1
|
Bernaud VE, Koebele SV, Northup-Smith SN, Willeman MN, Barker C, Schatzki-Lumpkin A, Sanchez MV, Bimonte-Nelson HA. Evaluations of memory, anxiety, and the growth factor IGF-1R after post-surgical menopause treatment with a highly selective progestin. Behav Brain Res 2023; 448:114442. [PMID: 37085118 PMCID: PMC11105077 DOI: 10.1016/j.bbr.2023.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Progestogens are a key component of menopausal hormone therapies. While some progestogens can be detrimental to cognition, there is preclinical evidence that progestogens with a strong progesterone-receptor affinity benefit some molecular mechanisms believed to underlie cognitive function. Thus, a progestin that maximizes progesterone-receptor affinity and minimizes affinities to other receptors may be cognitively beneficial. We evaluated segesterone-acetate (SGA), a 19-norprogesterone derivative with a strong progesterone-receptor affinity and no androgenic or estrogenic-receptor activity, hypothesizing that it would enhance cognition. Middle-aged rats underwent Sham or Ovariectomy (Ovx) surgery followed by administration of medroxyprogesterone-acetate (MPA; used as a positive control as we have previously shown MPA-induced cognitive deficits), SGA (low or high dose), or vehicle (one Sham and one Ovx group). Spatial working and reference memory, delayed retention, and anxiety-like behavior were assessed, as were memory- and hormone- related protein assays within the frontal cortex, dorsal hippocampus, and entorhinal cortex. Low-dose SGA impaired spatial working memory, while high-dose SGA had a more extensive detrimental impact, negatively affecting spatial reference memory and delayed retention. Replicating previous findings, MPA impaired spatial reference memory and delayed retention. SGA, but not MPA, alleviated Ovx-induced anxiety-like behaviors. On two working memory measures, IGF-1R expression correlated with better working memory only in rats without hormone manipulation; any hormone manipulation or combination of hormone manipulations used herein altered this relationship. These findings suggest that SGA impairs spatial cognition after surgical menopause, and that surgical menopause with or without progestin administration disrupts relationships between a growth factor critical to neuroplasticity.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Steven N Northup-Smith
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Mari N Willeman
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA; TGen Institute, 445 N 5th St, Phoenix, AZ 85004, USA
| | - Charlotte Barker
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Alex Schatzki-Lumpkin
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Maria Valenzuela Sanchez
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA.
| |
Collapse
|
2
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Griksiene R, Monciunskaite R, Ruksenas O. What is there to know about the effects of progestins on the human brain and cognition? Front Neuroendocrinol 2022; 67:101032. [PMID: 36029852 DOI: 10.1016/j.yfrne.2022.101032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Progestins are an important component of hormonal contraceptives (HCs) and hormone replacement therapies (HRTs). Despite an increasing number of studies elucidating the effects of HCs and HRTs, little is known about the effects of different types of progestins included in these medications on the brain. Animal studies suggest that various progestins interact differently with sex steroid, mineralocorticoid and glucocorticoid receptors and have specific modulatory effects on neurotransmitter systems and on the expression of neuropeptides, suggesting differential impacts on cognition and behavior. This review focuses on the currently available knowledge from human behavioral and neuroimaging studies pooled with evidence from animal research regarding the effects of progestins on the brain. The reviewed information is highly relevant for improving women's mental health and making informed choices regarding specific types of contraception or treatment.
Collapse
Affiliation(s)
- Ramune Griksiene
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Rasa Monciunskaite
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
4
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
5
|
Prakapenka AV, Hiroi R, Quihuis AM, Carson C, Patel S, Berns-Leone C, Fox C, Sirianni RW, Bimonte-Nelson HA. Contrasting effects of individual versus combined estrogen and progestogen regimens as working memory load increases in middle-aged ovariectomized rats: one plus one does not equal two. Neurobiol Aging 2018; 64:1-14. [PMID: 29316527 PMCID: PMC5820186 DOI: 10.1016/j.neurobiolaging.2017.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023]
Abstract
Most estrogen-based hormone therapies are administered in combination with a progestogen, such as Levonorgestrel (Levo). Individually, the estrogen 17β-estradiol (E2) and Levo can improve cognition in preclinical models. However, although these hormones are often given together clinically, the impact of the E2 + Levo combination on cognitive function has yet to be methodically examined. Thus, we investigated E2 + Levo treatment on a cognitive battery in middle-aged, ovariectomized rats. When administered alone, E2 and Levo treatments each enhanced spatial working memory relative to vehicle treatment, whereas the E2 + Levo combination impaired high working memory load performance relative to E2 only and Levo only treatments. There were no effects on spatial reference memory. Mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation, which is involved in memory formation and estrogen-induced memory effects, was evaluated in 5 brain regions implicated in learning and memory. A distinct relationship was seen in the E2-only treatment group between mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation in the frontal cortex and working memory performance. Collectively, the results indicate that the differential neurocognitive effects of combination versus sole treatments are vital considerations as we move forward as a field to develop novel, and to understand currently used, exogenous hormone regimens across the lifespan.
Collapse
Affiliation(s)
- Alesia V Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA; Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ryoko Hiroi
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Alicia M Quihuis
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Catie Carson
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Claire Berns-Leone
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Carly Fox
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Hiroi R, Weyrich G, Koebele SV, Mennenga SE, Talboom JS, Hewitt LT, Lavery CN, Mendoza P, Jordan A, Bimonte-Nelson HA. Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Raphe Nucleus Subregions. Front Neurosci 2016; 10:517. [PMID: 28008302 PMCID: PMC5143618 DOI: 10.3389/fnins.2016.00517] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of behavior. These distinct associations imply that cognition, anxiety-like, and depressive-like behaviors are modulated by unique serotonergic neurocircuitry, opening the possibility of novel avenues of targeted treatment for different types of cognitive and affective disorders.
Collapse
Affiliation(s)
- Ryoko Hiroi
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Giulia Weyrich
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Sarah E Mennenga
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Joshua S Talboom
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Lauren T Hewitt
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Courtney N Lavery
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Perla Mendoza
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Ambra Jordan
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| |
Collapse
|
7
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Koebele SV, Bimonte-Nelson HA. Modeling menopause: The utility of rodents in translational behavioral endocrinology research. Maturitas 2016; 87:5-17. [PMID: 27013283 DOI: 10.1016/j.maturitas.2016.01.015] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 01/31/2023]
Abstract
The human menopause transition and aging are each associated with an increase in a variety of health risk factors including, but not limited to, cardiovascular disease, osteoporosis, cancer, diabetes, stroke, sexual dysfunction, affective disorders, sleep disturbances, and cognitive decline. It is challenging to systematically evaluate the biological underpinnings associated with the menopause transition in the human population. For this reason, rodent models have been invaluable tools for studying the impact of gonadal hormone fluctuations and eventual decline on a variety of body systems. While it is essential to keep in mind that some of the mechanisms associated with aging and the transition into a reproductively senescent state can differ when translating from one species to another, animal models provide researchers with opportunities to gain a fundamental understanding of the key elements underlying reproduction and aging processes, paving the way to explore novel pathways for intervention associated with known health risks. Here, we discuss the utility of several rodent models used in the laboratory for translational menopause research, examining the benefits and drawbacks in helping us to better understand aging and the menopause transition in women. The rodent models discussed are ovary-intact, ovariectomy, and 4-vinylcylohexene diepoxide for the menopause transition. We then describe how these models may be implemented in the laboratory, particularly in the context of cognition. Ultimately, we aim to use these animal models to elucidate novel perspectives and interventions for maintaining a high quality of life in women, and to potentially prevent or postpone the onset of negative health consequences associated with these significant life changes during aging.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, United States; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, United States.
| |
Collapse
|
9
|
Berent-Spillson A, Briceno E, Pinsky A, Simmen A, Persad CC, Zubieta JK, Smith YR. Distinct cognitive effects of estrogen and progesterone in menopausal women. Psychoneuroendocrinology 2015; 59:25-36. [PMID: 26010861 PMCID: PMC4490102 DOI: 10.1016/j.psyneuen.2015.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/03/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
The effects of postmenopausal hormone treatment on cognitive outcomes are inconsistent in the literature. Emerging evidence suggests that cognitive effects are influenced by specific hormone formulations, and that progesterone is more likely to be associated with positive outcomes than synthetic progestin. There are very few studies of unopposed progesterone in postmenopausal women, and none that use functional neuroimaging, a sensitive measure of neurobiological function. In this study of 29 recently postmenopausal women, we used functional MRI and neuropsychological measures to separately assess the effects of estrogen or progesterone treatment on visual and verbal cognitive function. Women were randomized to receive 90 days of either estradiol or progesterone counterbalanced with placebo. After each treatment arm, women were given a battery of verbal and visual cognitive function and working memory tests, and underwent functional MRI including verbal processing and visual working memory tasks. We found that both estradiol and progesterone were associated with changes in activation patterns during verbal processing. Compared to placebo, women receiving estradiol treatment had greater activation in the left prefrontal cortex, a region associated with verbal processing and encoding. Progesterone was associated with changes in regional brain activation patterns during a visual memory task, with greater activation in the left prefrontal cortex and right hippocampus compared to placebo. Both treatments were associated with a statistically non-significant increase in number of words remembered following the verbal task performed during the fMRI scanning session, while only progesterone was associated with improved neuropsychological measures of verbal working memory compared to placebo. These results point to potential cognitive benefits of both estrogen and progesterone.
Collapse
Affiliation(s)
- Alison Berent-Spillson
- University of Michigan, Psychiatry Department, MBNI, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Emily Briceno
- University of Michigan, Psychiatry Department, Neuropsychology Division, 2101 Commonwealth Blvd, Suite C, Ann Arbor, MI 48105, USA.
| | - Alana Pinsky
- University of Michigan Medical School, 1301 Catherine, Ann Arbor, MI, 48109, USA.
| | - Angela Simmen
- University of Michigan, Obstetrics and Gynecology Department, L4000 Womens SPC, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - Carol C. Persad
- University of Michigan, Psychiatry Department, Neuropsychology Division, 2101 Commonwealth Blvd, Suite C, Ann Arbor, MI 48105, USA
| | - Jon-Kar Zubieta
- University of Michigan, Psychiatry Department, MBNI, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Yolanda R. Smith
- University of Michigan, Obstetrics and Gynecology Department, L4000 Womens SPC, 1500 E. Medical Center Dr, Ann Arbor, MI 48109, USA,Corresponding author: Alison Berent-Spillson, 1-734-615-4252
| |
Collapse
|
10
|
Braden BB, Kingston ML, Koenig EN, Lavery CN, Tsang CWS, Bimonte-Nelson HA. The GABAA antagonist bicuculline attenuates progesterone-induced memory impairments in middle-aged ovariectomized rats. Front Aging Neurosci 2015; 7:149. [PMID: 26321945 PMCID: PMC4536389 DOI: 10.3389/fnagi.2015.00149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/20/2015] [Indexed: 01/24/2023] Open
Abstract
In women, high levels of natural progesterone have been associated with detrimental cognitive effects via the “maternal amnesia” phenomenon as well as in controlled experiments. In aged ovariectomized (Ovx) rats, progesterone has been shown to impair cognition and impact the GABAergic system in cognitive brain regions. Here, we tested whether the GABAergic system is a mechanism of progesterone’s detrimental cognitive effects in the Ovx rat by attempting to reverse progesterone-induced impairments via concomitant treatment with the GABAA antagonist, bicuculline. Thirteen month old rats received Ovx plus daily vehicle, progesterone, bicuculline, or progesterone+bicuculline injections beginning 2 weeks prior to testing. The water radial-arm maze was used to evaluate spatial working and reference memory. During learning, rats administered progesterone made more working memory errors than those administered vehicle, and this impairment was reversed by the addition of bicuculline. The progesterone impairment was transient and all animals performed similarly by the end of regular testing. On the last day of testing, a 6 hour delay was administered to evaluate memory retention. Progesterone-treated rats were the only group to increase working memory errors with the delay relative to baseline performance; again, the addition of bicuculline prevented the progesterone-induced impairment. The vehicle, bicuculline, and progesterone+bicuculline groups were not impaired by the delay. The current rodent findings corroborate prior research reporting progesterone-induced detriments on cognition in women and in the aging Ovx rat. Moreover, the data suggest that the progesterone-induced cognitive impairment is, in part, related to the GABAergic system. Given that progesterone is included in numerous clinically-prescribed hormone therapies and contraceptives (e.g., micronized), and as synthetic analogs, further research is warranted to better understand the parameters and mechanism(s) of progesterone-induced cognitive impairments.
Collapse
Affiliation(s)
- B Blair Braden
- Human Brain Mapping Laboratory, Neuroimaging, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center Phoenix, AZ, USA ; Memory and Aging Laboratory, Department of Psychology, Arizona State University Tempe, AZ, USA ; Arizona Alzheimer's Consortium Phoenix, AZ, USA
| | - Melissa L Kingston
- Memory and Aging Laboratory, Department of Psychology, Arizona State University Tempe, AZ, USA
| | - Elizabeth N Koenig
- Memory and Aging Laboratory, Department of Psychology, Arizona State University Tempe, AZ, USA
| | - Courtney N Lavery
- Memory and Aging Laboratory, Department of Psychology, Arizona State University Tempe, AZ, USA
| | - Candy W S Tsang
- Memory and Aging Laboratory, Department of Psychology, Arizona State University Tempe, AZ, USA
| | - Heather A Bimonte-Nelson
- Memory and Aging Laboratory, Department of Psychology, Arizona State University Tempe, AZ, USA ; Arizona Alzheimer's Consortium Phoenix, AZ, USA
| |
Collapse
|
11
|
Koebele SV, Bimonte-Nelson HA. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it? Horm Behav 2015; 74:86-104. [PMID: 26122297 PMCID: PMC4829405 DOI: 10.1016/j.yhbeh.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 01/04/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A "brain profile," or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static--it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a "Goldilocks" phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to cyclicity, will elucidate ways to extend sensitivity and efficacy into post-menopause.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA.
| |
Collapse
|
12
|
Barros LA, Tufik S, Andersen ML. The role of progesterone in memory: an overview of three decades. Neurosci Biobehav Rev 2014; 49:193-204. [PMID: 25434881 DOI: 10.1016/j.neubiorev.2014.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Memory comprises acquisition, consolidation and retrieval of information. Many substances can influence these different phases. It is well demonstrated that sex hormones, mainly estrogen, impact cognitive function. More recently, progesterone has also been documented as playing an important role in cognition, since it influences brain regions involved in memory. Currently, many women are under hormone treatment, which contain progesterone to decrease the risk of development of endometrial cancer. This affords the opportunity to study the real effects of this hormonal replacement on cognition. There are many contradictory results regarding the role of progesterone in memory. Therefore, the aim of this review was to synthesize these studies using the new perspective of the influence of hormone replacement on cognition in women.
Collapse
Affiliation(s)
- L A Barros
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - M L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Chan M, Chow C, Hamson DK, Lieblich SE, Galea LAM. Effects of chronic oestradiol, progesterone and medroxyprogesterone acetate on hippocampal neurogenesis and adrenal mass in adult female rats. J Neuroendocrinol 2014; 26:386-99. [PMID: 24750490 DOI: 10.1111/jne.12159] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/06/2014] [Accepted: 04/12/2014] [Indexed: 12/22/2022]
Abstract
Both natural oestrogens and progesterone influence synaptic plasticity and neurogenesis within the female hippocampus. However, less is known of the impact of synthetic hormones on hippocampal structure and function. There is some evidence that the administration of the synthetic progestin, medroxyprogesterone acetate (MPA) is not as beneficial as natural progesterone and can attenuate oestrogen-induced neuroprotection. Although the effects of oestradiol have been well studied, little is known about the effects of natural and synthetic progestins alone and in combination with oestradiol on adult neurogenesis in females. In the present study, we investigated the effects of chronic oestradiol, progesterone, MPA and the co-administration of each progestin with oestradiol on neurogenesis within the dentate gyrus of adult ovariectomised female rats. Twenty-four hours after a bromodeoxyuridine (BrdU; 200 mg/kg) injection, female rats were repeatedly administered either progesterone (1 or 4 mg), MPA (1 or 4 mg), oestradiol benzoate (EB), progesterone or MPA in combination with EB (10 μg), or vehicle for 21 days. Rats were perfused on day 22 and brain tissue was analysed for the number of BrdU-labelled and Ki67 (an endogenous marker of cell proliferation)-expressing cells. EB alone and MPA + EB significantly decreased neurogenesis and the number of surviving BrdU-labelled cells in the dorsal region of the dentate gyrus, independent of any effects on cell proliferation. Furthermore, MPA (1 and 4 mg) and MPA + EB treated animals had significantly lower adrenal/body mass ratios and reduced serum corticosterone (CORT) levels. By contrast, progesterone + EB treated animals had significantly higher adrenal/body mass ratios and 1 mg of progesterone, progesterone + EB, and EB significantly increased CORT levels. The results of the present study demonstrate that different progestins alone and in combination with oestradiol can differentially affect neurogenesis (via cell survival) and regulation of the hypothalamic-pituitary-adrenal axis. These findings have implications for women using hormone replacement therapies with MPA for both neuroprotection and stress-related disorders.
Collapse
Affiliation(s)
- M Chan
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
14
|
Baxter MG, Roberts MT, Gee NA, Lasley BL, Morrison JH, Rapp PR. Multiple clinically relevant hormone therapy regimens fail to improve cognitive function in aged ovariectomized rhesus monkeys. Neurobiol Aging 2013; 34:1882-90. [PMID: 23369546 PMCID: PMC3622837 DOI: 10.1016/j.neurobiolaging.2012.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/10/2012] [Accepted: 12/22/2012] [Indexed: 10/27/2022]
Abstract
Preclinical studies in aged, surgically-menopausal rhesus monkeys have revealed powerful benefits of intermittent estrogen injections on prefrontal cortex-dependent working memory, together with corresponding effects on dendritic spine morphology in the prefrontal cortex. This contrasts with the inconsistent effects of hormone therapy (HT) reported in clinical studies in women. Factors contributing to this discrepancy could include differences in the formulation and sequence of HT regimens, resulting in different neurobiological outcomes. The current study evaluated, in aging surgically menopausal rhesus monkeys, the cognitive effects of 4 HT regimens modeled directly on human clinical practice, including continuous estrogen treatment opposed by progesterone. None of the regimens tested produced any cognitive effect, despite yielding physiologically relevant serum hormone levels, as intended. These findings have implications for the design of regimens that might optimize the benefits of hormone treatment for healthy aging, and suggest that common HT protocols used by women may fail to result in substantial cognitive benefit, at least via direct effects on the prefrontal cortex.
Collapse
Affiliation(s)
- Mark G Baxter
- Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
15
|
Acosta JI, Hiroi R, Camp BW, Talboom JS, Bimonte-Nelson HA. An update on the cognitive impact of clinically-used hormone therapies in the female rat: models, mazes, and mechanisms. Brain Res 2013; 1514:18-39. [PMID: 23333453 PMCID: PMC3739440 DOI: 10.1016/j.brainres.2013.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/09/2013] [Indexed: 01/05/2023]
Abstract
In women, ovarian hormone loss associated with menopause has been related to cognitive decline. Hormone therapy (HT) may ameliorate some of these changes. Understanding the cognitive impact of female steroids, including estrogens, progestogens, and androgens, is key to discovering treatments that promote brain health in women. The preclinical literature has presented elegant and methodical experiments allowing a better understanding of parameters driving the cognitive consequences of ovarian hormone loss and HT. Animal models have been a valuable tool in this regard, and will be vital to future discoveries. Here, we provide an update on the literature evaluating the impact of female steroid hormones on cognition, and the putative mechanisms mediating these effects. We focus on preclinical work that was done with an eye toward clinical realities. Parameters that govern the cognitive efficacy of HT, from what we know thus far, include but are not limited to: type, dose, duration, and route of HT, age at HT initiation, timing of HT relative to ovarian hormone loss, memory type examined, menopause history, and hormone receptor status. Researchers have identified intricate relationships between some of these factors by studying their individual effects on cognition. As of late, there is increased focus on studying interactions between these variables as well as multiple hormone types when administered concomitantly. This is key to translating preclinical data to the clinic, wherein women typically have concurrent exposure to endogenous ovarian hormones as well as exogenous combination HTs, which include both estrogens and progestins. Gains in understanding the parameters of HT effects on cognition provide exciting novel avenues that can inform clinical treatments, eventually expanding the window of opportunity to optimally enhance cognition and brain health in aging women. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- J I Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
16
|
Mennenga S, Bimonte-Nelson H. Translational cognitive endocrinology: designing rodent experiments with the goal to ultimately enhance cognitive health in women. Brain Res 2013; 1514:50-62. [PMID: 23391594 PMCID: PMC3936018 DOI: 10.1016/j.brainres.2013.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/12/2013] [Indexed: 02/08/2023]
Abstract
Understanding the cognitive impact of endogenously derived, and exogenously administered, hormone alterations is necessary for developing hormone treatments to support healthy brain function in women, especially during aging. The increasing number of studies in the burgeoning area of translational cognitive neuroendocrinology has revealed numerous factors that influence the extent and direction of female steroid effects on cognition. Here, we discuss the decision processes underlying the design of rodent hormone manipulation experiments evaluating learning and memory. It is noted that even when beginning with a clear hypothesis-driven question, there are numerous factors to consider in order to solidify a sound experimental design that will yield clean, interpretable results. Decisions and considerations include: age of animals at hormone administration and test, ovariectomy implementation, when to administer hormones relative to ovarian hormone loss, how and whether to monitor the estrous cycle if animals are ovary-intact, dose of hormone, administration route of hormone, hormone treatment confirmation protocols, handling procedures required for hormone administration and treatment confirmation, cognitive domains to be tested and which mazes should be utilized to test these cognitive domains, and control measures to be used. A balanced view of optimal design and realistic experimental practice and protocol is presented. The emerging results from translational cognitive neuroendocrinology studies have been diverse, but also enlightening and exciting as we realize the broad scope and powerful nature of ovarian hormone effects on the brain and its function. We must design, implement, and interpret hormone and cognition experiments with sensitivity to these tenets, acknowledging and respecting the breadth and depth of the impact gonadal hormones have on brain functioning and its rich plasticity. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- S.E. Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, USA
| | - H.A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, USA
| |
Collapse
|
17
|
Chisholm NC, Juraska JM. Factors influencing the cognitive and neural effects of hormone treatment during aging in a rodent model. Brain Res 2013; 1514:40-9. [PMID: 23419893 DOI: 10.1016/j.brainres.2013.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 12/18/2022]
Abstract
Whether hormone treatment alters brain structure or has beneficial effects on cognition during aging has recently become a topic of debate. Although previous research has indicated that hormone treatment benefits memory in menopausal women, several newer studies have shown no effect or detrimental effects. These inconsistencies emphasize the need to evaluate the role of hormones in protecting against age-related cognitive decline in an animal model. Importantly, many studies investigating the effects of estrogen and progesterone on cognition and related brain regions have used young adult animals, which respond differently than aged animals. However, when only the studies that have examined the effects of hormone treatment in an aging model are reviewed, there are still varied behavioral and neural outcomes. This article reviews some of the important factors that can influence the behavioral and neural outcomes of hormone treatment including the type of estrogen administered, whether or not estrogen is combined with progesterone and if so, the type of progesterone used, as well as the route, mode, and length of treatment. How these factors influence cognitive outcomes highlights the importance of study design and avoiding generalizations from a small number of studies. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana - Champaign, Champaign, IL 61820, USA.
| | | |
Collapse
|
18
|
Chisholm NC, Kim T, Juraska JM. Males, but not females, lose tyrosine hydroxylase fibers in the medial prefrontal cortex and are impaired on a delayed alternation task during aging. Behav Brain Res 2013; 243:239-46. [PMID: 23327742 DOI: 10.1016/j.bbr.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023]
Abstract
The structure of the prefrontal cortex (PFC) is particularly vulnerable to the effects of aging, and behaviors mediated by the PFC are impaired during aging in both humans and animals. In male rats, behavioral deficits have been correlated with a decrease in dopaminergic functioning. However, studies have found that anatomical changes associated with aging are sexually dimorphic, with males experiencing greater age-related loss than females. The present study investigated the effects of sex and aging on performance of a delayed alternation t-maze, a task mediated by the medial prefrontal cortex (mPFC), and on tyrosine hydroxylase (TH) immunoreactivity in this brain region using adult (7 months) and aged (21 months) male and female F344 rats. There was a sex by age interaction in performance of the delayed alternation task such that adult males performed better than aged males, but aged females were not different than adult females. Adult males performed better than adult females across all delays; however, this sex difference was reversed during aging and aged males performed worse than aged females. In addition, TH immunoreactivity decreased during aging in layers 2/3 in the male, but not female mPFC. Thus females were less sensitive to the effects of aging on the prefrontal dopaminergic system and on performance of a delayed alternation task. These effects may be due to decreases in testosterone in aging males, as well as the protective effects of ovarian hormones, which continue to be secreted after cessation of the estrous cycle in aging females.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | | | | |
Collapse
|
19
|
|
20
|
Effects of long-term treatment with estrogen and medroxyprogesterone acetate on synapse number in the medial prefrontal cortex of aged female rats. Menopause 2012; 19:804-11. [PMID: 22617337 DOI: 10.1097/gme.0b013e31824d1fc4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study investigated the effects of long-term hormone treatment, including the most commonly prescribed progestin, medroxyprogesterone acetate, during aging on synaptophysin-labeled boutons, a marker of synapses, in the medial prefrontal cortex (mPFC) of rats. METHODS Female Long Evans hooded rats were ovariectomized at middle age (12-13 mo) and were placed in one of four groups: no replacement (n = 5), 17β-estradiol alone (n = 6), estradiol and progesterone (n = 7), or estradiol and medroxyprogesterone acetate (n = 4). Estradiol was administered in the drinking water and progestogens were administered via subcutaneous pellets that were replaced every 90 days. After 7 months of hormone replacement, the animals were euthanized, and the brains were stained for synaptophysin, a membrane component of synaptic vesicles. The density of synaptophysin-labeled boutons was quantified in the mPFC using unbiased stereology and multiplied by the volume of the mPFC to obtain the total number. RESULTS Animals receiving estradiol and medroxyprogesterone acetate had significantly more synaptophysin-labeled boutons in the mPFC than did animals not receiving replacement (P < 0.03) and those receiving estradiol and progesterone (P < 0.02). In addition, there was a nonsignificant trend for animals receiving estradiol alone to have more synapses than those receiving estradiol and progesterone. CONCLUSIONS This study is the first to examine the effects of estradiol and medroxyprogesterone acetate during rat aging on cortical synaptic number. Estradiol with medroxyprogesterone acetate, but not progesterone, resulted in a greater number of synapses in the mPFC during aging than did no replacement.
Collapse
|
21
|
Chisholm NC, Packard AR, Koss WA, Juraska JM. The effects of long-term treatment with estradiol and medroxyprogesterone acetate on tyrosine hydroxylase fibers and neuron number in the medial prefrontal cortex of aged female rats. Endocrinology 2012; 153:4874-82. [PMID: 22903611 PMCID: PMC3512004 DOI: 10.1210/en.2012-1412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Menopausal women often initiate hormone treatment to alleviate the symptoms of menopause. Research suggests that these treatments also affect cognition, and studies in young animals indicate that hormone treatment can alter several neuroanatomical measures. However, very little is known about the effects of long-term hormone treatment on the aging female brain. This study investigated the effects of hormone treatment on neuron number and tyrosine hydroxylase (TH) in the rat medial prefrontal cortex (mPFC). Female Long Evans rats were ovariectomized at middle age (12-13 months) and placed in one of four groups: no replacement (NR) (n = 12), 17β-estradiol (E(2)) (n = 12), E(2) and progesterone (n = 7), or E(2) and medroxyprogesterone acetate (MPA) (n = 10). Animals were euthanized at 20 months, and the brains were Nissl stained; a subset was immunostained for TH [NR (n = 5); E(2) (n = 6); E(2) + MPA (n = 4); E(2) + progesterone (n = 6)]. E(2) was administered through the drinking water, and progestagens were administered via pellets inserted at the nape of the neck. Neuron number and TH fiber density were quantified in the mPFC. Hormone treatment did not alter neuron number. Treatment with E(2) and MPA resulted in greater TH densities than NR in layer 1 (P < 0.05). In layers 2/3, animals receiving E(2) had greater TH densities than NR animals (P < 0.01). These results indicate that long-term hormone treatments alter dopaminergic fibers and potentially the functioning of the aging mPFC.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| | | | | | | |
Collapse
|