Yang Y, Kreko-Pierce T, Howell R, Pugh JR. Long-term depression of presynaptic cannabinoid receptor function at parallel fibre synapses.
J Physiol 2019;
597:3167-3181. [PMID:
31020998 DOI:
10.1113/jp277727]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS
Inhibition of synaptic responses by activation of presynaptic cannabinoid type-1 (Cb1) receptors is reduced at parallel fibre synapses in the cerebellum following 4 Hz stimulation. Activation of adenylyl cyclase is necessary and sufficient for down-regulation of Cb1 receptors induced by 4 Hz stimulation. 4 Hz stimulation reduces Cb1 receptor function by (i) increasing the rate of endocannabinoid clearance from the synapse and (ii) decreasing expression of Cb1 receptors.
ABSTRACT
Cannabinoid type-1 receptors (Cb1R) are expressed in the presynaptic membrane of many synapses, including parallel fibre-Purkinje cell synapses in the cerebellum, where they are involved in short- and long-term plasticity of synaptic responses. We show that Cb1R expression itself is a plastic property of the synapse regulated by physiological activity patterns. We made patch clamp recordings from Purkinje cells in cerebellar slices and assessed Cb1R activity by measuring depolarization-induced suppression of excitation (DSE). We find that DSE is normally stable at parallel fibre synapses but, following 4 Hz stimulation, DSE is persistently reduced and recovers more rapidly. Using a combination of electrophysiology, pharmacology and biochemistry, we show that changes in DSE are a result of the reduced expression of Cb1Rs and increased degradation of endocannabinoids by monoacylglycerol lipase. Long-term changes in presynaptic Cb1R expression may alter other forms of Cb1R-dependent plasticity at parallel fibre synapses, priming or inhibiting the circuit for associative learning.
Collapse