1
|
Lopes ACC, de Mattos BO, Marcon JL, Vera LM, López-Olmeda JF, Sánchez-Vázquez FJ, Carvalho TB. Does exposure to moonlight affect day/night changes in melatonin and metabolic parameters in Amazonian fish? Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111489. [PMID: 37474098 DOI: 10.1016/j.cbpa.2023.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Lunar cycle modulates the rhythmic activity patterns of many animals, including fish. The effect of the moonlight cycle on daily melatonin and metabolic parameters was evaluated in matrinxã (Brycon amazonicus) subjected to external natural lighting. Eighty juvenile were distributed in 4 tanks of 1m3 (20 fish/tank) and divided into two groups. One group was exposed to the full moon and the other group to the new moon for 30 days, which corresponds to the duration of the lunar period. At the end of the lunar phase, 6 fish from each group were anesthetized to collect blood, tissue and eye samples at midday and midnight. The comparison between the light and dark periods revealed a significant increase in plasma and ocular melatonin in the last period. However, there was no significant difference for plasma melatonin between moons. Ocular melatonin presented higher concentrations during the new moon. Glucose, total proteins, cortisol, liver glutathione and gill lipid peroxidation were higher in the full moon compared to in the new moon. Plasma triglyceride was higher during the night for the full moon, and the opposite was found for the new moon. Total cholesterol values were higher at night regardless the moon phase. Glutathione in the gills and lipid peroxidation in the liver showed no significant differences. These results highlight the importance of considering both the day and lunar cycles for melatonin and metabolic parameters in species of commercial interest and susceptible to stressful situations in rearing conditions.
Collapse
Affiliation(s)
| | - Bruno Olivetti de Mattos
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil.
| | - Jaydione Luiz Marcon
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Institute of Biological Sciences, Department of Physiological Sciences, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Thaís Billalba Carvalho
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil
| |
Collapse
|
2
|
Ali B, Mishra A. Effects of monochromatic lights on the melanophores arrangement in the spotted snakehead fish Channa punctata (Bloch, 1793). JOURNAL OF FISH BIOLOGY 2023; 102:1415-1424. [PMID: 36938697 DOI: 10.1111/jfb.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Some freshwater teleost fish have pigment cells whose arrangement and shape are affected by the environment. Natural light has a wide range of light intensity. Fish are sensitive to the background and exposed light colour. Fish body colour is a significant criterion in fixing its market value, whether it is ornamental or edible. By favourable light exposure, a culturist may get a good market value of fish on most ethical grounds. In this study, we recorded the changes in melanophore response with the changes in light colour on Channa punctata. Adult fish were treated with monochromatic lights (darkness, white, blue and red light) for 5 and 28 days. After treatment, their body colour and melanophore size, number, length and the number of dendrites were studied. The results showed a significant influence of monochromatic light on melanophore arrangement in fish skin. The data showed that blue light is appropriate for the overall species colour of photic C. punctata. Continuous black or white light caused severe damage to the fish's appearance.
Collapse
Affiliation(s)
- Bulbul Ali
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Abha Mishra
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
3
|
Remonato Franco BM, Shynkaruk T, Crowe T, Fancher B, French N, Gillingham S, Schwean-Lardner K. Light wavelength and its impact on broiler health. Poult Sci 2022; 101:102178. [PMID: 36215739 PMCID: PMC9554808 DOI: 10.1016/j.psj.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Light is a powerful management tool in poultry production systems, affecting productivity, physiology, and behavior. The objective of this study was to understand the impacts of three light colors (blue, green, or white) on broiler health. Broilers (N = 14,256) were raised in floor pens with fresh litter from 0 to 35 d in 9 rooms (2 blocked trials). Additionally, 2 genotypes (Ross YPMx708 and EPMx708) and sex were studied (6 room replications per lighting treatment and 18 pen replicates per sex × genotype × lighting program). Blood samples and tissue samples from the retina and the pineal gland were collected from birds (16-18 d of age) 9 times in one 24-hr period per trial, then analyzed to determine melatonin levels (pg/mL). Mobility was assessed via gait scoring, using a 0 to 5 scale at 31 to 32 d of age. Footpad dermatitis was assessed using a 0 to 4 scale, and litter quality by a subjective scoring system (scores ranging from 0-4). Mortality and morbidity causes were identified through necropsies performed by pathologists. Data were analyzed as a 3 × 2 × 2 factorial design, with trial as a random variable block and lighting treatment nested within rooms (MIXED procedure, SAS). Birds raised under blue light had lower serum melatonin levels during one time-point during the scotophase, but no other differences were noted. No effect of light color was observed for melatonin produced in the tissues, nor mobility and footpad dermatitis. An interaction was noted for litter quality where a higher percentage of pens housing YPM-708 broilers had litter categorized into dry, but not easily moved with the foot (category 1). Males had higher incidence of infectious and metabolic deaths than females. Interactions were observed between light and sex, where males raised under white light had a higher incidence of skeletal causes of mortality. Overall, the results showed that light color had minor impacts only on melatonin levels, mobility, footpad dermatitis, litter quality, and cause of mortality.
Collapse
Affiliation(s)
- B M Remonato Franco
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - T Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - T Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - B Fancher
- Aviagen(TM), Huntsville, AL 35806, USA
| | - N French
- Aviagen(TM), Huntsville, AL 35806, USA
| | | | - K Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
4
|
Gairin E, Dussenne M, Mercader M, Berthe C, Reynaud M, Metian M, Mills SC, Lenfant P, Besseau L, Bertucci F, Lecchini D. Harbours as unique environmental sites of multiple anthropogenic stressors on fish hormonal systems. Mol Cell Endocrinol 2022; 555:111727. [PMID: 35863654 DOI: 10.1016/j.mce.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Fish development and acclimation to environmental conditions are strongly mediated by the hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population maintenance. In the context of increasingly contaminated marine environments worldwide, numerous laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances (focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. Through this review, we highlight how harbours can be used as "in situ laboratories" given the variety of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that can be simultaneously investigated in harbours over long periods of time.
Collapse
Affiliation(s)
- Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan.
| | - Mélanie Dussenne
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan
| | - Cécile Berthe
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Mathieu Reynaud
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, MC, 98000, Principality of Monaco, Monaco
| | - Suzanne C Mills
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Philippe Lenfant
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 58 Avenue Paul Alduy, F-66860, Perpignan, France
| | - Laurence Besseau
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Frédéric Bertucci
- Functional and Evolutionary Morphology Lab, University of Liège, 4000, Liege, Belgium
| | - David Lecchini
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| |
Collapse
|
5
|
Zhang M, Gao X, Lyu M, Lin S, Luo X, You W, Ke C. AMPK regulates behavior and physiological plasticity of Haliotis discus hannai under different spectral compositions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113873. [PMID: 35839528 DOI: 10.1016/j.ecoenv.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In natural environments, the spectral composition of incident light is often subject to drastic changes due to the abundance of suspended particles, floating animals, and plants in coastal waters. In this study, after four months of culturing under blue light (NB), orange light (NY), dark environment (ND), and natural light (NN), the shell length and weight-specific growth rate in Pacific abalone, Haliotis discus hannai, were ranked in the following order: NY > NN > ND > NB. To understand the growth differences in abalone under these different light environments, we first performed 24-h video monitoring and found that the cumulative movement distance and duration were lowest in group NB, whereas the cumulative movement distance and duration were significantly higher in group ND than in any other group (P < 0.05). In group NB, the time spent hidden underneath the attachment substrate accounted for 81% of the resting time, but this ratio was lowest in group ND, at only 37% (P < 0.05). Next, LC-MS metabolomics identified 201 and 105 metabolites in NB vs. NN, ND vs. NN, and NY vs. NN under the positive and negative ion modes, respectively. According to the fold changes and annotations for differential metabolites in the KEGG enrichment pathways, adenosine, NAD+, cGMP, and arachidonic acid were used as differential metabolism markers, and the AMPK signaling pathway was enriched in every comparison group, and thus investigated further. The gene sequences of three subtypes of AMPK were obtained by cloning and we found that the expression levels of AMPKα and AMPKγ, and the AMP content were significantly higher in group NB than in any other group (P < 0.05). In addition, the ATP contents and adenylate energy charge values were ranked in the following order: NY > NN > ND > NB. According to in situ hybridization analysis, the three subtype genes were widely expressed in the hepatopancreas. Finally, the contents of many lipid metabolites differed significantly among groups and the expression levels of the triglyceride hydrolysis-related gene hormone sensitive lipase and fatty acid oxidation-related gene carnitine palmitoyltransferase 1 were higher in groups ND and NB than in groups NN and NY according to fluorescence quantification PCR (P < 0.05). The expression levels of fatty acid synthase and acetyl-CoA carboxylase were significantly lower in groups ND and NB than in groups NN and NY (P < 0.05). These findings indicated that differences in the spectral composition of incident light could reshape the behavior and physiological metabolism in abalone by influencing the "energy switch" AMPK, thereby providing some insights into the mechanisms that allow nocturnal marine organisms to adapt to different lighting environments.
Collapse
Affiliation(s)
- Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
A Detailed Analysis of the Effect of Different Environmental Factors on Fish Phototactic Behavior: Directional Fish Guiding and Expelling Technique. Animals (Basel) 2022; 12:ani12030240. [PMID: 35158564 PMCID: PMC8833435 DOI: 10.3390/ani12030240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Environmental pollution and hydropower development have affected fish survival and caused the extinction of some fish populations and species. To understand the effects of various environmental factors on the behavioral profiles of fish, we established a novel experimental method to measure the sensitivity and phototactic behavior of Schizothorax waltoni to four light colors and two flow velocities at two temperatures under low light intensity. The results showed that S. waltoni preferred the four light colors in the order green, blue, red, and yellow. Schizothorax waltoni showed positive phototaxis in green and blue light but negative phototaxis in red and yellow light. The increased flow velocity intensified the positive and negative phototaxis of fish under different light environments, while an increase in the water temperature aroused the escape behavior. Thus, red or yellow light greater than the phototaxis threshold can be used to move fish away from dangerous areas such as high-turbulent flows or polluted waters, while green or blue light can guide them to safe environments such as fish passage entrance or ideal habitats. Finally, this study provides scientific evidence and application value for restoring fish habitats, fish passages, and fisheries. Abstract Optimization of light-based fish passage facilities has attracted extensive attention, but studies under the influence of various environmental factors are scarce. We established a novel experimental method to measure the phototactic behavior of Schizothorax waltoni. The results showed that S. waltoni preferred the four light colors in the order green, blue, red, and yellow. The increased flow velocity intensified the positive and negative phototaxis of fish under different light environments, while an increase in the water temperature aroused the escape behavior. The escape behavior of fish in red and yellow light and the phototaxis behavior in green and blue light intensified as the light intensity exceeded the phototaxis threshold and continued to increase. Thus, red or yellow light greater than the phototaxis threshold can be used to move fish away from high-turbulent flows or polluted waters, while green or blue light can be used to guide them to fish passage entrance or ideal habitats. This study provides scientific evidence and application value for restoring fish habitats, fish passages, and fisheries.
Collapse
|
7
|
Sur S, Sharma A, Malik I, Bhardwaj SK, Kumar V. Daytime light spectrum affects photoperiodic induction of vernal response in obligate spring migrants. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111017. [PMID: 34126231 DOI: 10.1016/j.cbpa.2021.111017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
It is not well understood how the spectral composition (wavelength) of daylight that varies considerably during the day and seasons affects photoperiodic responses in a seasonal species. Here, we investigated the molecular underpinnings of wavelength-dependent photoperiodic induction in migratory redheaded buntings transferred to 13 h long days in neutral (white), 460 nm (blue), 500 nm (green) or 620 nm (red) wavelength that were compared with one another, and to short day controls for indices of the migratory (body fattening and weight gain, and Zugunruhe) and reproductive (testicular maturation) responses. Buntings showed wavelength-dependent photoperiodic response, with delayed Zugunruhe and slower testis maturation under 620 nm red light. Post-mortem comparison of gene expressions further revealed wavelength-dependence of the photoperiodic molecular response. Whereas there were higher retinal expressions of opn2 (rhodopsin) and opn5 (neuropsin) genes in red daylight, and of rhodopsin-like opsin (rh2) gene in green daylight, the hypothalamic opn2 mRNA levels were higher in blue daylight. Similarly, we found in birds under blue daylight an increased hypothalamic expression of genes involved in the photoperiodic induction (thyroid stimulating hormone subunit beta, tshb; eye absent 3, eya3; deiodinase type 2, dio2) and associated neural responses such as the calcium signaling (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, atp2a2), dopamine biosynthesis (tyrosine hydroxylase, th) and neurogenesis (brain-derived neurotrophic factor, bdnf). These results demonstrate transcriptional changes in parallel to responses associated with migration and reproduction in buntings, and suggest a role of daylight spectrum in photoperiodic induction of the vernal response in obligate spring avian migrants.
Collapse
Affiliation(s)
- Sayantan Sur
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
8
|
Güller U, Önalan Ş, Arabacı M, Karataş B, Yaşar M, Küfrevioğlu Öİ. Effects of different LED light spectra on rainbow trout (Oncorhynchus mykiss): in vivo evaluation of the antioxidant status. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2169-2180. [PMID: 32860607 DOI: 10.1007/s10695-020-00865-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) farming is one of the major aquacultures in Turkey. Some conditions in fish farming can induce oxidative stress leading to the deterioration in properties such as appearance/color, texture, and flavor in fish meat. This situation may cause the consumer not to prefer edible fish. Although there are some studies on the impacts of light intensity on fish welfare, the changes in the antioxidant enzyme activities have not been elucidated. In the current study, it was intended to examine in rainbow trout how cultivating under different wavelengths affects the antioxidant enzymes and acetylcholine esterase (AChE) activity, because its activity is associated with oxidative stress, and also the determination of which light is suitable for fish welfare was aimed. Rainbow trout larvae were grown under four lights with different wavelengths: natural sunlight and incandescent long-wave (red light), medium-wave (green light), and short-wave (blue light) LED light. The experiment lasted for 64 days. Biochemical assays were carried on in the brain, gill, and liver of rainbow trout. Antioxidant enzymes and AChE activity, which play an important role in the central nervous system, were assayed. In gill tissues, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glucose 6 phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutathione S-transferase (GST), and AChE activities increased under all three light wavelengths. In the liver, while activities of antioxidant enzymes and AChE decreased in red light, all of them increased in blue and green light. In the brain, GPx, GST, G6PD, and SOD activities were reduced but AChE activity did not alter under all three light sources. In conclusion, light sources with different spectral structures caused important changes in the activities of antioxidant enzymes in rainbow trout. On this basis, it may be thought that this may be a response to the changing redox status of a cell. Based on our results, blue light sources may be suggested for fish welfare in rainbow trout culture, and providing fish welfare by changing light sources can be easy and cheap in fish farming.
Collapse
Affiliation(s)
- Uğur Güller
- Faculty of Engineering, Department of Food Engineering, Iğdır University, Iğdır, Turkey.
| | - Şükrü Önalan
- Faculty of Aquaculture, Department of Aquaculture, Van Yüzüncü Yıl University, Van, Turkey
| | - Muhammed Arabacı
- Faculty of Aquaculture, Department of Aquaculture, Van Yüzüncü Yıl University, Van, Turkey
| | - Boran Karataş
- Faculty of Aquaculture, Department of Aquaculture, Van Yüzüncü Yıl University, Van, Turkey
| | - Muhterem Yaşar
- Faculty of Aquaculture, Department of Aquaculture, Van Yüzüncü Yıl University, Van, Turkey
| | | |
Collapse
|
9
|
Yan H, Liu Q, Shen X, Liu W, Cui X, Hu P, Yuan Z, Zhang L, Song C, Liu L, Liu Y. Effects of different light conditions on the retinal microstructure and ultrastructure of Dicentrarchus labrax larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:613-628. [PMID: 31797174 DOI: 10.1007/s10695-019-00735-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Light is a key environmental parameter known to influence fish throughout various stages of their life, from embryonic development to sexually mature adults. In a recent study, the effects of different light conditions on the growth of Dicentrarchus labrax larvae were investigated using light-emitting diodes (LEDs) as a light source. Here, pathological examinations were carried out to assess whether variations in light affected the visual system of the larvae, including any negative impacts on the retina or the growth rate. Although light did not affect the total thickness (TT) of the retina, the thickness of the retinal pigment epithelium layer (PRE), photoreceptor layer (PRos/is), outer nuclear layer (ONL), and inner nuclear layer (INL), and the PRE/TT and ONL/TT ratios were all significantly higher in larvae exposed to blue light than in larvae exposed to white light. Additionally, the thickness of PRE and the outer nuclear layer and the RPE/TT and ONL/TT ratios of larvae exposed to 2.0 W m-2 were significantly lower than in larvae exposed to 0.3 W m-2. By contrast, the INL/TT ratio in larvae exposed to 2.0 W m-2 was significantly higher than in larvae exposed to 0.3 W m-2. Additionally, the INL and ganglion cell layer nuclei density of larvae exposed to 2.0 W m-2 were significantly higher than in those exposed to 0.3 W m-2 (p < 0.05). Transmission electron microscopy revealed different levels of abnormalities in the photoreceptor layers in all treatment groups. Considering the growth of the larvae, the results of the study suggest that continuous LED exposure induced damage to photoreceptor cells but was not relevant to the growth performance of D. labrax larvae. Moreover, the results obtained here also support the high plasticity of retinal development in response to altered environmental light conditions.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xufang Shen
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Wenlei Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xin Cui
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Pengfei Hu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Zhen Yuan
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lei Zhang
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, No.35, Qinghua East Road, Haidian District, Beijing, 10083, China
| | - Lili Liu
- Institute of Semiconductors, Chinese Academy of Sciences, No.35, Qinghua East Road, Haidian District, Beijing, 10083, China
| | - Ying Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
10
|
Working with Inadequate Tools: Legislative Shortcomings in Protection against Ecological Effects of Artificial Light at Night. SUSTAINABILITY 2020. [DOI: 10.3390/su12062551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental change in nocturnal landscapes due to the increasing use of artificial light at night (ALAN) is recognized as being detrimental to the environment and raises important regulatory questions as to whether and how it should be regulated based on the manifold risks to the environment. Here, we present the results of an analysis of the current legal obligations on ALAN in context with a systematic review of adverse effects. The legal analysis includes the relevant aspects of European and German environmental law, specifically nature conservation and immission control. The review represents the results of 303 studies indicating significant disturbances of organisms and landscapes. We discuss the conditions for prohibitions by environmental laws and whether protection gaps persist and, hence, whether specific legislation for light pollution is necessary. While protection is predominantly provided for species with special protection status that reveal avoidance behavior of artificially lit landscapes and associated habitat loss, adverse effects on species and landscapes without special protection status are often unaddressed by existing regulations. Legislative shortcomings are caused by difficulties in proving adverse effect on the population level, detecting lighting malpractice, and applying the law to ALAN-related situations. Measures to reduce ALAN-induced environmental impacts are highlighted. We discuss whether an obligation to implement such measures is favorable for environmental protection and how regulations can be implemented.
Collapse
|
11
|
Effects of Colored Light on Growth and Nutritional Composition of Tilapia, and Biofloc as a Food Source. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light stimulation and biofloc technology can be combined to improve the efficiency and sustainability of tilapia production. A 73-day pilot experiment was conducted to investigate the effect of colored light on growth rates and nutritional composition of the Nile tilapia fingerlings (Oreochromis niloticus) in biofloc systems. The effect of colored light on the nutritional composition of bioflocs as a food source for fish was measured. Three groups were illuminated in addition to natural sunlight with colored light using RGB light emitting diodes (LEDs) with peak wavelengths (λ) of 627.27 nm for red (R), 513.33 nm for green (G), and 451.67 nm for blue (B) light. LED light intensity was constant (0.832 mW / cm 2 ), and had an 18-h photoperiod of light per day throughout the study. The control group was illuminated only with natural sunlight (natural). Tilapia had an average initial weight of 0.242 g. There was a significant effect of colored light on tilapia growth and composition. The R group showed the best growth rate, highest survival, and highest lipid content. The B group showed homogeneous growth with the lowest growth rate and lipid content, but the highest protein level. On the other hand, the biofloc composition was influenced by the green light in the highest content of lipids, protein, and nitrogen-free extract.
Collapse
|
12
|
Abstract
Artificial light at night (ALAN) is increasing exponentially worldwide, accelerated by the transition to new efficient lighting technologies. However, ALAN and resulting light pollution can cause unintended physiological consequences. In vertebrates, production of melatonin—the “hormone of darkness” and a key player in circadian regulation—can be suppressed by ALAN. In this paper, we provide an overview of research on melatonin and ALAN in vertebrates. We discuss how ALAN disrupts natural photic environments, its effect on melatonin and circadian rhythms, and different photoreceptor systems across vertebrate taxa. We then present the results of a systematic review in which we identified studies on melatonin under typical light-polluted conditions in fishes, amphibians, reptiles, birds, and mammals, including humans. Melatonin is suppressed by extremely low light intensities in many vertebrates, ranging from 0.01–0.03 lx for fishes and rodents to 6 lx for sensitive humans. Even lower, wavelength-dependent intensities are implied by some studies and require rigorous testing in ecological contexts. In many studies, melatonin suppression occurs at the minimum light levels tested, and, in better-studied groups, melatonin suppression is reported to occur at lower light levels. We identify major research gaps and conclude that, for most groups, crucial information is lacking. No studies were identified for amphibians and reptiles and long-term impacts of low-level ALAN exposure are unknown. Given the high sensitivity of vertebrate melatonin production to ALAN and the paucity of available information, it is crucial to research impacts of ALAN further in order to inform effective mitigation strategies for human health and the wellbeing and fitness of vertebrates in natural ecosystems.
Collapse
|
13
|
Fukunaga K, Yamashina F, Ohta N, Mizuno H, Takeuchi Y, Yamauchi C, Takemura A. Involvement of melatonin in transducing moon-related signals into the reproductive network of the female honeycomb grouper Epinephelus merra. Gen Comp Endocrinol 2019; 282:113211. [PMID: 31238075 DOI: 10.1016/j.ygcen.2019.113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Most groupers (genus Epinephelus) inhabiting tropical and subtropical waters exhibit lunar-related reproductive cycles. Their gametes develop synchronously toward and are released around the species-selected moon phase. Periodical changes in cues from the moon are likely used as zeitgeber, and the hypothalamic-pituitary-gonadal (HPG) axis may be activated after cues are perceived by the sensory organ and transduced as internal signals. The objective of this study was to examine weekly changes in mRNA expression profiles of gonadotropin-releasing hormones (gnrh1 and gnrh2) and the β-subunit of gonadotropins (fshβ and lhβ) during the spawning season (May to June) of the female honeycomb grouper Epinephelus merra, which spawns around the full moon period. When mature females were collected based on the lunar cycle, the gonadosomatic index peaked around the full moon. Ovarian histology revealed that oocytes laden with yolk developed toward the full moon and, subsequently, ovulatory follicles appeared around the last quarter moon, confirming lunar-related spawning with a full moon preference. Real-time quantitative polymerase chain reaction analyses revealed high abundances of fshβ and lhβ toward the first quarter moon, whereas concentrations of gnrh1 and gnrh2 increased around the last quarter moon and the first quarter moon, respectively, suggesting that transcription levels of these hormones fluctuate with the lunar cycle. The measurement of melatonin in the eye around the new moon and the full moon revealed that the ocular melatonin content was higher around the new moon than around the full moon, suggesting that the honeycomb grouper can perceive changes in moonlight. In addition, implantation of an osmotic pump containing melatonin into the body cavity of E. merra reduced the transcription levels of gonadotropins, suggesting that melatonin negatively affects hormonal synthesis at the HPG axis. We concluded that melatonin plays an essential role in transducing periodical changes in moonlight and that decreases in melatonin levels from the new moon to the full moon activate the HPG axis for entrainment of gonadal development and spawning.
Collapse
Affiliation(s)
- Kodai Fukunaga
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Fumika Yamashina
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Natsuki Ohta
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Hiromasa Mizuno
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Yuki Takeuchi
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan; Okinawa Institute of Science and Technology Graduate School, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Chihiro Yamauchi
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akihiro Takemura
- Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
14
|
Dominoni DM, Nelson RJ. Artificial light at night as an environmental pollutant: An integrative approach across taxa, biological functions, and scientific disciplines. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 329:387-393. [PMID: 30371014 DOI: 10.1002/jez.2241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Davide M Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown,, Virginia
| |
Collapse
|
15
|
Oliveira CCV, Figueiredo F, Soares F, Pinto W, Dinis MT. Meagre's melatonin profiles under captivity: circadian rhythmicity and light sensitiveness. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:885-893. [PMID: 29500583 DOI: 10.1007/s10695-018-0478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
The present study reveals the first characterization of the plasma melatonin rhythms of the meagre (Argyrosomus regius) under aquaculture conditions. Melatonin levels were monitored during a 24 h cycle under a photoperiod of 16 L:8D and under constant darkness (DD), respectively to characterize the daily rhythm of this indoleamine and to test its endogenous origin. Besides, to identify which light intensities are perceived as night or day by this species, the degree of inhibition of nocturnal melatonin production caused by increasing intensities of light was tested (3.3, 5.3, 10.5, and 120 μW/cm2), applying 1 h light pulses at Mid-Dark. The result for melatonin daily rhythm in plasma showed a typical profile: concentration remained low during all daytime points, increasing greatly during dark points, with maximum values at 16:00 and 22:00 h, zeitgeber time. Under DD conditions, the plasma melatonin profile persisted, with a similar acrophase but with a lower amplitude between subjective day and night periods, indicating this rhythm as being endogenously driven. Moreover, meagre seemed to be very sensitive to dim levels of illumination during the night, since an intensity of just 3.3 μW/cm2 inhibited melatonin production. However, only the pulse of 5.3 μW/cm2 caused a melatonin drop till daytime concentrations. Thus, the threshold of light detection by the pineal organ was suggested as being located between 3.3 and 5.3 μW/cm2. Such results are an added value for this species biology knowledge, and in consequence to its adaptation to aquaculture conditions, allowing the improvement of culture husbandry protocols.
Collapse
Affiliation(s)
- Catarina C V Oliveira
- CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal.
| | - Filipe Figueiredo
- CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | | | - Wilson Pinto
- SPAROS, Lda, Área Empresarial de Marim, Lote C, 8700-221, Olhão, Portugal
| | - Maria Teresa Dinis
- CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| |
Collapse
|
16
|
Gaston KJ, Holt LA. Nature, extent and ecological implications of night-time light from road vehicles. J Appl Ecol 2018; 55:2296-2307. [PMID: 30147142 PMCID: PMC6099288 DOI: 10.1111/1365-2664.13157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/09/2018] [Indexed: 11/28/2022]
Abstract
The erosion of night‐time by the introduction of artificial lighting constitutes a profound pressure on the natural environment. It has altered what had for millennia been reliable signals from natural light cycles used for regulating a host of biological processes, with impacts ranging from changes in gene expression to ecosystem processes. Studies of these impacts have focused almost exclusively on those resulting from stationary sources of light emissions, and particularly streetlights. However, mobile sources, especially road vehicle headlights, contribute substantial additional emissions. The ecological impacts of light emissions from vehicle headlights are likely to be especially high because these are (1) focused so as to light roadsides at higher intensities than commonly experienced from other sources, and well above activation thresholds for many biological processes; (2) projected largely in a horizontal plane and thus can carry over long distances; (3) introduced into much larger areas of the landscape than experience street lighting; (4) typically broad “white” spectrum, which substantially overlaps the action spectra of many biological processes and (5) often experienced at roadsides as series of pulses of light (produced by passage of vehicles), a dynamic known to have major biological impacts. The ecological impacts of road vehicle headlights will markedly increase with projected global growth in numbers of vehicles and the road network, increasing the local severity of emissions (because vehicle numbers are increasing faster than growth in the road network) and introducing emissions into areas from which they were previously absent. The effects will be further exacerbated by technological developments that are increasing the intensity of headlight emissions and the amounts of blue light in emission spectra. Synthesis and applications. Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Collapse
Affiliation(s)
- Kevin J. Gaston
- Environment & Sustainability Institute; University of Exeter; Cornwall UK
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study; Berlin Germany
| | - Lauren A. Holt
- Environment & Sustainability Institute; University of Exeter; Cornwall UK
| |
Collapse
|
17
|
Ouyang JQ, Davies S, Dominoni D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. ACTA ACUST UNITED AC 2018; 221:221/6/jeb156893. [PMID: 29545373 DOI: 10.1242/jeb.156893] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Scott Davies
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA.,Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Davide Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 Wageningen, The Netherlands.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
18
|
Brüning A, Hölker F, Franke S, Kleiner W, Kloas W. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1-12. [PMID: 28721487 DOI: 10.1007/s10695-017-0408-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 07/06/2017] [Indexed: 05/10/2023]
Abstract
In this study we investigated the influence of artificial light at night (ALAN) of different intensities (0, 1, 10, 100 lx) and different colours (blue, green, red) on the daily melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus, a ubiquitous cyprinid, which occur in standing and moderately flowing freshwater habitats of central Europe. Melatonin concentrations were significantly lowered under nocturnal white light already at 1 lx. Low intensity blue, green and red ALAN lowered the melatonin levels significantly in comparison to a dark control. We conclude that ALAN can disturb melatonin rhythms in roach at very low intensities and at different wavelengths and thus light pollution in urban waters has the potential to impact biological rhythms in fish. However, mRNA expression of gonadotropins was not affected by ALAN during the period of the experiments. Thus, suspected implications of ALAN on reproduction of roach could not be substantiated.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
- Free University of Berlin, Institute of Biology, Schwendenerstr. 1, 14195, Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
19
|
Kumar J, Gupta P, Naseem A, Malik S. Light spectrum and intensity, and the timekeeping in birds. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1345449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jayant Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Preeti Gupta
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Asma Naseem
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
20
|
Kouhi-Dehkordi S, Bani A. Day-night behavior in river entry of kutum and its relation to melatonin. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1324559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shima Kouhi-Dehkordi
- Faculty of Natural Resources, Fisheries Department, University of Guilan, Sowmeh Sara, Iran
- Fisheries Department, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
| | - Ali Bani
- Faculty of Science, Department of Biology, University of Guilan, Rasht, Iran
- Caspian Sea Basin Research Center, Marine Science Department, University of Guilan, Rasht, Iran
| |
Collapse
|
21
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
22
|
Yuan SS, Xu HZ, Liu LQ, Zheng JL. Different effects of blue and red light-emitting diodes on antioxidant responses in the liver and ovary of zebrafish Danio rerio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:411-419. [PMID: 27664022 DOI: 10.1007/s10695-016-0296-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (blue LEDs, LDB; red, LDR) on growth, morphology, and oxidative stress in the liver and ovary of zebrafish for 5 weeks. Growth maintained relatively constant under LDB condition, but was reduced under LDR condition. In the liver, hepatosomatic index (HSI) and protein carbonylation (PC) increased under LDR condition, whereas lipid peroxidation (LPO) declined and HSI remained unchanged under LDB condition. The decrease in oxidative damage by LDB could be attributed to the up-regulated levels of mRNA, protein, and activity of Cu/Zn-SOD and CAT. A failure to activate the activity of both enzymes may result in the enhanced PC levels under LDR condition, though both genes were up-regulated at transcriptional and translational levels. In the ovary, although gonadosomatic index sharply increased under LDR condition, LPO and PC dramatically accumulated. The increase in oxidative damage by LDR might result from the down-regulated levels of protein and activity of Cu/Zn-SOD and CAT, though both genes were up-regulated at a transcriptional level. Furthermore, a sharp increase in expression of transcription factor Nrf2 that targets antioxidant genes was observed in the liver but not in the ovary under LDB and LDR conditions. In conclusion, our data demonstrated a positive effect of LDB and negative effect of LDR on fish antioxidant defenses, emphasizing the potentials of LDB as an effective light source in fish farming.
Collapse
Affiliation(s)
- Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Huan-Zhi Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Li-Qin Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
23
|
Adatto I, Krug L, Zon LI. The Red Light District and Its Effects on Zebrafish Reproduction. Zebrafish 2016; 13:226-9. [PMID: 26978703 DOI: 10.1089/zeb.2015.1228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Light-dark cycles mimicking natural settings in a zebrafish facility are crucial for maintaining fish with an entrained circadian clock making them an ideal vertebrate model to study such rhythms. However, failure to provide optimal conditions to include complete darkness can lead to a disturbed circadian pacemaker affecting physiology and behavior in zebrafish. To meet building code requirements, the aquatics facility in use was outfitted with EXIT signs emitting a constant light. To determine if light radiating from the EXIT sign has an effect on zebrafish embryo production, 100 fish (1:1 m/f ratio) were split and housed at 10 fish/L. Half were housed directly in front of the EXIT sign, whereas the other half (control) were housed under a true 14-h light-10-h dark cycle. Reproductive success was evaluated by recording fecundity and viability from 10 weekly matings under two light colors: red (640 nm) and green (560 nm). On average the control group spawned twice as many embryos compared to those housed in front of a red EXIT sign, whereas green EXIT sign showed no difference. This suggests the importance of providing a complete dark environment within the night cycle and a recommendation toward dim green EXIT signs to avoid a decline in reproductive performance.
Collapse
Affiliation(s)
- Isaac Adatto
- 1 Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts
| | - Lauren Krug
- 1 Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts
| | - Leonard Ira Zon
- 1 Department of Stem Cell and Regenerative Biology, Harvard University , Cambridge, Massachusetts.,2 Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
24
|
Brüning A, Hölker F, Franke S, Kleiner W, Kloas W. Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:214-222. [PMID: 26584071 DOI: 10.1016/j.scitotenv.2015.11.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 05/10/2023]
Abstract
The distribution and intensity of artificial light at night, commonly referred to as light pollution, is consequently rising and progressively also ecological implications come to light. Low intensity light is known to suppress nocturnal melatonin production in several fish species. This study aims to examine the least suppressive light colour for melatonin excreted into the holding water and the influence of different light qualities and quantities in the night on gene expression of gonadotropins in fish. European perch (Perca fluviatilis) were exposed to light of different wavelengths during the night (blue, green, and red). Melatonin concentrations were measured from water samples every 3h during a 24h period. Gene expression of gonadotropins was measured in perch exposed to different light colours and was additionally examined for perch subjected to different intensities of white light (0 lx, 1 lx, 10 lx, 100 lx) during the night. All different light colours caused a significant drop of melatonin concentration; however, blue light was least suppressive. Gene expression of gonadotropins was not influenced by nocturnal light of different light colours, but in female perch gonadotropin expression was significantly reduced by white light already at the lowest level (1 lx). We conclude that artificial light with shorter wavelengths at night is less effective in disturbing biological rhythms of perch than longer wavelengths, coinciding with the light situation in freshwater habitats inhabited by perch. Different light colours in the night showed no significant effect on gonadotropin expression, but white light in the night can disturb reproductive traits already at very low light intensities. These findings indicate that light pollution has not only the potential to disturb the melatonin cycle but also the reproductive rhythm and may therefore have implications on whole species communities.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| |
Collapse
|
25
|
del Pozo Cano A, Sánchez Vázquez FJ. Light pulses at night elicit wavelength-dependent behavioral responses in zebrafish. J Zool (1987) 2015. [DOI: 10.1111/jzo.12273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. del Pozo Cano
- Department of Physiology; Faculty of Biology; University of Murcia, Regional Campus of International Excellence ‘Campus Mare Nostrum’; Murcia Spain
| | - F. J. Sánchez Vázquez
- Department of Physiology; Faculty of Biology; University of Murcia, Regional Campus of International Excellence ‘Campus Mare Nostrum’; Murcia Spain
| |
Collapse
|
26
|
Alvarado MV, Carrillo M, Felip A. Melatonin-induced changes in kiss/gnrh gene expression patterns in the brain of male sea bass during spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:69-79. [DOI: 10.1016/j.cbpa.2015.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 01/04/2023]
|
27
|
Brüning A, Hölker F, Franke S, Preuer T, Kloas W. Spotlight on fish: light pollution affects circadian rhythms of European perch but does not cause stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:516-22. [PMID: 25577738 DOI: 10.1016/j.scitotenv.2014.12.094] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 12/28/2014] [Indexed: 05/22/2023]
Abstract
Flora and fauna evolved under natural day and night cycles. However, natural light is now enhanced by artificial light at night, particularly in urban areas. This alteration of natural light environments during the night is hypothesised to alter biological rhythms in fish, by effecting night-time production of the hormone melatonin. Artificial light at night is also expected to increase the stress level of fish, resulting in higher cortisol production. In laboratory experiments, European perch (Perca fluviatilis) were exposed to four different light intensities during the night, 0 lx (control), 1 lx (potential light level in urban waters), 10 lx (typical street lighting at night) and 100 lx. Melatonin and cortisol concentrations were measured from water samples every 3h during a 24 hour period. This study revealed that the nocturnal increase in melatonin production was inhibited even at the lowest light level of 1 lx. However, cortisol levels did not differ between control and treatment illumination levels. We conclude that artificial light at night at very low intensities may disturb biological rhythms in fish since nocturnal light levels around 1 lx are already found in urban waters. However, enhanced stress induction could not be demonstrated.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Torsten Preuer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| |
Collapse
|
28
|
Yadav G, Malik S, Rani S, Kumar V. Role of light wavelengths in synchronization of circadian physiology in songbirds. Physiol Behav 2015; 140:164-71. [DOI: 10.1016/j.physbeh.2014.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/25/2022]
|
29
|
Gaston KJ, Duffy JP, Gaston S, Bennie J, Davies TW. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 2014; 176:917-31. [PMID: 25239105 PMCID: PMC4226844 DOI: 10.1007/s00442-014-3088-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022]
Abstract
Artificial light at night is profoundly altering natural light cycles, particularly as perceived by many organisms, over extensive areas of the globe. This alteration comprises the introduction of light at night at places and times at which it has not previously occurred, and with different spectral signatures. Given the long geological periods for which light cycles have previously been consistent, this constitutes a novel environmental pressure, and one for which there is evidence for biological effects that span from molecular to community level. Here we provide a synthesis of understanding of the form and extent of this alteration, some of the key consequences for terrestrial and aquatic ecosystems, interactions and synergies with other anthropogenic pressures on the environment, major uncertainties, and future prospects and management options. This constitutes a compelling example of the need for a thoroughly interdisciplinary approach to understanding and managing the impact of one particular anthropogenic pressure. The former requires insights that span molecular biology to ecosystem ecology, and the latter contributions of biologists, policy makers and engineers.
Collapse
Affiliation(s)
- Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK,
| | | | | | | | | |
Collapse
|
30
|
Takeuchi Y, Imamura S, Sawada Y, Hur SP, Takemura A. Effects of different colors of light on melatonin suppression and expression analysis of Aanat1 and melanopsin in the eye of a tropical damselfish. Gen Comp Endocrinol 2014; 204:158-65. [PMID: 24859252 DOI: 10.1016/j.ygcen.2014.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 04/07/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
Ocular melatonin production exhibits a daily rhythm with a decrease during photophase and an increase during scotophase (nocturnal pattern) in teleost fish due to day-night changes in the activity of the rate-limiting melatonin synthesizing enzyme arylalkylamine N-acetyltransferase (AANAT). Acute light exposure during scotophase suppresses AANAT activity and melatonin production in the eyes, suggesting that external light signals are a principal regulator of ocular melatonin synthesis. To better understand the photic regulation of ocular melatonin synthesis in teleost fish, this study sought to characterize the effect of light on ocular melatonin synthesis in the sapphire devil Chrysiptera cyanea, which shows a nocturnal pattern and light-induced inhibition of ocular melatonin production during scotophase. Exposure to three different wavelengths of light (half-peak bandwidth=435-475 nm with a peak of 455 nm, 495-565 nm with a peak of 530 nm, and 607-647 nm with a peak of 627 nm for the blue, green, and red LEDs) for 2h during scotophase resulted in the blue wavelength significantly decreasing ocular melatonin content within 30 min after light exposure. This result clearly indicates that the effective range of visible light on ocular melatonin suppression is distributed within the wavelengths of blue light and that a blue light-sensitive opsin is involved in ocular melatonin suppression in the fish. A PCR-based cloning method revealed the expression of melanopsin, a putative blue light-sensitive nonvisual opsin, in the eyes. Furthermore, in situ hybridization using the sapphire devil Aanat1 and melanopsin RNA probes showed mRNA expressions of both genes in the inner nuclear and ganglion cell layer of the fish retina. These results suggest that melanopsin is a possible candidate photoreceptor involved in ocular melatonin suppression by an external light signal in the sapphire devil.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | - Satoshi Imamura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Yuji Sawada
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Sung-Pyo Hur
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
31
|
Lazado CC, Kumaratunga HPS, Nagasawa K, Babiak I, Giannetto A, Fernandes JMO. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle. PLoS One 2014; 9:e99172. [PMID: 24921252 PMCID: PMC4062345 DOI: 10.1371/journal.pone.0099172] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/12/2014] [Indexed: 12/14/2022] Open
Abstract
The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua) and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2), RAR-related orphan receptor A (rora) and timeless (tim) displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2), and period 2a and 2b (per2a and per2b). Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded) domain-containing protein (npas1) and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock), npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1), and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5) and muscleblind-like 1 (mbnl1) strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.
Collapse
Affiliation(s)
- Carlo C. Lazado
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | - Kazue Nagasawa
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Alessia Giannetto
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Jorge M. O. Fernandes
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
- * E-mail:
| |
Collapse
|
32
|
Shin HS, Kim NN, Choi YJ, Choi CY. Retinal light input regulates clock genes and immune function in yellowtail clownfish (Amphiprion clarkii). BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2013.870757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Ikegami T, Takeuchi Y, Hur SP, Takemura A. Impacts of moonlight on fish reproduction. Mar Genomics 2014; 14:59-66. [PMID: 24393605 DOI: 10.1016/j.margen.2013.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 01/11/2023]
Abstract
The waxing and waning cycle of the moon is repeated at approximately 1-month intervals, and concomitant changes occur in the levels of moonlight and cueing signals detected by organisms on the earth. In the goldlined spinefoot Siganus guttatus, a spawner lunar-synchronized around the first quarter moon, periodic changes in moonlight are used to cue gonadal development and gamete release. Rearing of mature fish under artificial constant full moon and new moon conditions during the spawning season leads to disruption or delay of synchronous spawning around the predicted moon phase. Melatonin, an endogenous transducer of the environmental light/dark cycle, increases in the blood and in the pineal gland around the new moon period and decreases around the full moon period. In synchrony with melatonin fluctuation, melatonin receptor(s) mRNA abundance is higher during the new moon period than during the full moon. The melatonin/melatonin receptor system is likely affected by moonlight. Measurements of the expression patterns of clock genes in neural tissues demonstrate that Cryptochrome (Cry1 and Cry3) and Period (Per2) fluctuate with lunar periodicity, the former peaking in the medial part of the brain around the first quarter moon period, and the latter peaking in the pineal gland around the full moon. Some clock genes may respond to periodic changes in moon phase and appear to be involved in the generation of lunar-related rhythmicity in lunar spawners. Thus, some fish use moonlight-related periodicities as reliable information for synchronizing the timing of reproductive events.
Collapse
Affiliation(s)
- Taro Ikegami
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Yuki Takeuchi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Sung-Pyo Hur
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
34
|
Villamizar N, Vera LM, Foulkes NS, Sánchez-Vázquez FJ. Effect of lighting conditions on zebrafish growth and development. Zebrafish 2013; 11:173-81. [PMID: 24367902 DOI: 10.1089/zeb.2013.0926] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the underwater environment, the properties of light (intensity and spectrum) change rapidly with depth and water quality. In this article, we have described how and to what extent lighting conditions can influence the development, growth, and survival of zebrafish. Fertilized eggs and the corresponding larvae were exposed to different visible light wavelengths (violet, blue, green, yellow, red, and white) in a 12-h light-12-h dark (LD) cycle until 30 days posthatching (dph), when the expression of morphometric parameters and growth (igf1a, igf2a)- and stress-related (crh and pomca) genes were examined. Another group of larvae was raised under constant darkness (DD) until 5 or 10 dph, after which they were transferred to a LD of white light. A third group remained under DD to investigate the effects of light deprivation upon zebrafish development. The results revealed that the hatching rate was highest under blue and violet light, while total length at 30 dph was greatest under blue, white, and violet light. Red light led to reduced feeding activity and poor survival (100% mortality). Larvae raised under constant white light (LL) showed a higher proportion of malformations, as did larvae raised under LD violet light. The expression of growth and stress factors was upregulated in the violet (igf1a, igf2a, pomca, and chr) and blue (igf2a) groups, which is consistent with the higher growth recorded and the higher proportion of malformations detected under the violet light. All larvae kept under DD died before 18 dph, but the survival rates improved in larvae transferred to LD at 5 dph and at 10 dph. In summary, these findings revealed that lighting conditions are crucial factors influencing zebrafish larval development and growth.
Collapse
Affiliation(s)
- Natalia Villamizar
- 1 Department of Physiology, Faculty of Biology, University of Murcia , Murcia, Spain
| | | | | | | |
Collapse
|
35
|
Abstract
Melatonin is a well-documented time-keeping hormone that can entrain an individual's physiology and behavior to the day-night cycle, though surprisingly little is known about its influence on the neural basis of social behavior, including vocalization. Male midshipman fish (Porichthys notatus) produce several call types distinguishable by duration and by daily and seasonal cycles in their production. We investigated melatonin's influence on the known nocturnal- and breeding season-dependent increase in excitability of the midshipman's vocal network (VN) that directly patterns natural calls. VN output is readily recorded from the vocal nerve as a 'fictive call'. Five days of constant light significantly increased stimulus threshold levels for calls electrically evoked from vocally active sites in the medial midbrain, supporting previous findings that light suppresses VN excitability, while 2-iodomelatonin (2-IMel; a melatonin analog) implantation decreased threshold. 2-IMel also increased fictive call duration evoked from medial sites as well as lateral midbrain sites that produced several-fold longer calls irrespective of photoregime or drug treatment. When stimulus intensity was incrementally increased, 2-IMel increased duration only at lateral sites, suggesting that melatonin action is stronger in the lateral midbrain. For animals receiving 5 days of constant darkness, known to increase VN excitability, systemic injections of either of two mammalian melatonin receptor antagonists increased threshold and decreased duration for calls evoked from medial sites. Our results demonstrate melatonin modulation of VN excitability and suggest that social context-dependent call types differing in duration may be determined by neuro-hormonal action within specific regions of a midbrain vocal-acoustic network.
Collapse
Affiliation(s)
- Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Mudd Hall, Ithaca, NY 14853, USA
| | | |
Collapse
|
36
|
Esteban MÁ, Cuesta A, Chaves-Pozo E, Meseguer J. Influence of melatonin on the immune system of fish: a review. Int J Mol Sci 2013; 14:7979-99. [PMID: 23579958 PMCID: PMC3645727 DOI: 10.3390/ijms14047979] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023] Open
Abstract
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.
Collapse
Affiliation(s)
- M. Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, International Excellence Campus, “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; E-Mails: (A.C.); (J.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-868-887-665; Fax: +34-868-883-963
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, International Excellence Campus, “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; E-Mails: (A.C.); (J.M.)
| | - Elena Chaves-Pozo
- Marine Culture Plant of Mazarrón, Spanish Institute of Oceanography (IEO), Azohía Street, Puerto de Mazarrón, 30860 Murcia, Spain; E-Mail:
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, International Excellence Campus, “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; E-Mails: (A.C.); (J.M.)
| |
Collapse
|
37
|
Park MS, Shin HS, Kim NN, Lee J, Kil GS, Choi CY. Effects of LED spectral sensitivity on circadian rhythm-related genes in the yellowtail clownfish,Amphiprion clarkii. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.779935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
38
|
Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata). J Comp Physiol B 2012; 183:625-39. [DOI: 10.1007/s00360-012-0735-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/27/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
|
39
|
Blanco-Vives B, Aliaga-Guerrero M, Cañavate JP, García-Mateos G, Martín-Robles AJ, Herrera-Pérez P, Muñoz-Cueto JA, Sánchez-Vázquez FJ. Metamorphosis induces a light-dependent switch in Senegalese sole (Solea senegalensis) from diurnal to nocturnal behavior. J Biol Rhythms 2012; 27:135-44. [PMID: 22476774 DOI: 10.1177/0748730411435303] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Light plays a key role in the development of biological rhythms in fish. Recent research in Senegal sole has revealed that spawning and hatching rhythms, larval development, and growth performance are strongly influenced by lighting conditions. However, the effect of light on the daily patterns of behavior remains unexplored. Therefore, the aim of this study was to investigate the impact of different photoperiod regimes and white, blue, and red light on the activity rhythms and foraging behavior of Solea senegalensis larvae up to 40 days posthatching (DPH). To this end, eggs were collected immediately after spawning during the night and exposed to continuous white light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white (LD(W)), blue (LD(B), λ(peak) = 463 nm), or red light (LD(R), λ(peak) = 685 nm). A filming scenario was designed to video record activity rhythms during day and night times using infrared lights. The results revealed that activity rhythms in LD(B) and LD(W) changed from diurnal to nocturnal on days 9 to 10 DPH, coinciding with the onset of metamorphosis. In LD(R), sole larvae remained nocturnal throughout the experimental period, while under LL and DD, larvae failed to show any rhythm. In addition, larvae exposed to LD(B) and LD(W) had the highest prey capture success rate (LD(B) = 82.6% ± 2.0%; LD(W) = 75.1% ± 1.3%) and attack rate (LD(B) = 54.3% ± 1.9%; LD(W) = 46.9% ± 3.0%) during the light phase (ML) until 9 DPH. During metamorphosis, the attack and capture success rates in these light conditions were higher during the dark phase (MD), when they showed the same nocturnal behavioral pattern as under LD(R) conditions. These results revealed that the development of sole larvae is tightly controlled by light characteristics, underlining the importance of the natural underwater photoenvironment (LD cycles of blue wavelengths) for the normal onset of the rhythmic behavior of fish larvae during early ontogenesis.
Collapse
Affiliation(s)
- B Blanco-Vives
- Department of Physiology, Faculty of Biology, University of Murcia, Espinardo Campus, Murcia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Heydarnejad MS, Parto M, Pilevarian AA. Influence of light colours on growth and stress response of rainbow trout (Oncorhynchus mykiss) under laboratory conditions. J Anim Physiol Anim Nutr (Berl) 2011; 97:67-71. [DOI: 10.1111/j.1439-0396.2011.01243.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M Saeed Heydarnejad
- Aquaculture Sector, Biology Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
| | | | | |
Collapse
|
41
|
Shin HS, Lee J, Choi CY. Effects of LED light spectra on oxidative stress and the protective role of melatonin in relation to the daily rhythm of the yellowtail clownfish, Amphiprion clarkii. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:221-8. [PMID: 21689776 DOI: 10.1016/j.cbpa.2011.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
The present study aimed to test the effects of melatonin on oxidative stress in the yellowtail clownfish, Amphiprion clarkii, as produced by light emitting diodes (LEDs): red, green, and blue. We investigated the effects of the different LEDs on oxidative stress by measuring the mRNA expression of arylalkylamine N-acetyltransferase (AANAT2), the expression and activities of antioxidant enzymes (superoxide dismutase, SOD (EC 1.15.1.1); and catalase, CAT (EC 1.11.1.6)), and plasma H2O2 and plasma melatonin levels. In red light, the expression of AANAT2, SOD, and CAT mRNA was significantly higher than those under the other light spectra. SOD and CAT activities and plasma H2O2 and melatonin levels were also significantly higher for the red spectra than those for the other light spectra. These results indicate that red light induces oxidative stress. To investigate the effects of melatonin on oxidative stress, we injected melatonin into live fish (in vivo) or treated cultured pineal organ (in vitro) with melatonin. We found that AANAT2, SOD, and CAT mRNA expression levels, SOD and CAT activities, and plasma H2O2, lipid peroxidation (LPO) and melatonin levels were significantly lower than those for the controls. Therefore, our results indicate that red light induces oxidative stress and melatonin plays the role of a strong antioxidant in yellowtail clownfish.
Collapse
Affiliation(s)
- Hyun Suk Shin
- Division of Marine Environment & BioScience, Korea Maritime University, Busan 606-791, Republic of Korea
| | | | | |
Collapse
|
42
|
The pineal complex of the European sea bass (Dicentrarchus labrax): I. Histological, immunohistochemical and qPCR study. J Chem Neuroanat 2011; 41:170-80. [DOI: 10.1016/j.jchemneu.2011.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
43
|
Herrera-Pérez P, Del Carmen Rendón M, Besseau L, Sauzet S, Falcón J, Muñoz-Cueto JA. Melatonin receptors in the brain of the European sea bass: An in situ hybridization and autoradiographic study. J Comp Neurol 2010; 518:3495-511. [DOI: 10.1002/cne.22408] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 2010; 165:469-82. [PMID: 19409900 DOI: 10.1016/j.ygcen.2009.04.026] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 01/27/2023]
Abstract
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes.
Collapse
Affiliation(s)
- J Falcón
- CNRS, FRE3247 et GDR2821, Modèles en Biologie cellulaire et évolutive, Avenue Fontaulé, BP 44, F-66651 Banyuls-sur-Mer, Cedex, France.
| | | | | | | |
Collapse
|
45
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
46
|
Migaud H, Davie A, Taylor JF. Current knowledge on the photoneuroendocrine regulation of reproduction in temperate fish species. JOURNAL OF FISH BIOLOGY 2010; 76:27-68. [PMID: 20738699 DOI: 10.1111/j.1095-8649.2009.02500.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Seasonality is an important adaptive trait in temperate fish species as it entrains or regulates most physiological events such as reproductive cycle, growth profile, locomotor activity and key life-stage transitions. Photoperiod is undoubtedly one of the most predictable environmental signals that can be used by most living organisms including fishes in temperate areas. This said, however, understanding of how such a simple signal can dictate the time of gonadal recruitment and spawning, for example, is a complex task. Over the past few decades, many scientists attempted to unravel the roots of photoperiodic signalling in teleosts by investigating the role of melatonin in reproduction, but without great success. In fact, the hormone melatonin is recognized as the biological time-keeping hormone in fishes mainly due to the fact that it reflects the seasonal variation in daylength across the whole animal kingdom rather than the existence of direct evidences of its role in the entrainment of reproduction in fishes. Recently, however, some new studies clearly suggested that melatonin interacts with the reproductive cascade at a number of key steps such as through the dopaminergic system in the brain or the synchronization of the final oocyte maturation in the gonad. Interestingly, in the past few years, additional pathways have become apparent in the search for a fish photoneuroendocrine system including the clock-gene network and kisspeptin signalling and although research on these topics are still in their infancy, it is moving at great pace. This review thus aims to bring together the current knowledge on the photic control of reproduction mainly focusing on seasonal temperate fish species and shape the current working hypotheses supported by recent findings obtained in teleosts or based on knowledge gathered in mammalian and avian species. Four of the main potential regulatory systems (light perception, melatonin, clock genes and kisspeptin) in fish reproduction are reviewed.
Collapse
Affiliation(s)
- H Migaud
- Reproduction and Genetics Group, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK.
| | | | | |
Collapse
|
47
|
Vera LM, Davie A, Taylor JF, Migaud H. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen Comp Endocrinol 2010; 165:25-33. [PMID: 19501092 DOI: 10.1016/j.ygcen.2009.05.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 03/23/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Photoperiod is perceived by pineal photoreceptors and transduced into rhythmic melatonin signals. These rhythms can be influenced by light intensity and spectral content. In this study we compared the light sensitivity of Atlantic salmon, European sea bass and Atlantic cod by testing ex vivo the effect of different intensities and narrow bandwidth lights on nocturnal melatonin suppression by isolated pineal glands in a flow-through culture system. Using combinations of neutral density and bandpass interference filters we tested a range of light intensities (ranging from 1.22x10(13) to 3.85x10(6) photons s(-1) cm(-2)) and three wavelengths of 80 nm width (472, 555 and 661 nm corresponding to blue, green and red, respectively). Results showed clear species specific light intensity and spectral sensitivities, with cod being from 100 to 1000 times more sensitive than sea bass and salmon. Regarding the influence of spectrum, red light was less efficient on suppressing melatonin than blue and green in salmon but results were not as clear in the two other species studied. Finally, the first evidence of relative photoreception in teleosts was obtained in cod suggesting that the definition of illuminance thresholds (day/night perception) would depend on the day intensity. Indeed, a single order of magnitude increase or decrease in day intensity was shown to elicit a significant shift in the intensity response curve of night-time melatonin suppression. Taken together, this study demonstrated species specific light intensity and spectral sensitivities within temperate teleosts.
Collapse
Affiliation(s)
- L M Vera
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | | | | |
Collapse
|
48
|
Vera LM, López-Olmeda JF, Bayarri MJ, Madrid JA, Sánchez-Vázquez FJ. Influence of Light Intensity on Plasma Melatonin and Locomotor Activity Rhythms in Tench. Chronobiol Int 2009; 22:67-78. [PMID: 15865322 DOI: 10.1081/cbi-200038157] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melatonin production by the pineal organ is influenced by light intensity, as has been described in most vertebrate species, in which melatonin is considered a synchronizer of circadian rhythms. In tench, strict nocturnal activity rhythms have been described, although the role of melatonin has not been clarified. In this study we investigated daily activity and melatonin rhythms under 12:12 light-dark (LD) conditions with two different light intensities (58.6 and 1091 microW/cm2), and the effect of I h broad spectrum white light pulses of different intensities (3.3, 5.3, 10.5, 1091.4 microW/cm2) applied at middarkness (MD) on nocturnal circulating melatonin. The results showed that plasma melatonin in tench under LD 12:12 and high light conditions displayed rhythmic variation, where values at MD (255.8 +/- 65.9 pg/ml) were higher than at midlight (ML) (70.7 +/- 31.9 pg/ml). Such a difference between MD and ML values was reduced in animals exposed to LD 12: 12 and low light intensity. The application of 1 h light pulses at MD lowered plasma melatonin to 111.6 +/- 3.2 pg/ml (in the 3.3-10.5 microW/cm2 range) and to 61.8 +/- 18.3 pg/ml (with the 1091.4 microW/cm2 light pulse) and totally suppressed nocturnal locomotor activity. These results show that melatonin rhythms persisted in tench exposed to low light intensity although the amplitude of the rhythm is affected. In addition, it was observed that light pulses applied at MD affected plasma melatonin content and locomotor activity. Such a low threshold suggests that the melatonin system is capable of transducing light even under dim conditions, which may be used by this nocturnal fish to synchronize to weak night light signals (e.g., moonlight cycles).
Collapse
Affiliation(s)
- L M Vera
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | | | | | | | |
Collapse
|
49
|
Oliveira C, Ortega A, López-Olmeda JF, Vera LM, Sánchez-Vázquez FJ. Influence of Constant Light and Darkness, Light Intensity, and Light Spectrum on Plasma Melatonin Rhythms in Senegal Sole. Chronobiol Int 2009; 24:615-27. [PMID: 17701676 DOI: 10.1080/07420520701534657] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Light is the most important synchronizer of melatonin rhythms in fish. This paper studies the influence of the characteristics of light on plasma melatonin rhythms in sole. The results revealed that under long-term exposure to constant light conditions (LL or DD), the total 24 h melatonin production was significantly higher than under LD, but LL and DD conditions influenced the rhythms differently. Under LL, melatonin remained at around 224 pg/ml throughout the 24 h, while under DD a significant elevation (363.6 pg/ml) was observed around the subjective evening. Exposure to 1 h light pulses at MD (mid-dark) inhibited melatonin production depending on light intensity (3.3, 5.3, 10.3, and 51.9 microW/cm(2)). The light threshold required to reduce nocturnal plasma melatonin to ML (mid-light) values was 5.3 microW/cm(2). Melatonin inhibition by light also depended on the wavelength of the light pulses: while a deep red light (lambda>600 nm) failed to reduce plasma melatonin significantly, far violet light (lambda(max)=368 nm) decreased indoleamine's concentration to ML values. These results suggest that dim light at night (e.g., moonlight) may be perceived and hence affect melatonin rhythms, encouraging synchronization to the lunar cycle. On the other hand, deep red light does not seem to inhibit nocturnal melatonin production, and so it may be used safely during sampling at night.
Collapse
Affiliation(s)
- Catarina Oliveira
- Faculty of Biology, Department of Physiology, University of Murcia, Campus Espinardo, 30.100 Murcia, Spain
| | | | | | | | | |
Collapse
|
50
|
Martinez‐Chavez CC, Al‐Khamees S, Campos‐Mendoza A, Penman DJ, Migaud H. Clock‐Controlled Endogenous Melatonin Rhythms in Nile Tilapia (Oreochromis niloticus niloticus) and African Catfish (Clarias gariepinus). Chronobiol Int 2009; 25:31-49. [DOI: 10.1080/07420520801917547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|