1
|
Preston K, Riede T. California mice (Peromyscus californicus) adjust mouth movements for vocal production during early postnatal development. BMC Biol 2024; 22:299. [PMID: 39719564 DOI: 10.1186/s12915-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND The order Rodentia is the largest group of mammals. Diversification of vocal communication has contributed to rodent radiation and allowed them to occupy diverse habitats and adopt different social systems. The mechanism by which efficient vocal sounds, which carry over surprisingly large distances, are generated is incompletely understood. Here we focused on the development and function of rhythmic mouth movements and laryngeal sound production. We studied spontaneously vocalizing California mice (Peromyscus californicus) through video and sound recordings. Mouth gape was estimated from video images and vocal characteristics were measured in synchronized sound recordings. RESULTS California mice coordinated their mouth movements with laryngeal sound production but differently in two call types. In high-frequency whistles ("USV syllables"), mouth movements were present on postnatal day 1 but were reduced within the first 2 weeks of life. Mouth movements were prominently present during sustained vocalizations ("SV syllables"), and movements became more and more adjusted to syllable beginning and end. Maximum mouth gape was correlated with sound intensity and fundamental frequency of SV syllables. The effect on sound intensity was the strongest during postnatal development and most predictable when the mouth was closed by temporarily immobilizing the mandible in an elevated position. CONCLUSIONS This study demonstrates that rhythmic orofacial behavior not only plays a critical role in determining acoustic features of the vocal behavior of California mice but also shows remarkable adjustments during early development.
Collapse
Affiliation(s)
- Kuirsten Preston
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Tobias Riede
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA.
- College of Graduate Studies, Department of Physiology, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
2
|
Piastolov SV, Volodin IA, Vasilieva NY, Khrushchova AM, Shekarova ON, Volodina EV. Comparison of ultrasonic isolation calls of pure-breeding and interspecies hybrid Phodopus dwarf hamster pups. Behav Processes 2023; 210:104917. [PMID: 37459937 DOI: 10.1016/j.beproc.2023.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
In mammalian cross-species hybrids, parameters of voice calls, produced by vocal fold vibrations, are intermediate between parental species. Inheritance of ultrasonic calls, produced by whistle mechanism, is unstudied for hybrids. We examined 4000 pup ultrasonic isolation-induced calls for peak power of call fundamental frequency and for call duration in 4-8-day-old captive hamsters of four Study Groups: pure Phodopus sungorus; pure P. campbelli of two populations (Mongolian and Kosh-Agach) and hybrids between male P. sungorus and female P. campbelli (Kosh-Agach). All Study Groups produced two categories of ultrasonic calls: Low-Frequency centered around 41 kHz and High-Frequency centered around 60 kHz, but in different percentages. Between populations, only Low-Frequency calls were shorter and higher-frequency in Mongolian P. campbelli. Between species, only High-Frequency calls were shorter and higher-frequency in P. sungorus. In hybrids, Low-Frequency calls were shorter and lower-frequency than in either parental species, whereas High-Frequency calls were longer and lower-frequency in hybrids than in pure P. sungorus but similar with another parental species. We discuss that interspecific hybridization may give rise to offspring with new properties of ultrasonic calls.
Collapse
Affiliation(s)
- Semen V Piastolov
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, Moscow 119234, Russia
| | - Ilya A Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, Moscow 119234, Russia.
| | - Nina Yu Vasilieva
- Department of Comparative Ethology and Biocommunication, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, 33, Moscow 119071, Russia
| | - Anastasia M Khrushchova
- Department of Comparative Ethology and Biocommunication, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, 33, Moscow 119071, Russia
| | - Olga N Shekarova
- Department of Population Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, 33, Moscow 119071, Russia
| | - Elena V Volodina
- Department of Behaviour and Behavioural Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, 33, Moscow 119071, Russia
| |
Collapse
|
3
|
Arquilla AM, Wilson KM, Razak KA, Saltzman W. Fatherhood increases attraction to sensory stimuli from unrelated pups in male California mice, Peromyscus californicus. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Wilson KM, Arquilla AM, Rosales-Torres KM, Hussein M, Chan MG, Razak KA, Saltzman W. Neural responses to pup calls and pup odors in California mouse fathers and virgin males. Behav Brain Res 2022; 434:114024. [PMID: 35882277 DOI: 10.1016/j.bbr.2022.114024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
The onset of mammalian maternal care is associated with plasticity in neural processing of infant-related sensory stimuli; however, little is known about sensory plasticity associated with fatherhood. We quantified behavioral and neural responses of virgin males and new fathers to olfactory and auditory stimuli from young, unfamiliar pups in the biparental California mouse (Peromyscus californicus). Each male was exposed for 10minutes to one of four combinations of a chemosensory stimulus (pup-scented or unscented cotton [control]) and an auditory stimulus (pup vocalizations or white noise [control]). Behavior did not differ between fathers and virgins during exposure to sensory stimuli or during the following hour; however, males in both groups were more active both during and after exposure to pup-related stimuli compared to control stimuli. Fathers had lower expression of Fos in the main olfactory bulbs (MOB) but higher expression in the medial preoptic area (MPOA) and bed nucleus of the stria terminalis medial division, ventral part (STMV) compared to virgins. Lastly, males had higher Fos expression in MPOA when exposed to pup odor compared to control stimuli, and when exposed to pup odor and pup calls compared to pup calls only or control stimuli. These findings suggest that the onset of fatherhood alters activity of MOB, MPOA and STMV and that pup odors and vocalizations have additive or synergistic effects on males' behavior and MPOA activation.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA; Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA
| |
Collapse
|
5
|
Riede T, Kobrina A, Bone L, Darwaiz T, Pasch B. Mechanisms of sound production in deer mice (Peromyscus). J Exp Biol 2022; 225:275022. [PMID: 35413125 PMCID: PMC9163445 DOI: 10.1242/jeb.243695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
Abstract
Rodent diversification is associated with a large diversity of species-specific social vocalizations generated by two distinct laryngeal sound production mechanisms- whistling and airflow-induced vocal fold vibration. Understanding the relative importance of each modality to context-dependent acoustic interactions requires comparative analyses among closely related species. In this study, we used light gas experiments, acoustic analyses, and laryngeal morphometrics to identify the distribution of the two mechanisms among six species of deer mice (Peromyscus). We found that high frequency vocalizations (simple and complex sweeps) produced in close-distance contexts were generated by a whistle mechanism. In contrast, lower frequency sustained vocalizations (SVs) used in longer distance communication were produced by airflow-induced vocal fold vibrations. Pup isolation calls, which resemble adult SVs, were also produced by airflow-induced vocal fold vibrations. Nonlinear phenomena (NLP) were common in adult SVs and pup isolation calls, suggesting irregular vocal fold vibration characteristics. Both vocal production mechanisms were facilitated by a characteristic laryngeal morphology, including a two-layered vocal fold lamina propria, small vocal membrane-like extensions on the free edge of the vocal fold, and a singular ventral laryngeal air pocket known as the ventral pouch. The size and composition of vocal folds (rather than total laryngeal size) appears to contribute to species-specific acoustic properties. Our findings suggest that dual modes of sound production are more widespread among rodents than previously appreciated. Additionally, the common occurrence of NLP highlight the nonlinearity of the vocal apparatus, whereby small changes in anatomy or physiological control trigger large changes in behavioral output. Finally, consistency in mechanisms of sound production used by neonates and adults underscores the importance of considering vocal ontogeny in the diversification of species-specific acoustic signals.
Collapse
Affiliation(s)
- Tobias Riede
- Department of Physiology, Midwestern University Glendale, AZ, USA
| | - Anastasiya Kobrina
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Landon Bone
- Arizona College of Osteopathic Medicine, Midwestern University Glendale, AZ, USA
| | - Tarana Darwaiz
- Department of Physiology, Midwestern University Glendale, AZ, USA
| | - Bret Pasch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
6
|
Wilson KM, Wagner VA, Saltzman W. Specificity of California mouse pup vocalizations in response to olfactory stimuli. Dev Psychobiol 2022; 64:e22261. [DOI: 10.1002/dev.22261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kerianne M. Wilson
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California USA
| | - Victoria A. Wagner
- Graduate Program in Neuroscience University of California Riverside Riverside California USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California USA
- Graduate Program in Neuroscience University of California Riverside Riverside California USA
| |
Collapse
|
7
|
Warren MR, Campbell D, Borie AM, Ford CL, Dharani AM, Young LJ, Liu RC. Maturation of Social-Vocal Communication in Prairie Vole ( Microtus ochrogaster) Pups. Front Behav Neurosci 2022; 15:814200. [PMID: 35087387 PMCID: PMC8787284 DOI: 10.3389/fnbeh.2021.814200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Impairments in social communication are common among neurodevelopmental disorders. While traditional animal models have advanced our understanding of the physiological and pathological development of social behavior, they do not recapitulate some aspects where social communication is essential, such as biparental care and the ability to form long-lasting social bonds. Prairie voles (Microtus ochrogaster) have emerged as a valuable rodent model in social neuroscience because they naturally display these behaviors. Nonetheless, the role of vocalizations in prairie vole social communication remains unclear. Here, we studied the ontogeny [from postnatal days (P) 8-16] of prairie vole pup ultrasonic vocalizations (USVs), both when isolated and when the mother was present but physically unattainable. In contrast to other similarly sized rodents such as mice, prairie vole pups of all ages produced isolation USVs with a relatively low fundamental frequency between 22 and 50 kHz, often with strong harmonic structure. Males consistently emitted vocalizations with a lower frequency than females. With age, pups vocalized less, and the acoustic features of vocalizations (e.g., duration and bandwidth) became more stereotyped. Manipulating an isolated pup's social environment by introducing its mother significantly increased vocal production at older (P12-16) but not younger ages, when pups were likely unable to hear or see her. Our data provide the first indication of a maturation in social context-dependent vocal emission, which may facilitate more active acoustic communication. These results help lay a foundation for the use of prairie voles as a model organism to probe the role of early life experience in the development of social-vocal communication.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Drayson Campbell
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Amélie M. Borie
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar M. Dharani
- Summer Opportunities of Academic Research Program, James T. Laney School of Graduate Studies, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
8
|
Minie VA, Petric R, Ramos-Maciel S, Wright EC, Trainor BC, Duque-Wilckens N. Enriched laboratory housing increases sensitivity to social stress in female California mice ( Peromyscus californicus). Appl Anim Behav Sci 2021; 241. [PMID: 34366522 DOI: 10.1016/j.applanim.2021.105381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Domesticated mice and rats have shown to be powerful model systems for biomedical research, but there are cases in which the biology of species is a poor match for the hypotheses under study. The California mouse (Peromyscus californicus) has unique traits that make it an ideal model for studying biological mechanisms underlying human-relevant behaviors such as intra-female aggression, biparental care, and monogamy. Indeed, peer-reviewed scientific publications using California mouse as a model for behavioral research have more than doubled in the past decade. Critically, behavioral outcomes in captive animals can be profoundly affected by housing conditions, but there is very limited knowledge regarding species-specific housing needs in California mice. Currently, California mouse investigators have to rely on guidelines aimed for more common laboratory species that show vastly different physiology, behavior, and/or ecological niche. This not only could be suboptimal for animals' welfare, but also result in lack of standardization that could potentially compromise experimental reproducibility and replicability across laboratories. With the aim of assessing how different housing systems can affect California mouse behavior both in the home cage as well as the open field and social interaction tests before and after social defeat stress, here we tested three different caging systems: 1. Standard mouse cage, 2. Large cage, and 3. Large cage + environmental enrichment (EE), which focused on increasing vertical complexity based on observations that California mice are semiarboreal in the wild. We found that the effects of housing were largely sex specific: compared to standard cages, in females large + EE reduced home cage stereotypic-like backflipping and rearing behaviors, while large cage increased social interactions. In males, the large+EE cage reduced rearing and digging but did not significantly affect backflipping behavior. Interestingly, while there were no significant differences in the open field and social interaction pre-stress behaviors, large and large+EE housing increased the sensitivity of these tests to detect stress induced phenotypes in females. Together, these results suggest that increasing social and environmental complexity affects home cage behaviors in male and female California mice without interfering with, but rather increasing the magnitude of, the effects of defeat stress on the open field and social interaction tests.
Collapse
Affiliation(s)
- Vanessa A Minie
- Department of Psychology, University of California Davis, CA 95616
| | - Radmila Petric
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | | | - Emily C Wright
- Department of Psychology, University of California Davis, CA 95616
| | - Brian C Trainor
- Department of Psychology, University of California Davis, CA 95616
| | - Natalia Duque-Wilckens
- Department of Psychology, University of California Davis, CA 95616.,Department of Physiology, Michigan State University, East Lansing MI 48824.,Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
9
|
Guoynes CD, Marler CA. An acute dose of intranasal oxytocin rapidly increases maternal communication and maintains maternal care in primiparous postpartum California mice. PLoS One 2021; 16:e0244033. [PMID: 33886559 PMCID: PMC8061985 DOI: 10.1371/journal.pone.0244033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal-offspring communication and care are essential for offspring survival. Oxytocin (OXT) is known for its role in initiation of maternal care, but whether OXT can rapidly influence maternal behavior or ultrasonic vocalizations (USVs; above 50 kHz) has not been examined. To test for rapid effects of OXT, California mouse mothers were administered an acute intranasal (IN) dose of OXT (0.8 IU/kg) or saline followed by a separation test with three phases: habituation with pups in a new testing chamber, separation via a wire mesh, and finally reunion with pups. We measured maternal care, maternal USVs, and pup USVs. In mothers, we primarily observed simple sweep USVs, a short downward sweeping call around 50 kHz, and in pups we only observed pup whines, a long call with multiple harmonics ranging from 20 kHz to 50 kHz. We found that IN OXT rapidly and selectively enhanced the normal increase in maternal simple sweep USVs when mothers had physical access to pups (habituation and reunion), but not when mothers were physically separated from pups. Frequency of mothers' and pups' USVs were correlated upon reunion, but IN OXT did not influence this correlation. Finally, mothers given IN OXT showed more efficient pup retrieval/carrying and greater total maternal care upon reunion. Behavioral changes were specific to maternal behaviors (e.g. retrievals) as mothers given IN OXT did not differ from controls in stress-related behaviors (e.g. freezing). Overall, these findings highlight the rapid effects and context-dependent effect a single treatment with IN OXT has on both maternal USV production and offspring care.
Collapse
Affiliation(s)
- Caleigh D. Guoynes
- Department of Psychology, University of Wisconsin, Madison, WI, United States America
| | - Catherine A. Marler
- Department of Psychology, University of Wisconsin, Madison, WI, United States America
| |
Collapse
|
10
|
Butler MC, Long CN, Kinkade JA, Green MT, Martin RE, Marshall BL, Willemse TE, Schenk AK, Mao J, Rosenfeld CS. Endocrine disruption of gene expression and microRNA profiles in hippocampus and hypothalamus of California mice: Association of gene expression changes with behavioural outcomes. J Neuroendocrinol 2020; 32:e12847. [PMID: 32297422 PMCID: PMC7207022 DOI: 10.1111/jne.12847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023]
Abstract
The hypothalamus and hippocampus are sensitive to early exposure to endocrine disrupting chemicals (EDCs). Two EDCs that have raised particular concerns are bisphenol A (BPA), a widely prevalent chemical in many common household items, and genistein (GEN), a phyto-oestrogen present in soy and other plants. We hypothesised that early exposure to BPA or GEN may lead to permanent effects on gene expression profiles for both coding RNAs (mRNAs) and microRNAs (miRs), which can affect the translation of mRNAs. Such EDC-induced biomolecular changes may affect behavioural and metabolic patterns. California mice (Peromyscus californicus) male and female offspring were developmentally exposed via the maternal diet to BPA (5 mg kg-1 feed weight low dose [LD] and 50 mg kg-1 feed weight upper dose [UD]), GEN (250 mg kg-1 feed weight) or a phyto-oestrogen-free diet (AIN) control. Behavioural and metabolic tests were performed at 180 days of age. A quantitative polymerase chain reacttion analysis was performed for candidate mRNAs and miRs in the hypothalamus and hippocampus. LD BPA and GEN exposed California mice offspring showed socio-communication impairments. Hypothalamic Avp, Esr1, Kiss1 and Lepr were increased in LD BPA offspring. miR-153 was elevated but miR-181a was reduced in LD BPA offspring. miR-9 and miR-153 were increased in the hippocampi of LD BPA offspring, whereas GEN decreased hippocampal miR-7a and miR-153 expression. Correlation analyses revealed neural expression of miR-153 and miR-181a was associated with socio-communication deficits in LD BPA individuals. The findings reveal a cause for concern such that developmental exposure of BPA or GEN in California mice (and potentially by translation in humans) can lead to long standing neurobehavioural consequences.
Collapse
Affiliation(s)
- Mary C Butler
- Department of Chemistry, Truman State University, Kirksville, MO, USA
| | - Camryn N Long
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Madison T Green
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Rachel E Martin
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Brittney L Marshall
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Tess E Willemse
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | | | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Yurlova DD, Volodin IA, Ilchenko OG, Volodina EV. Rapid development of mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming (Eolagurus luteus). PLoS One 2020; 15:e0228892. [PMID: 32045453 PMCID: PMC7015103 DOI: 10.1371/journal.pone.0228892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/24/2020] [Indexed: 01/16/2023] Open
Abstract
Ultrasonic vocalizations (USV) of laboratory rodents may serve as age-dependent indicators of emotional arousal and anxiety. Fast-growing Arvicolinae rodent species might be advantageous wild-type animal models for behavioural and medical research related to USV ontogeny. For the yellow steppe lemming Eolagurus luteus, only audible calls of adults were previously described. This study provides categorization and spectrographic analyses of 1176 USV calls emitted by 120 individual yellow steppe lemmings at 12 age classes, from birth to breeding adults over 90 days (d) of age, 10 individuals per age class, up to 10 USV calls per individual. The USV calls emerged since 1st day of pup life and occurred at all 12 age classes and in both sexes. The unified 2-min isolation procedure on an unfamiliar territory was equally applicable for inducing USV calls at all age classes. Rapid physical growth (1 g body weight gain per day from birth to 40 d of age) and the early (9-12 d) eyes opening correlated with the early (9-12 d) emergence of mature vocal patterns of USV calls. The mature vocal patterns included a prominent shift in percentages of chevron and upward contours of fundamental frequency (f0) and the changes in the acoustic variables of USV calls. Call duration was the longest at 1-4 d, significantly shorter at 9-12 d and did not between 9-12-d and older age classes. The maximum fundamental frequency (f0max) decreased with increase of age class, from about 50 kHz in neonates to about 40 kHz in adults. These ontogenetic pathways of USV duration and f0max (towards shorter and lower-frequency USV calls) were reminiscent of those in laboratory mice Mus musculus.
Collapse
Affiliation(s)
- Daria D. Yurlova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State
University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
12
|
Marshall BL, Liu Y, Farrington MJ, Mao J, Helferich WG, Schenk AK, Bivens NJ, Sarma SJ, Lei Z, Sumner LW, Joshi T, Rosenfeld CS. Early genistein exposure of California mice and effects on the gut microbiota-brain axis. J Endocrinol 2019; 242:139-157. [PMID: 31189133 PMCID: PMC6885123 DOI: 10.1530/joe-19-0214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Human offspring encounter high amounts of phytoestrogens, such as genistein (GEN), through maternal diet and soy-based formulas. Such chemicals can exert estrogenic activity and thereby disrupt neurobehavioral programming. Besides inducing direct host effects, GEN might cause gut dysbiosis and alter gut metabolites. To determine whether exposure to GEN affects these parameters, California mice (Peromyscus californicus) dams were placed 2 weeks prior to breeding and throughout gestation and lactation on a diet supplemented with GEN (250 mg/kg feed weight) or AIN93G phytoestrogen-free control diet (AIN). At weaning, offspring socio-communicative behaviors, gut microbiota and metabolite profiles were assayed. Exposure of offspring to GEN-induced sex-dependent changes in gut microbiota and metabolites. GEN exposed females were less likely to investigate a novel female mouse when tested in a three-chamber social test. When isolated, GEN males and females exhibited increased latency to elicit their first call, suggestive of reduced motivation to communicate with other individuals. Correlation analyses revealed interactions between GEN-induced microbiome, metabolome and socio-communicative behaviors. Comparison of GEN males with AIN males revealed the fraction of calls above 20 kHz was associated with daidzein, α-tocopherol, Flexispira spp. and Odoribacter spp. Results suggest early GEN exposure disrupts normal socio-communicative behaviors in California mice, which are otherwise evident in these social rodents. Such effects may be due to GEN disruptions on neural programming but might also be attributed to GEN-induced microbiota shifts and resultant changes in gut metabolites. Findings indicate cause for concern that perinatal exposure to GEN may detrimentally affect the offspring microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Brittney L Marshall
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Yang Liu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Michelle J Farrington
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri, USA
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA
- Genetics Area Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
13
|
Zaytseva AS, Volodin IA, Ilchenko OG, Volodina EV. Ultrasonic vocalization of pup and adult fat-tailed gerbils (Pachyuromys duprasi). PLoS One 2019; 14:e0219749. [PMID: 31356642 PMCID: PMC6663002 DOI: 10.1371/journal.pone.0219749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/01/2019] [Indexed: 12/03/2022] Open
Abstract
Ultrasonic vocalizations (USVs) of laboratory rodents indicate animal emotional arousal and may serve as models of human disorders. We analysed spectrographically USV calls of pup and adult fat-tailed gerbils Pachyuromys duprasi during 420-s tests, including isolation, touch and handling. Based on combination of six different USV syllable contour shapes and six different note compositions, we classified 782 USV syllables of 24 pups aged 5-10 days to 18 types and 232 syllables of 7 adults to 24 types. Pups and adults shared 16 of these 26 USV types. Percentages of USV syllables with certain contour shapes differed between pups and adults. The contour shape and note composition significantly affected most acoustic variables of USV syllables in either pups or adults. The 1-note USV syllables were most common in either pups or adults. Pup USV syllables were overall longer and higher-frequency than adult ones, reminiscent of the USV ontogenetic pathway of bats and distinctive to rats and mice. We discuss that the USV syllable types of fat-tailed gerbils were generally similar in contour shapes and note compositions with USV syllable types of mice and rats, what means that software developed for automated classifying of mice ultrasound might be easily adapted or re-tuned to gerbil USV calls. However, using fat-tailed gerbils as model for biomedical research including control of USV vocalization is only possible since 6th day of pup life, because of the delayed emergence of USV calls in ontogeny of this species.
Collapse
Affiliation(s)
- Alexandra S. Zaytseva
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Scientific Research Department, Moscow Zoo, Moscow, Russia
| | | | | |
Collapse
|
14
|
Johnson SA, Farrington MJ, Murphy CR, Caldo PD, McAllister LA, Kaur S, Chun C, Ortega MT, Marshall BL, Hoffmann F, Ellersieck MR, Schenk AK, Rosenfeld CS. Multigenerational effects of bisphenol A or ethinyl estradiol exposure on F2 California mice (Peromyscus californicus) pup vocalizations. PLoS One 2018; 13:e0199107. [PMID: 29912934 PMCID: PMC6005501 DOI: 10.1371/journal.pone.0199107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Rodent pups use vocalizations to communicate with one or both parents in biparental species, such as California mice (Peromyscus californicus). Previous studies have shown California mice developmentally exposed to endocrine disrupting chemicals, bisphenol A (BPA) or ethinyl estradiol (EE), demonstrate later compromised parental behaviors. Reductions in F1 parental behaviors might also be due to decreased emissions of F2 pup vocalizations. Thus, vocalizations of F2 male and female California mice pups born to F1 parents developmentally exposed to BPA, EE, or controls were examined. Postnatal days (PND) 2-4 were considered early postnatal period, PND 7 and 14 were defined as mid-postnatal period, and PND 21 and 28 were classified as late postnatal period. EE pups showed increased latency to emit the first syllable compared to controls. BPA female pups had decreased syllable duration compared to control and EE female pups during the early postnatal period but enhanced responses compared to controls at late postnatal period; whereas, male BPA and EE pups showed greater syllable duration compared to controls during early postnatal period. In mid-postnatal period, F2 BPA and EE pups emitted greater number of phrases than F2 control pups. Results indicate aspects of vocalizations were disrupted in F2 pups born to F1 parents developmentally exposed to BPA or EE, but their responses were not always identical, suggesting BPA might not activate estrogen receptors to the same extent as EE. Changes in vocalization patterns by F2 pups may be due to multigenerational exposure to BPA or EE and/or reduced parental care received.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Gastroenterology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Michelle J. Farrington
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Claire R. Murphy
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Paul D. Caldo
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Leif A. McAllister
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Sarabjit Kaur
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Catherine Chun
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Madison T. Ortega
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Brittney L. Marshall
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Frauke Hoffmann
- Department of Chemicals and Product Safety, The German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mark R. Ellersieck
- Department of Agriculture Experimental Station-Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - A. Katrin Schenk
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ultrasonic Vocalizations of Young Mice in the Genus Peromyscus. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-809600-0.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|