endovascular balloon occlusion of the aorta in non-traumatic out-of-hospital cardiac arrest: a study protocol for a randomised, parallel group, clinical multicentre trial. Trials 2021; 22:511. [PMID: 34332617 PMCID: PMC8325811 DOI: 10.1186/s13063-021-05477-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background Survival after out-of-hospital cardiac arrest (OHCA) is poor and dependent on high-quality cardiopulmonary resuscitation. Resuscitative endovascular balloon occlusion of the aorta (REBOA) may be advantageous in non-traumatic OHCA due to the potential benefit of redistributing the cardiac output to organs proximal to the aortic occlusion. This theory is supported by data from both preclinical studies and human case reports. Methods This multicentre trial will enrol 200 adult patients, who will be randomised in a 1:1 ratio to either a control group that receives advanced cardiovascular life support (ACLS) or an intervention group that receives ACLS and REBOA. The primary endpoint will be the proportion of patients who achieve return of spontaneous circulation with a duration of at least 20 min. The secondary objectives of this trial are to measure the proportion of patients surviving to 30 days with good neurological status, to describe the haemodynamic physiology of aortic occlusion during ACLS, and to document adverse events. Discussion Results from this study will assess the efficacy and safety of REBOA as an adjunctive treatment for non-traumatic OHCA. This novel use of REBOA may contribute to improve treatment for this patient cohort. Trial registration The trial is approved by the Regional Committee for Medical and Health Research Ethics in Norway (reference 152504) and is registered at ClinicalTrials.gov (reference NCT04596514) and as Universal Trial Number WHO: U1111-1253-0322. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05477-1.
Collapse
|
7
|
Olsen MH, Olesen ND, Karlsson M, Holmlöv T, Søndergaard L, Boutelle M, Mathiesen T, Møller K. Randomized blinded trial of automated REBOA during CPR in a porcine model of cardiac arrest. Resuscitation 2021; 160:39-48. [PMID: 33482264 DOI: 10.1016/j.resuscitation.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Resuscitative endovascular balloon occlusion of the aorta (REBOA) reportedly elevates arterial blood pressure (ABP) during non-traumatic cardiac arrest. OBJECTIVES This randomized, blinded trial of cardiac arrest in pigs evaluated the effect of automated REBOA two minutes after balloon inflation on ABP (primary endpoint) as well as arterial blood gas values and markers of cerebral haemodynamics and metabolism. METHODS Twenty anesthetized pigs were randomized to REBOA inflation or sham-inflation (n = 10 in each group) followed by insertion of invasive monitoring and a novel, automated REBOA catheter (NEURESCUE® Catheter & NEURESCUE® Assistant). Cardiac arrest was induced by ventricular pacing. Cardiopulmonary resuscitation was initiated three min after cardiac arrest, and the automated REBOA was inflated or sham-inflated (blinded to the investigators) five min after cardiac arrest. RESULTS In the inflation compared to the sham group, mean ABP above the REBOA balloon after inflation was higher (inflation: 54 (95%CI: 43-65) mmHg; sham: 44 (33-55) mmHg; P = 0.06), and diastolic ABP was higher (inflation: 38 (29-47) mmHg; sham: 26 (20-33) mmHg; P = 0.02), and the arterial to jugular oxygen content difference was lower (P = 0.04). After return of spontaneous circulation, mean ABP (inflation: 111 (95%CI: 94-128) mmHg; sham: 94 (95%CI: 65-123) mmHg; P = 0.04), diastolic ABP (inflation: 95 (95%CI: 78-113) mmHg; sham: 78 (95%CI: 50-105) mmHg; P = 0.02), CPP (P = 0.01), and brain tissue oxygen tension (inflation: 315 (95%CI: 139-491)% of baseline; sham: 204 (95%CI: 75-333)%; P = 0.04) were higher in the inflation compared to the sham group. CONCLUSION Inflation of REBOA in a porcine model of non-traumatic cardiac arrest improves central diastolic arterial pressure as a surrogate marker of coronary artery pressure, and cerebral perfusion. INSTITUTIONAL PROTOCOL NUMBER 2017-15-0201-01371.
Collapse
Affiliation(s)
- Markus Harboe Olsen
- Department of Neurointensive Care and Neuroanaesthesiology, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Denmark.
| | - Niels D Olesen
- Department of Anesthesiology, Centre of Cancer and Organ Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Michael Karlsson
- Department of Neurosurgery, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Theodore Holmlöv
- Department of Neurosurgery, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Denmark; Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Lars Søndergaard
- Department of Cardiology, Centre of Cardiac, Vascular, Pulmonary and Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Martyn Boutelle
- Faculty of Engineering, Department of Bioengineering, Imperial College, London, United Kingdom
| | - Tiit Mathiesen
- Department of Neurosurgery, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Møller
- Department of Neurointensive Care and Neuroanaesthesiology, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Levis A, Greif R, Hautz WE, Lehmann LE, Hunziker L, Fehr T, Haenggi M. Resuscitative endovascular balloon occlusion of the aorta (REBOA) during cardiopulmonary resuscitation: A pilot study. Resuscitation 2020; 156:27-34. [DOI: 10.1016/j.resuscitation.2020.08.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
|
9
|
Resuscitative Endovascular Balloon Occlusion of the Aorta in Experimental Cardiopulmonary Resuscitation: Aortic Occlusion Level Matters. Shock 2020; 52:67-74. [PMID: 30067564 PMCID: PMC6587222 DOI: 10.1097/shk.0000000000001236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction: Aortic occlusion during cardiopulmonary resuscitation (CPR) increases systemic arterial pressures. Correct thoracic placement during the resuscitative endovascular balloon occlusion of the aorta (REBOA) may be important for achieving effective CPR. Hypothesis: The positioning of the REBOA in the thoracic aorta during CPR will affect systemic arterial pressures. Methods: Cardiac arrest was induced in 27 anesthetized pigs. After 7 min of CPR with a mechanical compression device, REBOA in the thoracic descending aorta at heart level (zone Ib, REBOA-Ib, n = 9), at diaphragmatic level (zone Ic, REBOA-Ic, n = 9) or no occlusion (control, n = 9) was initiated. The primary outcome was systemic arterial pressures during CPR. Results: During CPR, REBOA-Ic increased systolic blood pressure from 86 mmHg (confidence interval [CI] 71–101) to 128 mmHg (CI 107–150, P < 0.001). Simultaneously, mean and diastolic blood pressures increased significantly in REBOA-Ic (P < 0.001 and P = 0.006, respectively), and were higher than in REBOA-Ib (P = 0.04 and P = 0.02, respectively) and control (P = 0.005 and P = 0.003, respectively). REBOA-Ib did not significantly affect systemic blood pressures. Arterial pH decreased more in control than in REBOA-Ib and REBOA-Ic after occlusion (P = 0.004 and P = 0.005, respectively). Arterial lactate concentrations were lower in REBOA-Ic compared with control and REBOA-Ib (P = 0.04 and P < 0.001, respectively). Conclusions: Thoracic aortic occlusion in zone Ic during CPR may be more effective in increasing systemic arterial pressures than occlusion in zone Ib. REBOA during CPR was found to be associated with a more favorable acid–base status of circulating blood. If REBOA is used as an adjunct in CPR, it may be of importance to carefully determine the aortic occlusion level. The study was performed following approval of the Regional Animal Ethics Committee in Linköping, Sweden (application ID 418).
Collapse
|
10
|
Zone 3 REBOA does not provide hemodynamic benefits during nontraumatic cardiac arrest. Am J Emerg Med 2020; 38:1915-1920. [PMID: 32750628 PMCID: PMC7301802 DOI: 10.1016/j.ajem.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Resuscitative endovascular balloon occlusion of the aorta (REBOA) may be a novel intervention to improve cardiopulmonary resuscitation (CPR) quality during cardiac arrest. Zone 1 supraceliac aortic occlusion improves coronary and cerebral blood flow. It is unknown if Zone 3 occlusion distal to the renal arteries offers a similar physiologic benefit while maintaining blood flow to organs above the point of occlusion. METHODS Fifteen swine were anesthetized, instrumented, and placed into ventricular fibrillation. Mechanical CPR was immediately initiated. After 5 min of CPR, Zone 1 REBOA, Zone 3 REBOA, or no intervention (control) was initiated. Hemodynamic variables were continuously recorded for 30 min. RESULTS There were no significant differences between groups before REBOA deployment. Once REBOA was deployed, Zone 1 animals had statistically greater diastolic blood pressure compared to control (median [IQR]: 19.9 mmHg [9.5-20.5] vs 3.9 mmHg [2.4-4.8], p = .006). There were no differences in diastolic blood pressure between Zone 1 and Zone 3 (8.6 mmHg [5.1-13.1], p = .10) or between Zone 3 and control (p = .10). There were no significant differences in systolic blood pressure, cerebral blood flow, or time to return of spontaneous circulation (ROSC) between groups. CONCLUSION In our swine model of cardiac arrest, Zone 1 REBOA improved diastolic blood pressure when compared to control. Zone 3 does not offer a hemodynamic benefit when compared to no occlusion. Unlike prior studies, immediate use of REBOA after arrest did not result in an increase in ROSC rate, suggesting REBOA may be more beneficial in patients with prolonged no-flow time. INSTITUTIONAL PROTOCOL NUMBER FDG20180024A.
Collapse
|
11
|
Brede JR, Kramer-Johansen J, Rehn M. A needs assessment of resuscitative endovascular balloon occlusion of the aorta (REBOA) in non-traumatic out-of-hospital cardiac arrest in Norway. BMC Emerg Med 2020; 20:28. [PMID: 32316924 PMCID: PMC7175537 DOI: 10.1186/s12873-020-00324-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/13/2020] [Indexed: 11/10/2022] Open
Abstract
Introduction Out of hospital cardiac arrest (OHCA) carries an 86% mortality rate in Norway. Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a potential adjunct in management of non-traumatic cardiac arrest and is feasible in pre-hospital setting without compromising standard cardiopulmonary resuscitation (CPR). However, number of patients potentially eligible for REBOA remain unknown. In preparation for a clinical trial to investigate any benefit of pre-hospital REBOA, we sought to assess the need for REBOA in Norway as an adjunct treatment in OHCA. Methods Retrospective observational cohort study of data from the Norwegian Cardiac Arrest Registry in the 3-year period 2016–2018. We identified number of patients potentially eligible for pre-hospital REBOA during CPR, defined by suspected non-traumatic origin, age 18–75 years, witnessed arrest, ambulance response time less than 15 min, treated by ambulance personnel and resuscitation effort over 30 min. Results In the 3-year period, ambulance personnel resuscitated 8339 cases. Of these, a group of 720 patients (8.6%) were eligible for REBOA. Only 18% in this group achieved return of spontaneous circulation and 7% survived for 30 days or more. Conclusion This national registry data analysis constitutes a needs assessment of REBOA in OHCA. We found that each year approximately 240 patients, or nearly 9% of ambulance treated OHCA, in Norway is potentially eligible for pre-hospital REBOA as an adjunct treatment to standard resuscitation. This needs assessment suggests that there is sufficient patient population in Norway to study REBOA as an adjunct treatment in OHCA.
Collapse
Affiliation(s)
- Jostein Rødseth Brede
- Department of Emergency Medicine and Pre-Hospital Services, St. Olav University Hospital, Trondheim, Norway. .,Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway. .,Department of Anesthesiology and Intensive Care Medicine, St. Olav's University Hospital, Prinsesse Kristinas Gate 3, 7030, Trondheim, Norway. .,Department of Circulation and MedicalImaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Jo Kramer-Johansen
- Division of Prehospital Services, Air Ambulance Department, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit for Prehospital Emergency Care (NAKOS), Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marius Rehn
- Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway.,Division of Prehospital Services, Air Ambulance Department, Oslo University Hospital, Oslo, Norway.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| |
Collapse
|
12
|
Brede JR, Lafrenz T, Klepstad P, Skjærseth EA, Nordseth T, Søvik E, Krüger AJ. Feasibility of Pre-Hospital Resuscitative Endovascular Balloon Occlusion of the Aorta in Non-Traumatic Out-of-Hospital Cardiac Arrest. J Am Heart Assoc 2019; 8:e014394. [PMID: 31707942 PMCID: PMC6915259 DOI: 10.1161/jaha.119.014394] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Few patients survive after out‐of‐hospital cardiac arrest and any measure that improve circulation during cardiopulmonary resuscitation is beneficial. Animal studies support that resuscitative endovascular balloon occlusion of the aorta (REBOA) during cardiopulmonary resuscitation might benefit patients suffering from out‐of‐hospital cardiac arrest, but human data are scarce. Methods and Results We performed an observational study at the helicopter emergency medical service in Trondheim (Norway) to assess the feasibility and safety of establishing REBOA in patients with out‐of‐hospital cardiac arrest. All patients received advanced cardiac life support during the procedure. End‐tidal CO2 was measured before and after REBOA placement as a proxy measure of central circulation. A safety‐monitoring program assessed if the procedure interfered with the quality of advanced cardiac life support. REBOA was initiated in 10 patients. The mean age was 63 years (range 50–74 years) and 7 patients were men. The REBOA procedure was successful in all cases, with 80% success rate on first cannulation attempt. Mean procedural time was 11.7 minutes (SD 3.2, range 8–16). Mean end‐tidal CO2 increased by 1.75 kPa after 60 seconds compared with baseline (P<0.001). Six patients achieved return of spontaneous circulation (60%), 3 patients were admitted to hospital, and 1 patient survived past 30 days. The safety‐monitoring program identified no negative influence on the advanced cardiac life support quality. Conclusions To our knowledge, this is the first study to demonstrate that REBOA is feasible during non‐traumatic out‐of‐hospital cardiac arrest. The REBOA procedure did not interfere with the quality of the advanced cardiac life support. The significant increase in end‐tidal CO2 after occlusion suggests improved organ circulation during cardiopulmonary resuscitation. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03534011.
Collapse
Affiliation(s)
- Jostein Rødseth Brede
- Department of Emergency Medicine and Pre-Hospital Services St. Olav's University Hospital Trondheim Norway.,Department of Anesthesiology and Intensive Care Medicine St. Olav's University Hospital Trondheim Norway.,Department of Research and Development Norwegian Air Ambulance Foundation Oslo Norway
| | - Thomas Lafrenz
- Department of Thoracic Anesthesiology and Intensive Care Medicine St. Olav's University Hospital Trondheim Norway.,Medical Simulation Center St. Olav's University Hospital Trondheim Norway
| | - Pål Klepstad
- Department of Anesthesiology and Intensive Care Medicine St. Olav's University Hospital Trondheim Norway.,Department of Circulation and Medical Imaging Faculty of Medicine and Health Sciences Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Eivinn Aardal Skjærseth
- Department of Emergency Medicine and Pre-Hospital Services St. Olav's University Hospital Trondheim Norway
| | - Trond Nordseth
- Department of Emergency Medicine and Pre-Hospital Services St. Olav's University Hospital Trondheim Norway.,Department of Circulation and Medical Imaging Faculty of Medicine and Health Sciences Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Department of Anesthesiology Molde Hospital Molde Norway
| | - Edmund Søvik
- Medical Simulation Center St. Olav's University Hospital Trondheim Norway.,Department of Radiology and Nuclear Medicine St. Olav's University Hospital Trondheim Norway
| | - Andreas J Krüger
- Department of Emergency Medicine and Pre-Hospital Services St. Olav's University Hospital Trondheim Norway.,Department of Research and Development Norwegian Air Ambulance Foundation Oslo Norway.,Department of Circulation and Medical Imaging Faculty of Medicine and Health Sciences Norwegian University of Science and Technology (NTNU) Trondheim Norway
| |
Collapse
|
13
|
Hoareau GL, Tibbits EM, Beyer CA, Simon MA, DeSoucy ES, Faulconer ER, Neff LP, Grayson JK, Stewart IJ, Williams TK, Johnson MA. Resuscitative Endovascular Balloon Occlusion of the Aorta: Review of the Literature and Applications to Veterinary Emergency and Critical Care. Front Vet Sci 2019; 6:197. [PMID: 31275952 PMCID: PMC6594359 DOI: 10.3389/fvets.2019.00197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
While hemorrhagic shock might be the result of various conditions, hemorrhage control and resuscitation are the corner stone of patient management. Hemorrhage control can prove challenging in both the acute care and surgical settings, especially in the abdomen, where no direct pressure can be applied onto the source of bleeding. Resuscitative endovascular balloon occlusion of the aorta (REBOA) has emerged as a promising replacement to resuscitative thoracotomy (RT) for the management of non-compressible torso hemorrhage in human trauma patients. By inflating a balloon at specific levels (or zones) of the aorta to interrupt blood flow, hemorrhage below the level of the balloon can be controlled. While REBOA allows for hemorrhage control and augmentation of blood pressure cranial to the balloon, it also exposes caudal tissue beds to ischemia and the whole body to reperfusion injury. We aim to introduce the advantages of REBOA while reviewing known limitations. This review outlines a step-by-step approach to REBOA implementation, and discusses common challenges observed both in human patients and during translational large animal studies. Currently accepted and debated indications for REBOA in humans are discussed. Finally, we review possible applications for veterinary patients and how REBOA has the potential to be translated into clinical veterinary practice.
Collapse
Affiliation(s)
- Guillaume L Hoareau
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States
| | - Emily M Tibbits
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Carl A Beyer
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Meryl A Simon
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Erik S DeSoucy
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | | | - Lucas P Neff
- Department of Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - J Kevin Grayson
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States
| | - Ian J Stewart
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Timothy K Williams
- Department of Vascular and Endovascular Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - M Austin Johnson
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, Travis, CA, United States.,Department of Emergency Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
14
|
Brede JR, Lafrenz T, Krüger AJ, Søvik E, Steffensen T, Kriesi C, Steinert M, Klepstad P. Resuscitative endovascular balloon occlusion of the aorta (REBOA) in non-traumatic out-of-hospital cardiac arrest: evaluation of an educational programme. BMJ Open 2019; 9:e027980. [PMID: 31076474 PMCID: PMC6528011 DOI: 10.1136/bmjopen-2018-027980] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Out-of-hospital cardiac arrest (OHCA) is a critical incident with a high mortality rate. Augmentation of the circulation during cardiopulmonary resuscitation (CPR) might be beneficial. Use of resuscitative endovascular balloon occlusion of the aorta (REBOA) redistribute cardiac output to the organs proximal to the occlusion. Preclinical data support that patients in non-traumatic cardiac arrest might benefit from REBOA in the thoracic level during CPR. This study describes a training programme to implement the REBOA procedure to a prehospital working team, in preparation to a planned clinical study. METHODS We developed a team-based REBOA training programme involving the physicians and paramedics working on the National Air Ambulance helicopter base in Trondheim, Norway. The programme consists of a four-step approach to educate, train and implement the REBOA procedure in a simulated prehospital setting. An objective structured assessment of prehospital REBOA application scoring chart and a special designed simulation mannequin was made for this study. RESULTS Seven physicians and 3 paramedics participated. The time needed to perform the REBOA procedure was 8.5 (6.3-12.7) min. The corresponding time from arrival at scene to balloon inflation was 12.0 (8.8-15) min. The total objective assessment scores of the candidates' competency was 41.8 (39-43.5) points out of 48. The advanced cardiovascular life support (ACLS) remained at standard quality, regardless of the simultaneous REBOA procedure. CONCLUSION This four-step approach to educate, train and implement the REBOA procedure to a prehospital working team ensures adequate competence in a simulated OHCA setting. The use of a structured training programme and objective assessment of skills is recommended before utilising the procedure in a clinical setting. In a simulated setting, the procedure does not add significant time to the prehospital resuscitation time nor does the procedure interfere with the quality of the ACLS. TRIAL REGISTRATION NUMBER NCT03534011.
Collapse
Affiliation(s)
- Jostein Rødseth Brede
- Department of emergency medicine and pre-hospital services, St. Olavs Hospital, Trondheim, Norway
- Departmentof research and development, Norwegian Air Ambulance Foundation, Oslo, Norway
- Department of circulation and medical imaging, NTNU, Trondheim, Norway
| | - Thomas Lafrenz
- Department of thoracic anesthesiology and intensive care medicine, St. Olavs Hospital, Trondheim, Norway
| | - Andreas J Krüger
- Department of emergency medicine and pre-hospital services, St. Olavs Hospital, Trondheim, Norway
- Departmentof research and development, Norwegian Air Ambulance Foundation, Oslo, Norway
- Department of circulation and medical imaging, NTNU, Trondheim, Norway
| | - Edmund Søvik
- Department of radiology and nuclear medicine, St. Olavs Hospital, Trondheim, Norway
| | - Torjus Steffensen
- Department of mechanical and industrial engineering, NTNU, Trondheim, Norway
| | - Carlo Kriesi
- Department of mechanical and industrial engineering, NTNU, Trondheim, Norway
| | - Martin Steinert
- Department of mechanical and industrial engineering, NTNU, Trondheim, Norway
| | - Pål Klepstad
- Department of circulation and medical imaging, NTNU, Trondheim, Norway
- Department of anesthesiology and intensive care medicine, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Daley J, Morrison JJ, Sather J, Hile L. The role of resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct to ACLS in non-traumatic cardiac arrest. Am J Emerg Med 2017; 35:731-736. [PMID: 28117180 DOI: 10.1016/j.ajem.2017.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Abstract
Non-traumatic cardiac arrest is a major public health problem that carries an extremely high mortality rate. If we hope to increase the survivability of this condition, it is imperative that alternative methods of treatment are given due consideration. Balloon occlusion of the aorta can be used as a method of circulatory support in the critically ill patient. Intra-aortic balloon pumps have been used to temporize patients in cardiogenic shock for decades. More recently, resuscitative endovascular balloon occlusion of the aorta (REBOA) has been utilized in the patient in hemorrhagic shock or cardiac arrest secondary to trauma. Aortic occlusion in non-traumatic cardiac arrest has the effect of reducing the vascular volume that the generated cardiac output is distributed across. This augments myocardial and cerebral perfusion, increasing the probability of a return to a good quality of life for the patient. This phenomenon has been the subject of numerous animal studies dating back to the early 1980s; however, the human evidence is limited to several small case series. Animal research has demonstrated improvements in cerebral and coronary perfusion pressure during ACLS that lead to statistically significant differences in mortality. Several case series in humans have replicated these findings, suggesting the efficacy of this procedure. The objectives of this review are to: 1) introduce the reader to REBOA 2) review the physiology of NTCA and examine the current limitations of traditional ACLS 3) summarize the literature regarding the efficacy and feasibility of aortic balloon occlusion to support traditional ACLS.
Collapse
Affiliation(s)
- James Daley
- Yale New Haven Hospital, Department of Emergency Medicine, New Haven, CT, United States.
| | - Jonathan James Morrison
- Queen Elizabeth University Hospital, Department of Vascular Surgery, Glasgow, United Kingdom
| | - John Sather
- Yale New Haven Hospital, Department of Emergency Medicine, New Haven, CT, United States
| | - Lisa Hile
- Johns Hopkins Medicine, Department of Emergency Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
WIKLUND LARS, SHARMA HARISHANKER, BASU SAMAR. Circulatory Arrest as a Model for Studies of Global Ischemic Injury and Neuroprotection. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00027.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Reynolds JC, Rittenberger JC, Menegazzi JJ. Drug administration in animal studies of cardiac arrest does not reflect human clinical experience. Resuscitation 2007; 74:13-26. [PMID: 17360097 PMCID: PMC2039906 DOI: 10.1016/j.resuscitation.2006.10.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 11/22/2022]
Abstract
INTRODUCTION To date, there is no evidence showing a benefit from any advanced cardiac life support (ACLS) medication in out-of-hospital cardiac arrest (OOHCA), despite animal data to the contrary. One explanation may be a difference in the time to first drug administration. Our previous work has shown the mean time to first drug administration in clinical trials is 19.4min. We hypothesized that the average time to drug administration in large animal experiments occurs earlier than in OOHCA clinical trials. METHODS We conducted a literature review between 1990 and 2006 in MEDLINE using the following MeSH headings: swine, dogs, resuscitation, heart arrest, EMS, EMT, ambulance, ventricular fibrillation, drug therapy, epinephrine, vasopressin, amiodarone, lidocaine, magnesium, and sodium bicarbonate. We reviewed the abstracts of 331 studies and 197 full manuscripts. Exclusion criteria included: non-peer reviewed, all without primary animal data, and traumatic models. From these, we identified 119 papers that contained unique information on time to medication administration. The data are reported as mean, ranges, and 95% confidence intervals. Mean time to first drug administration in animal laboratory studies and clinical trials was compared with a t-test. Regression analysis was performed to determine if time to drug predicted ROSC. RESULTS Mean time to first drug administration in 2378 animals was 9.5min (range 3.0-28.0; 95% CI around mean 2.78, 16.22). This is less than the time reported in clinical trials (19.4min, p<0.001). Time to drug predicted ROSC (odds ratio 0.844; 95% CI 0.738, 0.966). CONCLUSION Shorter drug delivery time in animal models of cardiac arrest may be one reason for the failure of animal studies to translate successfully into the clinical arena.
Collapse
Affiliation(s)
| | | | - James J. Menegazzi
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
18
|
Liu XL, Nozari A, Basu S, Ronquist G, Rubertsson S, Wiklund L. Neurological outcome after experimental cardiopulmonary resuscitation: a result of delayed and potentially treatable neuronal injury? Acta Anaesthesiol Scand 2002; 46:537-46. [PMID: 12027848 DOI: 10.1034/j.1399-6576.2002.460511.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND In experimental cardiopulmonary resuscitation (CPR) aortic balloon occlusion, vasopressin, and hypertonic saline dextran administration improve cerebral blood flow. Free radical scavenger alpha-phenyl-N-tert-butyl-nitrone (PBN) and cyclosporine-A (CsA) alleviate neuronal damage after global ischemia. Combining these treatments, we investigated neurological outcome after experimental cardiac arrest. METHODS : Thirty anesthetized piglets, randomly allocated into three groups, were subjected to 8 min of ventricular fibrillation followed by 5 min of closed-chest CPR. The combined treatment (CT) group received all the above-mentioned modalities; group B was treated with balloon occlusion and epinephrine; and group C had sham balloon occlusion with epinephrine. Indicators of oxidative stress (8-iso-PGF(2 alpha)), inflammation (15-keto-dihydro-PGF(2 alpha)), energy crisis (hypoxanthine and xanthine), and anoxia/hypoxia (lactate) were monitored in jugular bulb venous blood. Neurological outcome was evaluated 24 h after CPR. RESULTS : Restoration of spontaneous circulation (ROSC) was more rapidly achieved and neurological outcome was significantly better in the CT group, although there was no difference in coronary perfusion pressure between groups. The jugular venous PCO2 and cerebral oxygen extraction ratio were lower in the CT group at 5-15 min after ROSC. Jugular venous 8-iso-PGF(2 alpha) and hypoxanthine after ROSC were correlated to 24 h neurological outcome CONCLUSIONS : A combination of cerebral blood flow promoting measures and administration of alpha-phenyl-N-tert-butyl-nitrone and cyclosporine-A improved 24 h neurological outcome after 8 min of experimental normothermic cardiac arrest, indicating an ongoing neuronal injury in the reperfusion phase.
Collapse
Affiliation(s)
- X L Liu
- Department of Surgical Sciences/Anaesthesiology and Intensive Care, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|