1
|
Ahmad M, Kim J, Dwyer B, Sokoloff G, Blumberg MS. DELTA-RHYTHMIC ACTIVITY IN THE MEDULLA DEVELOPS COINCIDENT WITH CORTICAL DELTA IN SLEEPING INFANT RATS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.16.572000. [PMID: 38168267 PMCID: PMC10760077 DOI: 10.1101/2023.12.16.572000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase-locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12, but not at P10. PZ delta was also phase-locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in PZ across these ages, supporting a role for GABAergic inhibition in PZ's rhythmicity. The discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-opens a new path to understanding the brainstem's role in regulating sleep and synchronizing rhythmic activity throughout the brain.
Collapse
Affiliation(s)
- Midha Ahmad
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Brett Dwyer
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
2
|
Milman NE, Tinsley CE, Raju RM, Lim MM. Loss of sleep when it is needed most - Consequences of persistent developmental sleep disruption: A scoping review of rodent models. Neurobiol Sleep Circadian Rhythms 2023; 14:100085. [PMID: 36567958 PMCID: PMC9768382 DOI: 10.1016/j.nbscr.2022.100085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is an essential component of development. Developmental sleep disruption (DSD) impacts brain maturation and has been associated with significant consequences on socio-emotional development. In humans, poor sleep during infancy and adolescence affects neurodevelopmental outcomes and may be a risk factor for the development of autism spectrum disorder (ASD) or other neuropsychiatric illness. Given the wide-reaching and enduring consequences of DSD, identifying underlying mechanisms is critical to best inform interventions with translational capacity. In rodents, studies have identified some mechanisms and neural circuits by which DSD causes later social, emotional, sensorimotor, and cognitive changes. However, these studies spanned methodological differences, including different developmental timepoints for both sleep disruption and testing, different DSD paradigms, and even different rodent species. In this scoping review on DSD in rodents, we synthesize these various studies into a cohesive framework to identify common neural mechanisms underlying DSD-induced dysfunction in brain and behavior. Ultimately, this review serves the goal to inform the generation of novel translational interventions for human developmental disorders featuring sleep disruption.
Collapse
Affiliation(s)
- Noah E.P. Milman
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Carolyn E. Tinsley
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Miranda M. Lim
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| |
Collapse
|
3
|
Functional roles of REM sleep. Neurosci Res 2022; 189:44-53. [PMID: 36572254 DOI: 10.1016/j.neures.2022.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is an enigmatic and intriguing sleep state. REM sleep differs from non-REM sleep by its characteristic brain activity and from wakefulness by a reduced anti-gravity muscle tone. In addition to these key traits, diverse physiological phenomena appear across the whole body during REM sleep. However, it remains unclear whether these phenomena are the causes or the consequences of REM sleep. Experimental approaches using humans and animal models have gradually revealed the functional roles of REM sleep. Extensive efforts have been made to interpret the characteristic brain activity in the context of memory functions. Numerous physical and psychological functions of REM sleep have also been proposed. Moreover, REM sleep has been implicated in aspects of brain development. Here, we review the variety of functional roles of REM sleep, mainly as revealed by animal models. In addition, we discuss controversies regarding the functional roles of REM sleep.
Collapse
|
4
|
Bernardi G, Avvenuti G, Cataldi J, Lattanzi S, Ricciardi E, Polonara G, Silvestrini M, Siclari F, Fabri M, Bellesi M. Role of corpus callosum in sleep spindle synchronization and coupling with slow waves. Brain Commun 2021; 3:fcab108. [PMID: 34164621 PMCID: PMC8215432 DOI: 10.1093/braincomms/fcab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep spindles of non-REM sleep are transient, waxing-and-waning 10–16 Hz EEG oscillations, whose cortical synchronization depends on the engagement of thalamo-cortical loops. However, previous studies in animal models lacking the corpus callosum due to agenesis or total callosotomy and in humans with agenesis of the corpus callosum suggested that cortico-cortical connections may also have a relevant role in cortical (inter-hemispheric) spindle synchronization. Yet, most of these works did not provide direct quantitative analyses to support their observations. By studying a rare sample of callosotomized, split-brain patients, we recently demonstrated that the total resection of the corpus callosum is associated with a significant reduction in the inter-hemispheric propagation of non-REM slow waves. Interestingly, sleep spindles are often temporally and spatially grouped around slow waves (0.5–4 Hz), and this coordination is thought to have an important role in sleep-dependent learning and memory consolidation. Given these premises, here we set out to investigate whether total callosotomy may affect the generation and spreading of sleep spindles, as well as their coupling with sleep slow waves. To this aim, we analysed overnight high-density EEG recordings (256 electrodes) collected in five patients who underwent total callosotomy due to drug-resistant epilepsy (age 40–53, two females), three non-callosotomized neurological patients (age 44–66, two females), and in a sample of 24 healthy adult control subjects (age 20–47, 13 females). Individual sleep spindles were automatically detected using a validated algorithm and their properties and topographic distributions were computed. All analyses were performed with and without a regression-based adjustment accounting for inter-subject age differences. The comparison between callosotomized patients and healthy subjects did not reveal systematic variations in spindle density, amplitude or frequency. However, callosotomized patients were characterized by a reduced spindle duration, which could represent the result of a faster desynchronization of spindle activity across cortical areas of the two hemispheres. In contrast with our previous findings regarding sleep slow waves, we failed to detect in callosotomized patients any clear, systematic change in the inter-hemispheric synchronization of sleep spindles. In line with this, callosotomized patients were characterized by a reduced extension of the spatial association between temporally coupled spindles and slow waves. Our findings are consistent with a dependence of spindles on thalamo-cortical rather than cortico-cortical connections in humans, but also revealed that, despite their temporal association, slow waves and spindles are independently regulated in terms of topographic expression.
Collapse
Affiliation(s)
- Giulio Bernardi
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulia Avvenuti
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Simona Lattanzi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona 60126, Italy
| | - Emiliano Ricciardi
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Gabriele Polonara
- Department of Odontostomatologic and Specialized Clinical Sciences, Marche Polytechnic University, Ancona 60126, Italy
| | - Mauro Silvestrini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona 60126, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona 60126, Italy
| | - Michele Bellesi
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| |
Collapse
|
5
|
Whitehead K, Papadelis C, Laudiano-Dray MP, Meek J, Fabrizi L. The Emergence of Hierarchical Somatosensory Processing in Late Prematurity. Cereb Cortex 2020; 29:2245-2260. [PMID: 30843584 PMCID: PMC6458926 DOI: 10.1093/cercor/bhz030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
The somatosensory system has a hierarchical organization. Information processing increases in complexity from the contralateral primary sensory cortex to bilateral association cortices and this is represented by a sequence of somatosensory-evoked potentials recorded with scalp electroencephalographies. The mammalian somatosensory system matures over the early postnatal period in a rostro-caudal progression, but little is known about the development of hierarchical information processing in the human infant brain. To investigate the normal human development of the somatosensory hierarchy, we recorded potentials evoked by mechanical stimulation of hands and feet in 34 infants between 34 and 42 weeks corrected gestational age, with median postnatal age of 3 days. We show that the shortest latency potential was evoked for both hands and feet at all ages with a contralateral somatotopic source in the primary somatosensory cortex (SI). However, the longer latency responses, localized in SI and beyond, matured with age. They gradually emerged for the foot and, although always present for the hand, showed a shift from purely contralateral to bilateral hemispheric activation. These results demonstrate the rostro-caudal development of human somatosensory hierarchy and suggest that the development of its higher tiers is complete only just before the time of normal birth.
Collapse
Affiliation(s)
- K Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - C Papadelis
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M P Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - J Meek
- Neonatal Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London, UK
| | - L Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
6
|
Dilley LC, Vigderman A, Williams CE, Kayser MS. Behavioral and genetic features of sleep ontogeny in Drosophila. Sleep 2019; 41:4994190. [PMID: 29746663 DOI: 10.1093/sleep/zsy086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
The fruit fly Drosophila melanogaster, like most organisms, exhibits increased sleep amount and depth in young compared to mature animals. While the fly has emerged as a powerful model for studying sleep during development, qualitative behavioral features of sleep ontogeny and its genetic control are poorly understood. Here we find that, in addition to increased sleep time and intensity, young flies sleep with less place preference than mature adults, and, like mammals, exhibit more motor twitches during sleep. In addition, we show that ontogenetic changes in sleep amount, twitch, and place preference are preserved across sleep mutants with lesions in distinct molecular pathways. Our results demonstrate that sleep ontogeny is characterized by multifaceted behavioral changes, including quantitative and qualitative alterations to sleep as animals mature. Further, the preservation of sleep ontogenetic changes despite mutations that alter sleep time suggests independent genetic control mechanisms for sleep maturation.
Collapse
Affiliation(s)
- Leela C Dilley
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Abigail Vigderman
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Charlette E Williams
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Chronobiology Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Center for Sleep and Circadian Neurobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Valeeva G, Nasretdinov A, Rychkova V, Khazipov R. Bilateral Synchronization of Hippocampal Early Sharp Waves in Neonatal Rats. Front Cell Neurosci 2019; 13:29. [PMID: 30792630 PMCID: PMC6374346 DOI: 10.3389/fncel.2019.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/22/2019] [Indexed: 11/17/2022] Open
Abstract
In the neonatal rodent hippocampus, the first and predominant pattern of correlated neuronal network activity is early sharp waves (eSPWs). Whether and how eSPWs are organized bilaterally remains unknown. Here, using simultaneous silicone probe recordings from the left and right hippocampus in neonatal rats in vivo we found that eSPWs are highly synchronized bilaterally with nearly zero time lag between the two sides. The amplitudes of eSPWs in the left and right hippocampi were also highly correlated. eSPWs also supported bilateral synchronization of multiple unit activity (MUA). We suggest that bilateral correlated activity supported by synchronized eSPWs participates in the formation of bilateral connections in the hippocampal system.
Collapse
Affiliation(s)
- Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Aix-Marseille University, INMED, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| |
Collapse
|
8
|
Dooley JC, Blumberg MS. Developmental 'awakening' of primary motor cortex to the sensory consequences of movement. eLife 2018; 7:41841. [PMID: 30574868 PMCID: PMC6320070 DOI: 10.7554/elife.41841] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022] Open
Abstract
Before primary motor cortex (M1) develops its motor functions, it functions like a somatosensory area. Here, by recording from neurons in the forelimb representation of M1 in postnatal day (P) 8–12 rats, we demonstrate a rapid shift in its sensory responses. At P8-10, M1 neurons respond overwhelmingly to feedback from sleep-related twitches of the forelimb, but the same neurons do not respond to wake-related movements. By P12, M1 neurons suddenly respond to wake movements, a transition that results from opening the sensory gate in the external cuneate nucleus. Also at P12, fewer M1 neurons respond to individual twitches, but the full complement of twitch-related feedback observed at P8 is unmasked through local disinhibition. Finally, through P12, M1 sensory responses originate in the deep thalamorecipient layers, not primary somatosensory cortex. These findings demonstrate that M1 initially establishes a sensory framework upon which its later-emerging role in motor control is built.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological & Brain Sciences, University of Iowa, Iowa, United States.,DeLTA Center, University of Iowa, Iowa, United States
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa, United States.,DeLTA Center, University of Iowa, Iowa, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa, United States.,Department of Biology, University of Iowa, Iowa, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa, United States
| |
Collapse
|
9
|
Whitehead K, Meek J, Fabrizi L. Developmental trajectory of movement-related cortical oscillations during active sleep in a cross-sectional cohort of pre-term and full-term human infants. Sci Rep 2018; 8:17516. [PMID: 30504857 PMCID: PMC6269518 DOI: 10.1038/s41598-018-35850-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
In neonatal animal models, isolated limb movements during active sleep provide input to immature somatomotor cortex necessary for its development and are somatotopically encoded by alpha-beta oscillations as late as the equivalent of human full-term. Limb movements elicit similar neural patterns in very pre-term human infants (average 30 corrected gestational weeks), suggesting an analogous role in humans, but it is unknown until when they subserve this function. In a cohort of 19 neonates (31-42 corrected gestational weeks) we showed that isolated hand movements during active sleep continue to induce these same somatotopically distributed oscillations well into the perinatal period, but that these oscillations decline towards full-term and fully disappear at 41 corrected gestational weeks (equivalent to the end of gestation). We also showed that these highly localised alpha-beta oscillations are associated with an increase in delta oscillations which extends to the frontal area and does not decline with age. These results suggest that isolated limb movements during active sleep could have an important role in experience-dependent somatomotor development up until normal birth in humans.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom.
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London, WC1E 6BD, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Spindle Activity Orchestrates Plasticity during Development and Sleep. Neural Plast 2016; 2016:5787423. [PMID: 27293903 PMCID: PMC4884844 DOI: 10.1155/2016/5787423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022] Open
Abstract
Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research.
Collapse
|
11
|
Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, Naulaers G, De Vos M, Van Huffel S, Vanhatalo S. Early development of synchrony in cortical activations in the human. Neuroscience 2016; 322:298-307. [PMID: 26876605 PMCID: PMC4819727 DOI: 10.1016/j.neuroscience.2016.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/26/2022]
Abstract
We study the early development of cortical activations synchrony index (ASI). Cortical activations become increasingly synchronized during the last trimester. Interhemispheric synchrony increases more than intrahemispheric synchrony. Our EEG metric ASI can be directly translated to experimental animal studies. ASI holds promise as an early functional biomarker of brain networks.
Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates.
Collapse
Affiliation(s)
- N Koolen
- Division STADIUS, Department of Electrical Engineering (ESAT), University of Leuven, Leuven, Belgium; iMinds-KU Leuven Medical IT Department, Leuven, Belgium.
| | - A Dereymaeker
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - O Räsänen
- Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
| | - K Jansen
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - J Vervisch
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - V Matic
- Division STADIUS, Department of Electrical Engineering (ESAT), University of Leuven, Leuven, Belgium; iMinds-KU Leuven Medical IT Department, Leuven, Belgium
| | - G Naulaers
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - M De Vos
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - S Van Huffel
- Division STADIUS, Department of Electrical Engineering (ESAT), University of Leuven, Leuven, Belgium; iMinds-KU Leuven Medical IT Department, Leuven, Belgium
| | - S Vanhatalo
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Spindle Bursts in Neonatal Rat Cerebral Cortex. Neural Plast 2016; 2016:3467832. [PMID: 27034844 PMCID: PMC4806652 DOI: 10.1155/2016/3467832] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023] Open
Abstract
Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.
Collapse
|
13
|
Tokariev A, Videman M, Palva JM, Vanhatalo S. Functional Brain Connectivity Develops Rapidly Around Term Age and Changes Between Vigilance States in the Human Newborn. Cereb Cortex 2015; 26:4540-4550. [DOI: 10.1093/cercor/bhv219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Sokoloff G, Plumeau AM, Mukherjee D, Blumberg MS. Twitch-related and rhythmic activation of the developing cerebellar cortex. J Neurophysiol 2015; 114:1746-56. [PMID: 26156383 PMCID: PMC4571769 DOI: 10.1152/jn.00284.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023] Open
Abstract
The cerebellum is a critical sensorimotor structure that exhibits protracted postnatal development in mammals. Many aspects of cerebellar circuit development are activity dependent, but little is known about the nature and sources of the activity. Based on previous findings in 6-day-old rats, we proposed that myoclonic twitches, the spontaneous movements that occur exclusively during active sleep (AS), provide generalized as well as topographically precise activity to the developing cerebellum. Taking advantage of known stages of cerebellar cortical development, we examined the relationship between Purkinje cell activity (including complex and simple spikes), nuchal and hindlimb EMG activity, and behavioral state in unanesthetized 4-, 8-, and 12-day-old rats. AS-dependent increases in complex and simple spike activity peaked at 8 days of age, with 60% of units exhibiting significantly more activity during AS than wakefulness. Also, at all three ages, approximately one-third of complex and simple spikes significantly increased their activity within 100 ms of twitches in one of the two muscles from which we recorded. Finally, we observed rhythmicity of complex and simple spikes that was especially prominent at 8 days of age and was greatly diminished by 12 days of age, likely due to developmental changes in climbing fiber and mossy fiber innervation patterns. All together, these results indicate that the neurophysiological activity of the developing cerebellum can be used to make inferences about changes in its microcircuitry. They also support the hypothesis that sleep-related twitches are a prominent source of discrete climbing and mossy fiber activity that could contribute to the activity-dependent development of this critical sensorimotor structure.
Collapse
Affiliation(s)
- Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa; DeLTA Center, University of Iowa, Iowa City, Iowa;
| | - Alan M Plumeau
- Interdisciplinary Program in Neuroscience, University of Iowa, Iowa City, Iowa; and
| | - Didhiti Mukherjee
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa; DeLTA Center, University of Iowa, Iowa City, Iowa
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa; DeLTA Center, University of Iowa, Iowa City, Iowa; Department of Biology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
He XF, Lan Y, Zhang Q, Liang FY, Luo CM, Xu GQ, Pei Z. GABA-ergic interneurons involved in transcallosal inhibition of the visual cortices in vivo in mice. Physiol Behav 2015; 151:502-8. [PMID: 26318391 DOI: 10.1016/j.physbeh.2015.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023]
Abstract
In the current study we investigated the role of the corpus callosum, particularly the gamma-aminobutyric acid-ergic (GABAergic) projection neurons involved in interhemispheric inhibition (IHI). In order to explore IHI in primary visual cortices, we adopted a protocol whereby we performed a direct current lesion of the unilateral primary visual cortex with or without posterior callosotomy, and used two-photon Ca(2+)in vivo imaging on the opposite unaffected region to detect neural activities in mice. Following this procedure, the numbers of vesicular GABAergic transporters (VGATs) and GABAergic interneurons in the unaffected primary cortex were determined using immunofluorescence staining. Results indicated that following unilateral visual cortical lesioning without callosotomy, the neuronal Ca(2+) activities in the opposite side were significantly increased. However, the neuronal activities of the unaffected visual cortex in animals with unilateral cortical lesion with callosotomy were not significantly different. Additionally, there was no significant difference in the numbers of GABAergic interneurons in the unaffected region between each group, while the number of VGATs in the unaffected region was significantly decreased following unilateral visual cortical lesion without callosotomy, which was unchanged once with callosotomy. Finally, callosotomy alone without cortical lesioning produced no change in neuronal activities, the number of GABAergic interneurons or VGATs. Our results demonstrate that IHI between the homologous primary visual cortices occurs via the corpus callosum, and further indicate the important involvement of long-range GABAergic interneurons in transcallosal inhibition.
Collapse
Affiliation(s)
- Xiao-fei He
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng-yin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan-ming Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guang-qing Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Cirelli C, Tononi G. Cortical development, electroencephalogram rhythms, and the sleep/wake cycle. Biol Psychiatry 2015; 77:1071-8. [PMID: 25680672 PMCID: PMC4444390 DOI: 10.1016/j.biopsych.2014.12.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 02/07/2023]
Abstract
During adulthood, electroencephalogram (EEG) recordings are used to distinguish wake, non-rapid eye movement sleep, and rapid eye movement sleep states. The close association between behavioral states and EEG rhythms is reached late during development, after birth in humans and by the end of the second postnatal week in rats and mice. This critical time is also when cortical activity switches from a discontinuous to a continuous pattern. We review the major cellular and network changes that can account for this transition. After this close link is established, new evidence suggests that the slow waves of non-rapid eye movement sleep may function as markers to track cortical development. However, before the EEG can be used to identify behavioral states, two distinct sleep phases--quiet sleep and active sleep--are identified based on behavioral criteria and muscle activity. During this early phase of development, cortical activity is far from being disorganized, despite the presence of long periods of neuronal silence and the poor modulation by behavioral states. Specific EEG patterns, such as spindle bursts and gamma oscillations, have been identified very early on and are believed to play a significant role in the refinement of brain circuits. Because most early EEG patterns do not map to a specific behavioral state, their contribution to the presumptive role of sleep in brain maturation remains to be established and should be a major focus for future research.
Collapse
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin..
| | | |
Collapse
|
17
|
Aldinger KA, Lane CJ, Veenstra-VanderWeele J, Levitt P. Patterns of Risk for Multiple Co-Occurring Medical Conditions Replicate Across Distinct Cohorts of Children with Autism Spectrum Disorder. Autism Res 2015; 8:771-81. [PMID: 26011086 PMCID: PMC4736680 DOI: 10.1002/aur.1492] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
Children with autism spectrum disorder (ASD) may present with multiple medical conditions in addition to ASD symptoms. This study investigated whether there are predictive patterns of medical conditions that co-occur with ASD, which could inform medical evaluation and treatment in ASD, as well as potentially identify etiologically meaningful subgroups. Medical history data were queried in the multiplex family Autism Genetic Resource Exchange (AGRE). Fourteen medical conditions were analyzed. Replication in the Simons Simplex Collection (SSC) was attempted using available medical condition data on gastrointestinal disturbances (GID), sleep problems, allergy and epilepsy. In the AGRE cohort, no discrete clusters emerged among 14 medical conditions. GID and seizures were enriched in unaffected family members, and together with sleep problems, were represented in both AGRE and SSC. Further analysis of these medical conditions identified predictive co-occurring patterns in both samples. For a child with ASD, the presence of GID predicts sleep problems and vice versa, with an approximately 2-fold odds ratio in each direction. These risk patterns were replicated in the SSC sample, and in addition, there was increased risk for seizures and sleep problems to co-occur with GID. In these cohorts, seizure alone was not predictive of the other conditions co-occurring, but behavioral impairments were more severe as the number of co-occurring medical symptoms increased. These findings indicate that interdisciplinary clinical care for children with ASD will benefit from evaluation for specific patterns of medical conditions in the affected child and their family members.
Collapse
Affiliation(s)
- Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christianne J Lane
- Columbia University and the New York State Psychiatric Institute, New York, New York
| | - Jeremy Veenstra-VanderWeele
- Program in Developmental Neurogenetics, Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Blumberg MS, Sokoloff G, Tiriac A, Del Rio-Bermudez C. A valuable and promising method for recording brain activity in behaving newborn rodents. Dev Psychobiol 2015; 57:506-17. [PMID: 25864710 DOI: 10.1002/dev.21305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/25/2015] [Indexed: 12/20/2022]
Abstract
Neurophysiological recording of brain activity has been critically important to the field of neuroscience, but has contributed little to the field of developmental psychobiology. The reasons for this can be traced largely to methodological difficulties associated with recording neural activity in behaving newborn rats and mice. Over the last decade, however, the evolution of methods for recording from head-fixed newborns has heralded a new era in developmental neurophysiology. Here, we review these recent developments and provide a step-by-step primer for those interested in applying the head-fix method to their own research questions. Until now, this method has been used primarily to investigate spontaneous brain activity across sleep and wakefulness, the contributions of the sensory periphery to brain activity, or intrinsic network activity. Now, with some ingenuity, the uses of the head-fix method can be expanded to other domains to benefit our understanding of brain-behavior relations under normal and pathophysiological conditions across early development.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychology, The University of Iowa, Iowa City, IA, 52242; Department of Biology, The University of Iowa, Iowa City, IA, 52242.
| | | | | | | |
Collapse
|
19
|
Tiriac A, Sokoloff G, Blumberg MS. Myoclonic Twitching and Sleep-Dependent Plasticity in the Developing Sensorimotor System. CURRENT SLEEP MEDICINE REPORTS 2015; 1:74-79. [PMID: 25705581 DOI: 10.1007/s40675-015-0009-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As bodies grow and change throughout early development and across the lifespan, animals must develop, refine, and maintain accurate sensorimotor maps. Here we review evidence that myoclonic twitches-brief and discrete contractions of the muscles, occurring exclusively during REM (or active) sleep, that result in jerks of the limbs-help animals map their ever-changing bodies by activating skeletal muscles to produce corresponding sensory feedback, or reafference. First, we highlight the spatiotemporal characteristics of twitches. Second, we review findings in infant rats regarding the multitude of brain areas that are activated by twitches during sleep. Third, we discuss evidence demonstrating that the sensorimotor processing of twitches is different from that of wake movements; this state-related difference in sensorimotor processing provides perhaps the strongest evidence yet that twitches are uniquely suited to drive certain aspects of sensorimotor development. Finally, we suggest that twitching may help inform our understanding of neurodevelopmental disorders, perhaps even providing opportunities for their early detection and treatment.
Collapse
Affiliation(s)
- Alexandre Tiriac
- Department of Psychology The University of Iowa Iowa City, Iowa, 52242 USA ; Delta Center The University of Iowa Iowa City, Iowa, 52242 USA
| | - Greta Sokoloff
- Department of Psychology The University of Iowa Iowa City, Iowa, 52242 USA ; Delta Center The University of Iowa Iowa City, Iowa, 52242 USA
| | - Mark S Blumberg
- Department of Psychology The University of Iowa Iowa City, Iowa, 52242 USA ; Department of Biology The University of Iowa Iowa City, Iowa, 52242 USA ; Delta Center The University of Iowa Iowa City, Iowa, 52242 USA
| |
Collapse
|
20
|
Blumberg MS, Marques HG, Iida F. Twitching in sensorimotor development from sleeping rats to robots. Curr Biol 2014; 23:R532-7. [PMID: 23787051 DOI: 10.1016/j.cub.2013.04.075] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain.
Collapse
Affiliation(s)
- Mark S Blumberg
- Departments of Psychology and Biology, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
21
|
Gerasimova EV, Zakharov AV, Lebedeva YA, Inacio AR, Minlebaev MG, Sitdikova GF, Khazipov RN. Gamma oscillations in the somatosensory cortex of newborn rats. Bull Exp Biol Med 2014; 156:295-8. [PMID: 24771360 DOI: 10.1007/s10517-014-2333-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Indexed: 01/13/2023]
Abstract
Here we addressed a question of whether gamma oscillations previously described in the whisker-related barrel cortex are a universal pattern of activity in the somatosensory cortex of newborn rats. Intracortical recording of local field potentials and action potentials in neurons using multisite silicon electrodes in 2-7-day-old rats showed that mechanical stimulation of single fingers or specific areas on the plantar or back side of the foot evoked early gamma oscillations followed by spindle-burst oscillations in the corresponding regions of the somatosensory cortex. Early gamma oscillations had maximum amplitude in layer IV of the somatosensory cortex and effectively synchronized action potentials in layer IV neurons. It was concluded that early gamma oscillations evoked by activation of the topographic sensory input are a universal activity pattern of the entire somatosensory cortex of newborn rats.
Collapse
|
22
|
Booij J, Reneman L, Alders M, Kuijpers TW. Increase in central striatal dopamine transporters in patients with Shwachman-Diamond syndrome: Additional evidence of a brain phenotype. Am J Med Genet A 2012; 161A:102-7. [DOI: 10.1002/ajmg.a.35687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/03/2012] [Indexed: 01/16/2023]
|
23
|
Abstract
The barrel cortex and whisker thalamus preferentially respond to whisker movements during REM sleep in infant rats. Understanding why the brain tunes into sensory signals while it's tuned out in sleep may provide clues about the functions of REM sleep.
Collapse
Affiliation(s)
- Jimmy Fraigne
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
24
|
Tiriac A, Uitermarkt BD, Fanning AS, Sokoloff G, Blumberg MS. Rapid whisker movements in sleeping newborn rats. Curr Biol 2012; 22:2075-80. [PMID: 23084988 DOI: 10.1016/j.cub.2012.09.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/28/2012] [Accepted: 09/06/2012] [Indexed: 11/16/2022]
Abstract
Spontaneous activity in the sensory periphery drives infant brain activity and is thought to contribute to the formation of retinotopic and somatotopic maps. In infant rats during active (or REM) sleep, brainstem-generated spontaneous activity triggers hundreds of thousands of skeletal muscle twitches each day; sensory feedback from the resulting limb movements is a primary activator of forebrain activity. The rodent whisker system, with its precise isomorphic mapping of individual whiskers to discrete brain areas, has been a key contributor to our understanding of somatotopic maps and developmental plasticity. But although whisker movements are controlled by dedicated skeletal muscles, spontaneous whisker activity has not been entertained as a contributing factor to the development of this system. Here we report in 3- to 6-day-old rats that whiskers twitch rapidly and asynchronously during active sleep; furthermore, neurons in whisker thalamus exhibit bursts of activity that are tightly associated with twitches but occur infrequently during waking. Finally, we observed barrel-specific cortical activity during periods of twitching. This is the first report of self-generated, sleep-related twitches in the developing whisker system, a sensorimotor system that is unique for the precision with which it can be experimentally manipulated. The discovery of whisker twitching will allow us to attain a better understanding of the contributions of peripheral sensory activity to somatosensory integration and plasticity in the developing nervous system.
Collapse
Affiliation(s)
- Alexandre Tiriac
- Department of Psychology, Program in Behavioral and Cognitive Neuroscience, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
25
|
Yang JW, An S, Sun JJ, Reyes-Puerta V, Kindler J, Berger T, Kilb W, Luhmann HJ. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. ACTA ACUST UNITED AC 2012; 23:1299-316. [PMID: 22593243 DOI: 10.1093/cercor/bhs103] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma bursts could be elicited by focal electrical stimulation of the VPM. Whisker stimulation-induced spindle and gamma bursts and the majority of spontaneously occurring events were profoundly reduced by the local inactivation of the VPM, indicating that the thalamus is important to generate these activity patterns. Furthermore, inactivation of the barrel cortex with lidocaine reduced the gamma activity in the thalamus, suggesting that a cortico-thalamic feedback loop modulates this early thalamic network activity.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci 2012; 32:692-702. [PMID: 22238105 DOI: 10.1523/jneurosci.1538-11.2012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Patterned neuronal activity such as spindle bursts in the neonatal cortex is likely to promote the maturation of cortical synapses and neuronal circuits. Previous work on cats has shown that removal of subplate neurons, a transient neuronal population in the immature cortex, prevents the functional maturation of thalamocortical and intracortical connectivity. Here we studied the effect of subplate removal in the neonatal rat primary somatosensory cortex (S1). Using intracortical EEG we show that after selective removal of subplate neurons in the limb region of S1, endogenous and sensory evoked spindle burst activity is largely abolished. Consistent with the reduced in vivo activity in the S1 limb region, we find by in vitro recordings that thalamocortical inputs to layer 4 neurons are weak. In addition, we find that removal of subplate neurons in the S1 barrel region prevents the development of the characteristic histological barrel-like appearance. Thus, subplate neurons are crucially involved in the generation of particular types of early network activity in the neonatal cortex, which are an important feature of cortical development. The altered EEG pattern following subplate damage could be applicable in the neurological assessment of human neonates.
Collapse
|
27
|
Myers MM, Grieve PG, Izraelit A, Fifer WP, Isler JR, Darnall RA, Stark RI. Developmental profiles of infant EEG: overlap with transient cortical circuits. Clin Neurophysiol 2012; 123:1502-11. [PMID: 22341979 DOI: 10.1016/j.clinph.2011.11.264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To quantify spectral power in frequency specific bands and commonly observed types of bursting activities in the EEG during early human development. METHODS An extensive archive of EEG data from human infants from 35 to 52 weeks postmenstrual age obtained in a prior multi-center study was analyzed using power spectrum analyses and a high frequency burst detection algorithm. RESULTS Low frequency power increased with age; however, high frequency power decreased from 35 to 45 weeks. This unexpected decrease was largely attributable to a rapid decline in the number of high frequency bursts. CONCLUSIONS The decline in high frequency bursting activity overlaps with a developmental shift in GABA's actions on neurons from depolarizing to hyperpolarizing and the dissolution of the gap junction circuitry of the cortical subplate. SIGNIFICANCE We postulate that quantitative characterization of features of the EEG unique to early development provide indices for tracking changes in specific neurophysiologic mechanisms that are critical for normal development of brain function.
Collapse
Affiliation(s)
- M M Myers
- Department of Psychiatry, Columbia University, New York, NY 10032 United States.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tokariev A, Palmu K, Lano A, Metsäranta M, Vanhatalo S. Phase synchrony in the early preterm EEG: development of methods for estimating synchrony in both oscillations and events. Neuroimage 2012; 60:1562-73. [PMID: 22245347 DOI: 10.1016/j.neuroimage.2011.12.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/12/2011] [Accepted: 12/15/2011] [Indexed: 12/31/2022] Open
Abstract
Development of neuronal connections relies on proper neuronal activity, and it starts during the time when early preterm babies are treated in the neonatal intensive care units. While synchrony has been a key element in visual assessment of neonatal EEG signals, there has been no unambiguous definitions for synchrony, and no objective measures available for neonatal signals. Estimation of phase locking value (PLV) has been an established paradigm in adults, but many unique characteristics of the neonatal EEG have precluded its applicability in them. In the present paper, we developed the existing PLV-based methods further to be applicable for neonatal signals at two different temporal scales, oscillations and events, where the latter refers technically to quantitating phase synchrony (PS) between band-specific amplitude envelopes (bafPS). In addition, we present a measure for quantitation based on assessing cumulative proportion of time with statistically significant synchrony between the given signal pair. The paper uses real EEG examples and the prior neurobiological knowledge in the process of defining optimal parameters in each step of the procedure. Finally, we apply the method to a set of dense array EEG recordings from very early preterm babies, recorded at conceptional age of less than 30 weeks. By comparing PS and bafPS from babies without and with major cerebrovascular lesion, we show that the effects of brain lesions may be selective both in space and in frequency. These findings do by nature escape visual detection in the conventional EEG reading, however they have intriguing correlates in the current concept of how somatosensory networks are thought to develop and/or become disorganized in the early preterm babies.
Collapse
Affiliation(s)
- Anton Tokariev
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
29
|
Blumberg MS. Beyond dreams: do sleep-related movements contribute to brain development? Front Neurol 2010; 1:140. [PMID: 21344014 PMCID: PMC3034236 DOI: 10.3389/fneur.2010.00140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 10/08/2010] [Indexed: 01/29/2023] Open
Abstract
Conventional wisdom has long held that the twitches of sleeping infants and adults are by-products of a dreaming brain. With the discovery of active (or REM) sleep in the 1950s and the recognition soon thereafter that active sleep is characterized by inhibition of motor outflow, researchers elaborated on conventional wisdom and concluded that sleep-related twitches are epiphenomena that result from incomplete blockade of dream-related cortical activity. This view persists despite the fact that twitching is unaffected in infants and adults when the cortex is disconnected from the brainstem. In 1966, Roffwarg and colleagues introduced the ontogenetic hypothesis, which addressed the preponderance of active sleep in early infancy. This hypothesis posited that the brainstem mechanisms that produce active sleep provide direct ascending stimulation to the forebrain and descending stimulation to the musculature, thereby promoting brain and neuromuscular development. However, this hypothesis and the subsequent work that tested it did not directly address the developmental significance of twitching or sensory feedback as a contributor to activity-dependent development. Here I review recent findings that have inspired an elaboration of the ontogenetic hypothesis. Specifically, in addition to direct brainstem activation of cortex during active sleep, sensory feedback arising from limb twitches produces discrete and substantial activation of somatosensory cortex and, beyond that, of hippocampus. Delineating how twitching during active sleep contributes to the establishment, refinement, and maintenance of neural circuits may aid our understanding of the early developmental events that make sensorimotor integration possible. In addition, twitches may prove to be sensitive and powerful tools for assessing somatosensory function in humans across the lifespan as well as functional recovery in individuals with injuries or conditions that affect sensorimotor function.
Collapse
Affiliation(s)
- Mark S. Blumberg
- Department of Psychology and Delta Center, The University of IowaIowa City, IA, USA
| |
Collapse
|