1
|
Manickam R, Santhana S, Xuan W, Bisht KS, Tipparaju SM. Nampt: a new therapeutic target for modulating NAD + levels in metabolic, cardiovascular, and neurodegenerative diseases. Can J Physiol Pharmacol 2025. [PMID: 40203459 DOI: 10.1139/cjpp-2024-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
NAD+ is an important cofactor involved in regulating many biochemical processes in cells. An imbalance in NAD+/NADH ratio is linked to many diseases. NAD+ is depleted in diabetes, cardiovascular and neurodegenerative diseases, and in aging, and is increased in tumor cells. NAD+ is generated in cells via the de novo, Preiss-Handler, and salvage pathways. Most of the cellular NAD+ is generated through Nampt activation, a key rate-limiting enzyme that is involved in the salvage pathway. Restoration of NAD+/NADH balance offers therapeutic advantages for improving tissue homeostasis and function. NAD+ is known to benefit and restore the body's physiological mechanisms, including DNA replication, chromatin and epigenetic modifications, and gene expression. Recent studies elucidate the role of NAD+ in cells utilizing transgenic mouse models. Translational new therapeutics are positioned to utilize the NAD+ restoration strategies for overcoming the drawbacks that exist in the pharmacological toolkit. The present review highlights the significance of Nampt-NAD+ axis as a major player in energy metabolism and provides an overview with insights into future strategies, providing pharmacological advantages to address current and future medical needs.
Collapse
Affiliation(s)
- Ravikumar Manickam
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Sandhya Santhana
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Kirpal S Bisht
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
4
|
Lucock MD. Vitomics: A novel paradigm for examining the role of vitamins in human biology. Bioessays 2023; 45:e2300127. [PMID: 37727095 DOI: 10.1002/bies.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The conventional view of vitamins reflects a diverse group of small molecules that facilitate critical aspects of metabolism and prevent potentially fatal deficiency syndromes. However, vitamins also contribute to the shaping and maintenance of the human phenome over lifecycle and evolutionary timescales, enabling a degree of phenotypic plasticity that operates to allow adaptive responses that are appropriate to key periods of sensitivity (i.e., epigenetic response during prenatal development within the lifecycle or as an evolved response to environmental challenge over a great many lifecycles). Individually, vitamins are important, but their effect is often based on nutrient-nutrient (vitamin-vitamin), nutrient-gene (vitamin-gene), and gene-gene interactions, and the environmental influence of shifting geophysical cycles, as well as evolving cultural practices. These ideas will be explored within what I refer to as the "adaptive vitome (vitomics)" paradigm.
Collapse
Affiliation(s)
- Mark D Lucock
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| |
Collapse
|
5
|
Perrone R, Ashok Kumaar PV, Haky L, Hahn C, Riley R, Balough J, Zaza G, Soygur B, Hung K, Prado L, Kasler HG, Tiwari R, Matsui H, Hormazabal GV, Heckenbach I, Scheibye-Knudsen M, Duncan FE, Verdin E. CD38 regulates ovarian function and fecundity via NAD + metabolism. iScience 2023; 26:107949. [PMID: 37822499 PMCID: PMC10562803 DOI: 10.1016/j.isci.2023.107949] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Mammalian female reproductive lifespan is typically significantly shorter than life expectancy and is associated with a decrease in ovarian NAD+ levels. However, the mechanisms underlying this loss of ovarian NAD+ are unclear. Here, we show that CD38, an NAD+ consuming enzyme, is expressed in the ovarian extrafollicular space, primarily in immune cells, and its levels increase with reproductive age. Reproductively young mice lacking CD38 exhibit larger primordial follicle pools, elevated ovarian NAD+ levels, and increased fecundity relative to wild type controls. This larger ovarian reserve results from a prolonged window of follicle formation during early development. However, the beneficial effect of CD38 loss on reproductive function is not maintained at advanced age. Our results demonstrate a novel role of CD38 in regulating ovarian NAD+ metabolism and establishing the ovarian reserve, a critical process that dictates a female's reproductive lifespan.
Collapse
Affiliation(s)
| | | | - Lauren Haky
- Buck Institute for Research on Aging, Novato, CA, USA
- The Dominican University of California, San Rafael, CA, USA
| | - Cosmo Hahn
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Julia Balough
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Giuliana Zaza
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Bikem Soygur
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Kaitlyn Hung
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Leandro Prado
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Ritesh Tiwari
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | - Indra Heckenbach
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Francesca E. Duncan
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
6
|
Rah SY, Joe Y, Park J, Ryter SW, Park C, Chung HT, Kim UH. CD38/ADP-ribose/TRPM2-mediated nuclear Ca 2+ signaling is essential for hepatic gluconeogenesis in fasting and diabetes. Exp Mol Med 2023; 55:1492-1505. [PMID: 37394593 PMCID: PMC10393965 DOI: 10.1038/s12276-023-01034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatic glucose production by glucagon is crucial for glucose homeostasis during fasting, yet the underlying mechanisms remain incompletely delineated. Although CD38 has been detected in the nucleus, its function in this compartment is unknown. Here, we demonstrate that nuclear CD38 (nCD38) controls glucagon-induced gluconeogenesis in primary hepatocytes and liver in a manner distinct from CD38 occurring in the cytoplasm and lysosomal compartments. We found that the localization of CD38 in the nucleus is required for glucose production by glucagon and that nCD38 activation requires NAD+ supplied by PKCδ-phosphorylated connexin 43. In fasting and diabetes, nCD38 promotes sustained Ca2+ signals via transient receptor potential melastatin 2 (TRPM2) activation by ADP-ribose, which enhances the transcription of glucose-6 phosphatase and phosphoenolpyruvate carboxykinase 1. These findings shed light on the role of nCD38 in glucagon-induced gluconeogenesis and provide insight into nuclear Ca2+ signals that mediate the transcription of key genes in gluconeogenesis under physiological conditions.
Collapse
Affiliation(s)
- So-Young Rah
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | | | - Chansu Park
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Uh-Hyun Kim
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea.
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
7
|
Yang H, Wang H, Pan F, Guo Y, Cao L, Yan W, Gao Y. New Findings: Hindlimb Unloading Causes Nucleocytoplasmic Ca 2+ Overload and DNA Damage in Skeletal Muscle. Cells 2023; 12:cells12071077. [PMID: 37048150 PMCID: PMC10093444 DOI: 10.3390/cells12071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Disuse atrophy of skeletal muscle is associated with a severe imbalance in cellular Ca2+ homeostasis and marked increase in nuclear apoptosis. Nuclear Ca2+ is involved in the regulation of cellular Ca2+ homeostasis. However, it remains unclear whether nuclear Ca2+ levels change under skeletal muscle disuse conditions, and whether changes in nuclear Ca2+ levels are associated with nuclear apoptosis. In this study, changes in Ca2+ levels, Ca2+ transporters, and regulatory factors in the nucleus of hindlimb unloaded rat soleus muscle were examined to investigate the effects of disuse on nuclear Ca2+ homeostasis and apoptosis. Results showed that, after hindlimb unloading, the nuclear envelope Ca2+ levels ([Ca2+]NE) and nucleocytoplasmic Ca2+ levels ([Ca2+]NC) increased by 78% (p < 0.01) and 106% (p < 0.01), respectively. The levels of Ca2+-ATPase type 2 (Ca2+-ATPase2), Ryanodine receptor 1 (RyR1), Inositol 1,4,5-tetrakisphosphate receptor 1 (IP3R1), Cyclic ADP ribose hydrolase (CD38) and Inositol 1,4,5-tetrakisphosphate (IP3) increased by 470% (p < 0.001), 94% (p < 0.05), 170% (p < 0.001), 640% (p < 0.001) and 12% (p < 0.05), respectively, and the levels of Na+/Ca2+ exchanger 3 (NCX3), Ca2+/calmodulin dependent protein kinase II (CaMK II) and Protein kinase A (PKA) decreased by 54% (p < 0.001), 33% (p < 0.05) and 5% (p > 0.05), respectively. In addition, DNase X is mainly localized in the myonucleus and its activity is elevated after hindlimb unloading. Overall, our results suggest that enhanced Ca2+ uptake from cytoplasm is involved in the increase in [Ca2+]NE after hindlimb unloading. Moreover, the increase in [Ca2+]NC is attributed to increased Ca2+ release into nucleocytoplasm and weakened Ca2+ uptake from nucleocytoplasm. DNase X is activated due to elevated [Ca2+]NC, leading to DNA fragmentation in myonucleus, ultimately initiating myonuclear apoptosis. Nucleocytoplasmic Ca2+ overload may contribute to the increased incidence of myonuclear apoptosis in disused skeletal muscle.
Collapse
Affiliation(s)
- Huajian Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China
| | - Fangyang Pan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China
| | - Yuxi Guo
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China
| | - Liqi Cao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China
| | - Wenjing Yan
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China
| |
Collapse
|
8
|
Zeng F, Zhu L, Liao Q, Li X, Zhou Y. Adenosine diphosphate ribose cyclase: An important regulator of human pathological and physiological processes. J Cell Physiol 2022; 237:2064-2077. [PMID: 35098541 DOI: 10.1002/jcp.30688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Ling Zhu
- Department of Neurology, Xiangtan Central Hospital Xiangtan Central Hospital Xiangtan Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital Central South University Changsha China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
9
|
The basis of nuclear phospholipase C in cell proliferation. Adv Biol Regul 2021; 82:100834. [PMID: 34710785 DOI: 10.1016/j.jbior.2021.100834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
Ca2+ is a highly versatile intracellular signal that regulates many biological processes such as cell death and proliferation. Broad Ca2+-signaling machinery is used to assemble signaling systems with a precise spatial and temporal resolution to achieve this versatility. Ca2+-signaling components can be organized in different regions of the cell and local increases in Ca2+ within the nucleus can regulate different cellular functions from the increases in cytosolic Ca2+. However, the mechanisms and pathways that promote localized increases in Ca2+ levels in the nucleus are still under investigation. This review presents evidence that the nucleus has its own Ca2+ stores and signaling machinery, which modulate processes such as cell proliferation and tumor growth. We focus on what is known about the functions of nuclear Phospholipase C (PLC) in the generation of nuclear Ca2+ transients that are involved in cell proliferation.
Collapse
|
10
|
Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD + precursors in health, disease, and ageing. Mech Ageing Dev 2021; 199:111567. [PMID: 34517020 DOI: 10.1016/j.mad.2021.111567] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
NAD+ is a fundamental molecule in human life and health as it participates in energy metabolism, cell signalling, mitochondrial homeostasis, and in dictating cell survival or death. Emerging evidence from preclinical and human studies indicates an age-dependent reduction of cellular NAD+, possibly due to reduced synthesis and increased consumption. In preclinical models, NAD+ repletion extends healthspan and / or lifespan and mitigates several conditions, such as premature ageing diseases and neurodegenerative diseases. These findings suggest that NAD+ replenishment through NAD+ precursors has great potential as a therapeutic target for ageing and age-predisposed diseases, such as Alzheimer's disease. Here, we provide an updated review on the biological activity, safety, and possible side effects of NAD+ precursors in preclinical and clinical studies. Major NAD+ precursors focused on by this review are nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and the new discovered dihydronicotinamide riboside (NRH). In summary, NAD+ precursors have an exciting therapeutic potential for ageing, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ole Kristian Reiten
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Martin Andreas Wilvang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
11
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Dakroub A, A. Nasser S, Younis N, Bhagani H, Al-Dhaheri Y, Pintus G, Eid AA, El-Yazbi AF, Eid AH. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells 2020; 9:2444. [PMID: 33182523 PMCID: PMC7696687 DOI: 10.3390/cells9112444] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is an adipocytokine with several intriguing properties. It was first identified as pre-B-cell colony-enhancing factor but turned out to possess enzymatic functions in nicotinamide adenine dinucleotide biosynthesis, with ubiquitous expression in skeletal muscles, liver, cardiomyocytes, and brain cells. Visfatin exists in an intracellular (iNAMPT) and extracellular (eNAMPT) form. Intracellularly, visfatin/iNAMPT plays a regulatory role in NAD+ biosynthesis and thereby affects many NAD-dependent proteins such as sirtuins, PARPs, MARTs and CD38/157. Extracellularly, visfatin is associated with many hormone-like signaling pathways and activates some intracellular signaling cascades. Importantly, eNAMPT has been associated with several metabolic disorders including obesity and type 1 and 2 diabetes. In this review, a brief overview about visfatin is presented with special emphasis on its relevance to metabolic diseases. Visfatin/NAMPT appears to be a unique molecule with clinical significance with a prospective promising diagnostic, prognostic, and therapeutic applications in many cardiovasculo-metabolic disorders.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Suzanne A. Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
| | - Nour Younis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Humna Bhagani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, UAE;
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah P.O. Box 27272, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria 21521, El-Mesallah, Egypt
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
13
|
Harlan BA, Killoy KM, Pehar M, Liu L, Auwerx J, Vargas MR. Evaluation of the NAD + biosynthetic pathway in ALS patients and effect of modulating NAD + levels in hSOD1-linked ALS mouse models. Exp Neurol 2020; 327:113219. [PMID: 32014438 DOI: 10.1016/j.expneurol.2020.113219] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 01/23/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons. Astrocytes from diverse ALS models induce motor neuron death in co-culture. Enhancing NAD+ availability, or increasing the expression of the NAD+-dependent deacylases SIRT3 and SIRT6, abrogates their neurotoxicity in cell culture models. To determine the effect of increasing NAD+ availability in ALS mouse models we used two strategies, ablation of a NAD+-consuming enzyme (CD38) and supplementation with a bioavailable NAD+ precursor (nicotinamide riboside, NR). Deletion of CD38 had no effect in the survival of two hSOD1-linked ALS mouse models. On the other hand, NR-supplementation delayed motor neuron degeneration, decreased markers of neuroinflammation in the spinal cord, appeared to modify muscle metabolism and modestly increased the survival of hSOD1G93A mice. In addition, we found altered expression of enzymes involved in NAD+ synthesis (NAMPT and NMNAT2) and decreased SIRT6 expression in the spinal cord of ALS patients, suggesting deficits of this neuroprotective pathway in the human pathology. Our data denotes the therapeutic potential of increasing NAD+ levels in ALS. Moreover, the results indicate that the approach used to enhance NAD+ levels critically defines the biological outcome in ALS models, suggesting that boosting NAD+ levels with the use of bioavailable precursors would be the preferred therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Benjamin A Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Kelby M Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Liping Liu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marcelo R Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Vaisitti T, Arruga F, Guerra G, Deaglio S. Ectonucleotidases in Blood Malignancies: A Tale of Surface Markers and Therapeutic Targets. Front Immunol 2019; 10:2301. [PMID: 31636635 PMCID: PMC6788384 DOI: 10.3389/fimmu.2019.02301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia develops as the result of intrinsic features of the transformed cell, such as gene mutations and derived oncogenic signaling, and extrinsic factors, such as a tumor-friendly, immunosuppressed microenvironment, predominantly in the lymph nodes and the bone marrow. There, high extracellular levels of nucleotides, mainly NAD+ and ATP, are catabolized by different ectonucleotidases, which can be divided in two families according to substrate specificity: on one side those that metabolize NAD+, including CD38, CD157, and CD203a; on the other, those that convert ATP, namely CD39 (and other ENTPDases) and CD73. They generate products that modulate intracellular calcium levels and that activate purinergic receptors. They can also converge on adenosine generation with profound effects, both on leukemic cells, enhancing chemoresistance and homing, and on non-malignant immune cells, polarizing them toward tolerance. This review will first provide an overview of ectonucleotidases expression within the immune system, in physiological and pathological conditions. We will then focus on different hematological malignancies, discussing their role as disease markers and possibly pathogenic agents. Lastly, we will describe current efforts aimed at therapeutic targeting of this family of enzymes.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Guerra
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Abstract
NAD+ is a pivotal metabolite involved in cellular bioenergetics, genomic stability, mitochondrial homeostasis, adaptive stress responses, and cell survival. Multiple NAD+-dependent enzymes are involved in synaptic plasticity and neuronal stress resistance. Here, we review emerging findings that reveal key roles for NAD+ and related metabolites in the adaptation of neurons to a wide range of physiological stressors and in counteracting processes in neurodegenerative diseases, such as those occurring in Alzheimer's, Parkinson's, and Huntington diseases, and amyotrophic lateral sclerosis. Advances in understanding the molecular and cellular mechanisms of NAD+-based neuronal resilience will lead to novel approaches for facilitating healthy brain aging and for the treatment of a range of neurological disorders.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway.
| |
Collapse
|
16
|
Kelu JJ, Webb SE, Galione A, Miller AL. Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Dev Biol 2018; 445:211-225. [PMID: 30447180 DOI: 10.1016/j.ydbio.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
We recently demonstrated the requirement of two-pore channel type 2 (TPC2)-mediated Ca2+ release during slow muscle cell differentiation and motor circuit maturation in intact zebrafish embryos. However, the upstream trigger(s) of TPC2/Ca2+ signaling during these developmental processes remains unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing messenger, which is suggested to target TPC2 in mediating the release of Ca2+ from acidic vesicles. Here, we report the molecular cloning of the zebrafish ADP ribosyl cyclase (ARC) homolog (i.e., ARC1-like), which is a putative enzyme for generating NAADP. We characterized the expression of the arc1-like transcript and the NAADP levels between ~ 16 h post-fertilization (hpf) and ~ 48 hpf in whole zebrafish embryos. We showed that if ARC1-like (when fused with either EGFP or tdTomato) was overexpressed it localized in the plasma membrane, and associated with intracellular organelles, such as the acidic vesicles, Golgi complex and sarcoplasmic reticulum, in primary muscle cell cultures. Morpholino (MO)-mediated knockdown of arc1-like or pharmacological inhibition of ARC1-like (via treatment with nicotinamide), led to an attenuation of Ca2+ signaling and disruption of slow muscle cell development. In addition, the injection of arc1-like mRNA into ARC1-like morphants partially rescued the Ca2+ signals and slow muscle cell development. Together, our data might suggest a link between ARC1-like, NAADP, TPC2 and Ca2+ signaling during zebrafish myogenesis.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
17
|
Mottahedeh J, Haffner MC, Grogan TR, Hashimoto T, Crowell PD, Beltran H, Sboner A, Bareja R, Esopi D, Isaacs WB, Yegnasubramanian S, Rettig MB, Elashoff DA, Platz EA, De Marzo AM, Teitell MA, Goldstein AS. CD38 is methylated in prostate cancer and regulates extracellular NAD . Cancer Metab 2018; 6:13. [PMID: 30258629 PMCID: PMC6150989 DOI: 10.1186/s40170-018-0186-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer cell metabolism requires sustained pools of intracellular nicotinamide adenine dinucleotide (NAD+) which is maintained by a balance of NAD+ hydrolase activity and NAD+ salvage activity. We recently reported that human prostate cancer can be initiated following oncogene expression in progenitor-like luminal cells marked by low expression of the NAD+-consuming enzyme CD38. CD38 expression is reduced in prostate cancer compared to benign prostate, suggesting that tumor cells may reduce CD38 expression in order to enhance pools of NAD+. However, little is known about how CD38 expression is repressed in advanced prostate cancer and whether CD38 plays a role in regulating NAD+ levels in prostate epithelial cells. METHODS CD38 expression, its association with recurrence after prostatectomy for clinically localized prostate cancer, and DNA methylation of the CD38 promoter were evaluated in human prostate tissues representing various stages of disease progression. CD38 was inducibly over-expressed in benign and malignant human prostate cell lines in order to determine the effects on cell proliferation and levels of NAD+ and NADH. NAD+ and NADH were also measured in urogenital tissues from wild-type and CD38 knockout mice. RESULTS CD38 mRNA expression was reduced in metastatic castration-resistant prostate cancer compared to localized prostate cancer. In a large cohort of men undergoing radical prostatectomy, CD38 protein expression was inversely correlated with recurrence. We identified methylation of the CD38 promoter in primary and metastatic prostate cancer. Over-expression of wild-type CD38, but not an NAD+ hydrolase-deficient mutant, depleted extracellular NAD+ levels in benign and malignant prostate cell lines. However, expression of CD38 did not significantly alter intracellular NAD+ levels in human prostate cell lines grown in vitro and in urogenital tissues isolated from wild-type and CD38 knockout mice. CONCLUSIONS CD38 protein expression in prostate cancer is associated with risk of recurrence. Methylation results suggest that CD38 is epigenetically regulated in localized and metastatic prostate cancer tissues. Our study provides support for CD38 as a regulator of extracellular, but not intracellular, NAD+ in epithelial cells. These findings suggest that repression of CD38 by methylation may serve to increase the availability of extracellular NAD+ in prostate cancer tissues.
Collapse
Affiliation(s)
- Jack Mottahedeh
- Department of Molecular, Cell & Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
| | - Michael C. Haffner
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tristan R. Grogan
- Department of Medicine Statistics Core, University of California Los Angeles, Los Angeles, CA USA
| | - Takao Hashimoto
- Department of Molecular, Cell & Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
| | - Preston D. Crowell
- Molecular Biology Interdepartmental Program, University of California Los Angeles, Los Angeles, CA USA
| | - Himisha Beltran
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY USA
| | - David Esopi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
| | - William B. Isaacs
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Departments of Oncology, Pathology, and Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Matthew B. Rettig
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA USA
| | - David A. Elashoff
- Department of Medicine Statistics Core, University of California Los Angeles, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
| | - Elizabeth A. Platz
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Urology and the James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Angelo M. De Marzo
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- James Buchanan Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Michael A. Teitell
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA USA
| | - Andrew S. Goldstein
- Department of Molecular, Cell & Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA USA
- Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, CA USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA USA
| |
Collapse
|
18
|
Percutaneous Injection of Strontium Containing Hydroxyapatite versus Polymethacrylate Plus Short-Segment Pedicle Screw Fixation for Traumatic A2- and A3/AO-Type Fractures in Adults. Adv Orthop 2018; 2018:6365472. [PMID: 29692935 PMCID: PMC5859844 DOI: 10.1155/2018/6365472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction Polymethacrylate (PMMA) is commonly used in vertebroplasty and balloon kyphoplasty, but its use has been associated with complications. This study tests three hypotheses: (1) whether strontium hydroxyapatite (Sr-HA) is equivalent to PMMA for restoring thoracolumbar vertebral body fractures, (2) whether the incidence of PMMA leakage is similar to that of Sr-HA leakage, and (3) whether Sr-HAis is resorbed and substituted by new vertebral bone. Materials and Methods Two age- and sex-matched groups received short percutaneous pedicle screw fixation plus PEEK implant (Kiva, VCF Treatment System, Benvenue Medical, Santa Clara, CA, USA) filled with either Sr-HA (Group A) or PMMA (Group B) after A2- and A3/AO-type thoracolumbar vertebral body fractures. The Visual Analog Scale (VAS) score and imaging parameters, which included segmental kyphosis angle (SKA), vertebral body height ratios (VBHr), spinal canal encroachment (SCE), bone cement leakage, and Sr-HA resorption, were compared between the two groups. Results The average follow-up was 28 months. No differences in VAS scores between Groups A and B were observed at baseline. Baseline back pain in both groups improved significantly three months postoperatively. Anterior, middle, and posterior VBHr did not differ between the two groups at any time point. SKA was improved insignificantly in both groups. SCE decreased insignificantly in both groups on 12-month follow-up using computed tomography (CT). PMMA leakage was observed in one patient, while no Sr-HA paste leakages occurred. Sr-HA resorption and replacement with vertebral bone were observed, and no new fractures were observed. Conclusions As all hypotheses were confirmed, the authors recommend the use of Sr-HA instead of PMMA in traumatic spine fractures, although more patients and longer follow-up will be needed to strengthen these results. This trial is registered with NCT03431519.
Collapse
|
19
|
Lai X, Wu X, Hou N, Liu S, Li Q, Yang T, Miao J, Dong Z, Chen J, Li T. Vitamin A Deficiency Induces Autistic-Like Behaviors in Rats by Regulating the RARβ-CD38-Oxytocin Axis in the Hypothalamus. Mol Nutr Food Res 2018; 62. [PMID: 29266770 DOI: 10.1002/mnfr.201700754] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/24/2017] [Indexed: 12/17/2022]
Abstract
SCOPE Vitamin A (VA) is an essential nutrient for the development of the brain. We previously found that children with autism spectrum disorder (ASD) have a significant rate of VA deficiency (VAD). In the current study, we aim to determine whether VAD is a risk factor for the generation of autistic-like behaviors via the transcription factor retinoic acid receptor beta (RARβ)-regulated cluster of differentiation 38 (CD38)-oxytocin (OXT) axis. METHODS AND RESULTS Gestational VAD or VA supplementation (VAS) rat models are established, and the autistic-like behaviors in the offspring rats are investigated. The different expression levels of RARβ and CD38 in hypothalamic tissue and serum retinol and OXT concentration are tested. Primary cultured rat hypothalamic neurons are treated with all-trans retinoic acid (atRA), and recombinant adenoviruses carrying the rat RARβ (AdRARβ) or RNA interference virus RARβ-siRNA (siRARβ) are used to infect neurons to change RARβ signal. Western blotting, chromatin immunoprecipitation (ChIP), and intracellular Ca2+ detections are used to investigate the primary regulatory mechanism of RARβ in the CD38-OXT signaling pathway. We found that gestational VAD increases autistic-like behaviors and decreases the expression levels of hypothalamic RARβ and CD38 and serum OXT levels in the offspring. VAS ameliorates these autistic-like behaviors and increases the expression levels of RARβ, CD38, and OXT in the gestational VAD pups. In vitro, atRA increases the Ca2+ excitability of neurons, which might further promote the release of OXT. Different CD38 levels are induced in the neurons by infection with different RARβ adenoviruses. Furthermore, atRA enhances the binding of RARβ to the proximal promoter of CD38, indicating a potential upregulation of CD38 transcriptional activity by RARβ. CONCLUSIONS Gestational VAD might be a risk factor for autistic-like behaviors due to the RARβ signal suppression of CD38 expression in the hypothalamus of the offspring, which improves with VAS during the early-life period. The nutritional status during pregnancy and the early-life period is important in rats.
Collapse
Affiliation(s)
- Xi Lai
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
| | - Xiaofeng Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
| | - Nali Hou
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
| | - Shu Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
| | - Qing Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
| | - Jingkun Miao
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Certer for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| |
Collapse
|
20
|
Aman Y, Qiu Y, Tao J, Fang EF. Therapeutic potential of boosting NAD+ in aging and age-related diseases. TRANSLATIONAL MEDICINE OF AGING 2018. [DOI: 10.1016/j.tma.2018.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
MacDonald RJ, Shrimp JH, Jiang H, Zhang L, Lin H, Yen A. Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Sci Rep 2017; 7:17406. [PMID: 29234114 PMCID: PMC5727258 DOI: 10.1038/s41598-017-17720-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
CD38 is an ectoenzyme and receptor with key physiological roles. It metabolizes NAD+ to adenosine diphosphate ribose (ADPR) and cyclic ADPR, regulating several processes including calcium signalling. CD38 is both a positive and negative prognostic indicator in leukaemia. In all-trans retinoic acid (RA)-induced differentiation of acute promyelocytic leukaemia and HL-60 cells, CD38 is one of the earliest and most prominently upregulated proteins known. CD38 overexpression enhances differentiation, while morpholino- and siRNA-induced knockdown diminishes it. CD38, via Src family kinases and adapters, interacts with a MAPK signalling axis that propels differentiation. Motivated by evidence suggesting the importance of CD38, we sought to determine whether it functions via dimerization. We created a linker based on the suicide substrate arabinosyl-2′-fluoro-2′-deoxy NAD+ (F-araNAD+), dimeric F-araNAD+, to induce homodimerization. CD38 homodimerization did not affect RA-induced differentiation. Probing the importance of CD38 further, we created HL-60 cell lines with CRISPR/Cas9-mediated CD38 truncations. Deletion of its enzymatic domain did not affect differentiation. Apart from increased RA-induced CD11b expression, ablation of all but the first six amino acids of CD38 affected neither RA-induced differentiation nor associated signalling. Although we cannot discount the importance of this peptide, our study indicates that CD38 is not necessary for RA-induced differentiation.
Collapse
Affiliation(s)
- Robert J MacDonald
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jonathan H Shrimp
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA. NAD + in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med 2017; 23:899-916. [PMID: 28899755 PMCID: PMC7494058 DOI: 10.1016/j.molmed.2017.08.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022]
Abstract
The coenzyme NAD+ is critical in cellular bioenergetics and adaptive stress responses. Its depletion has emerged as a fundamental feature of aging that may predispose to a wide range of chronic diseases. Maintenance of NAD+ levels is important for cells with high energy demands and for proficient neuronal function. NAD+ depletion is detected in major neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, cardiovascular disease and muscle atrophy. Emerging evidence suggests that NAD+ decrements occur in various tissues during aging, and that physiological and pharmacological interventions bolstering cellular NAD+ levels might retard aspects of aging and forestall some age-related diseases. Here, we discuss aspects of NAD+ biosynthesis, together with putative mechanisms of NAD+ action against aging, including recent preclinical and clinical trials.
Collapse
Affiliation(s)
- Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; Co-first authors
| | - Sofie Lautrup
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark; Co-first authors
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
23
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Abstract
Prior studies show that oxytocin (Oxt) and vasopressin (Avp) have opposing actions on the skeleton exerted through high-affinity G protein-coupled receptors. We explored whether Avp and Oxtr can share their receptors in the regulation of bone formation by osteoblasts. We show that the Avp receptor 1α (Avpr1α) and the Oxt receptor (Oxtr) have opposing effects on bone mass: Oxtr(-/-) mice have osteopenia, and Avpr1α(-/-) mice display a high bone mass phenotype. More notably, this high bone mass phenotype is reversed by the deletion of Oxtr in Oxtr(-/-):Avpr1α(-/-) double-mutant mice. However, although Oxtr is not indispensable for Avp action in inhibiting osteoblastogenesis and gene expression, Avp-stimulated gene expression is inhibited when the Oxtr is deleted in Avpr1α(-/-) cells. In contrast, Oxt does not interact with Avprs in vivo in a model of lactation-induced bone loss in which Oxt levels are high. Immunofluorescence microscopy of isolated nucleoplasts and Western blotting and MALDI-TOF of nuclear extracts show that Avp triggers Avpr1α localization to the nucleus. Finally, a specific Avpr2 inhibitor, tolvaptan, does not affect bone formation or bone mass, suggesting that Avpr2, which primarily functions in the kidney, does not have a significant role in bone remodeling.
Collapse
|
25
|
CD38-mediated Ca(2+) signaling contributes to glucagon-induced hepatic gluconeogenesis. Sci Rep 2015; 5:10741. [PMID: 26038839 PMCID: PMC4454144 DOI: 10.1038/srep10741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/27/2015] [Indexed: 01/02/2023] Open
Abstract
CD38 is a multifunctional enzyme for the synthesis of Ca2+ second messengers. Glucagon promotes hepatic glucose production through Ca2+ signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induces cyclic ADP-ribose (cADPR) production and sustained Ca2+ increases via CD38 in hepatocytes. 8-Br-cADPR, an antagonistic cADPR analog, completely blocked glucagon-induced Ca2+ increases and phosphorylation of cAMP response element-binding protein (CREB). Moreover, glucagon-induced sustained Ca2+ signals and translocation of CREB-regulated transcription coactivator 2 to the nucleus were absent and glucagon-induced glucose production and expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pck1) are remarkably reduced in hepatocytes from CD38−/− mice. Furthermore, in the fasting condition, CD38−/− mice have decreased blood glucose and hepatic expression of G6Pase and Pck1 compared to wild type mice. Our data suggest that CD38/cADPR-mediated Ca2+ signals play a key role in glucagon-induced gluconeogenesis in hepatocytes, and that the signal pathway has significant clinical implications in metabolic diseases, including type 2 diabetes.
Collapse
|
26
|
Oliveira AG, Guimarães ES, Andrade LM, Menezes GB, Fatima Leite M. Decoding calcium signaling across the nucleus. Physiology (Bethesda) 2015; 29:361-8. [PMID: 25180265 DOI: 10.1152/physiol.00056.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Calcium (Ca(2+)) is an important multifaceted second messenger that regulates a wide range of cellular events. A Ca(2+)-signaling toolkit has been shown to exist in the nucleus and to be capable of generating and modulating nucleoplasmic Ca(2+) transients. Within the nucleus, Ca(2+) controls cellular events that are different from those modulated by cytosolic Ca(2+). This review focuses on nuclear Ca(2+) signals and their role in regulating physiological and pathological processes.
Collapse
Affiliation(s)
- André G Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Erika S Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil; Molecular Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil; and
| | - Lídia M Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - M Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil;
| |
Collapse
|
27
|
Di Benedetto A, Sun L, Zambonin CG, Tamma R, Nico B, Calvano CD, Colaianni G, Ji Y, Mori G, Grano M, Lu P, Colucci S, Yuen T, New MI, Zallone A, Zaidi M. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor. Proc Natl Acad Sci U S A 2014; 111:16502-7. [PMID: 25378700 PMCID: PMC4246276 DOI: 10.1073/pnas.1419349111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report that oxytocin (Oxt) receptors (Oxtrs), on stimulation by the ligand Oxt, translocate into the nucleus of osteoblasts, implicating this process in the action of Oxt on osteoblast maturation. Sequential immunocytochemistry of intact cells or isolated nucleoplasts stripped of the outer nuclear membrane showed progressive nuclear localization of the Oxtr; this nuclear translocation was confirmed by monitoring the movement of Oxtr-EGFP as well as by immunogold labeling. Nuclear Oxtr localization was conclusively shown by Western immunoblotting and MS of nuclear lysate proteins. We found that the passage of Oxtrs into the nucleus was facilitated by successive interactions with β-arrestins (Arrbs), the small GTPase Rab5, importin-β (Kpnb1), and transportin-1 (Tnpo1). siRNA-mediated knockdown of Arrb1, Arrb2, or Tnpo1 abrogated Oxt-induced expression of the osteoblast differentiation genes osterix (Sp7), Atf4, bone sialoprotein (Ibsp), and osteocalcin (Bglap) without affecting Erk phosphorylation. Likewise and again, without affecting pErk, inhibiting Arrb recruitment by mutating Ser rich clusters of the nuclear localization signal to Ala abolished nuclear import and Oxtr-induced gene expression. These studies define a previously unidentified mechanism for Oxtr action on bone and open possibilities for direct transcriptional modulation by nuclear G protein-coupled receptors.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy; Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Li Sun
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Carlo G Zambonin
- Department of Chemistry, University of Bari Aldo Moro, Bari 70126, Italy; and
| | - Roberto Tamma
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Beatrice Nico
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, Bari 70126, Italy; and
| | - Graziana Colaianni
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Yaoting Ji
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Maria Grano
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Ping Lu
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Silvia Colucci
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Tony Yuen
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Alberta Zallone
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Mone Zaidi
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029; Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
28
|
Zhao YJ, Zhu WJ, Wang XW, Zhang LH, Lee HC. Determinants of the membrane orientation of a calcium signaling enzyme CD38. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2095-103. [PMID: 25447548 DOI: 10.1016/j.bbamcr.2014.10.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
CD38 catalyzes the synthesis of two structurally distinct messengers for Ca²⁺-mobilization, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), from cytosolic substrates, NAD and NADP, respectively. CD38 is generally thought of as a type II membrane protein with its catalytic site facing outside. We recently showed that CD38 exists, instead, in two opposite membrane orientations. The determinant for the membrane topology is unknown. Here, specific antibodies against type III CD38 were designed and produced. We show that mutating the positively charged residues in the N-terminal tail of CD38 converted its orientation to type III, with the catalytic domain facing the cytosol and it was fully active in producing intracellular cADPR. Changing the serine residues to aspartate, which is functionally equivalent to phosphorylation, had a similar effect. The mutated CD38 was expressed intracellularly and was un-glycosylated. The membrane topology could also be modulated by changing the highly conserved di-cysteine. The results indicate that the net charge of the N-terminal segment is important in determining the membrane topology of CD38 and that the type III orientation can be a functional form of CD38 for Ca²⁺-signaling. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Yong Juan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China; Department of Physiology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| | - Wen Jie Zhu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China
| | - Xian Wang Wang
- Functional Laboratory, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei China
| | - Li-He Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, China
| | - Hon Cheung Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen, China.
| |
Collapse
|
29
|
Parrington J, Tunn R. Ca(2+) signals, NAADP and two-pore channels: role in cellular differentiation. Acta Physiol (Oxf) 2014; 211:285-96. [PMID: 24702694 DOI: 10.1111/apha.12298] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/13/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Ca(2+) signals regulate a wide range of physiological processes. Intracellular Ca(2+) stores can be mobilized in response to extracellular stimuli via a range of signal transduction mechanisms, often involving recruitment of diffusible second messenger molecules. The Ca(2+) -mobilizing messengers InsP3 and cADPR release Ca(2+) from the endoplasmic reticulum via the InsP3 and ryanodine receptors, respectively, while a third messenger, NAADP, releases Ca(2+) from acidic endosomes and lysosomes. Bidirectional communication between the endoplasmic reticulum (ER) and acidic organelles may have functional relevance for endolysosomal function as well as for the generation of Ca(2+) signals. The two-pore channels (TPCs) are currently strong candidates for being key components of NAADP-regulated Ca(2+) channels. Ca(2+) signals have been shown to play important roles in differentiation; however, much remains to be established about the exact signalling mechanisms involved. The investigation of the role of NAADP and TPCs in differentiation is still at an early stage, but recent studies have suggested that they are important mediators of differentiation of neurones, skeletal muscle cells and osteoclasts. NAADP signals and TPCs have also been implicated in autophagy, an important process in differentiation. Further studies will be required to identify the precise mechanism of TPC action and their link with NAADP signalling, as well as relating this to their roles in differentiation and other key processes in the cell and organism.
Collapse
Affiliation(s)
- J. Parrington
- Department of Pharmacology; University of Oxford; Oxford UK
| | - R. Tunn
- Department of Pharmacology; University of Oxford; Oxford UK
| |
Collapse
|
30
|
Shrimp JH, Hu J, Dong M, Wang BS, MacDonald R, Jiang H, Hao Q, Yen A, Lin H. Revealing CD38 cellular localization using a cell permeable, mechanism-based fluorescent small-molecule probe. J Am Chem Soc 2014; 136:5656-63. [PMID: 24660829 PMCID: PMC4004212 DOI: 10.1021/ja411046j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Nicotinamide adenine dinucleotide
(NAD) is increasingly recognized
as an important signaling molecule that affects numerous biological
pathways. Thus, enzymes that metabolize NAD can have important biological
functions. One NAD-metabolizing enzyme in mammals is CD38, a type
II transmembrane protein that converts NAD primarily to adenosine
diphosphate ribose (ADPR) and a small amount of cyclic adenosine diphosphate
ribose (cADPR). Localization of CD38 was originally thought to be
only on the plasma membrane, but later reports showed either significant
or solely, intracellular CD38. With the efficient NAD-hydrolysis activity,
the intracellular CD38 may lead to depletion of cellular NAD, thus
producing harmful effects. Therefore, the intracellular localization
of CD38 needs to be carefully validated. Here, we report the synthesis
and application of a cell permeable, fluorescent small molecule (SR101–F-araNMN)
that can covalently label enzymatically active CD38 with minimal perturbation
of live cells. Using this fluorescent probe, we revealed that CD38
is predominately on the plasma membrane of Raji and retinoic acid
(RA)-treated HL-60 cells. Additionally, the probe revealed no CD38
expression in K562 cells, which was previously reported to have solely
intracellular CD38. The finding that very little intracellular CD38
exists in these cell lines suggests that the major enzymatic function
of CD38 is to hydrolyze extracellular rather than intracellular NAD.
The fluorescent activity-based probes that we developed allow the
localization of CD38 in different cells to be determined, thus enabling
a better understanding of the physiological function.
Collapse
Affiliation(s)
- Jonathan H Shrimp
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brachtl G, Piñón Hofbauer J, Greil R, Hartmann TN. The pathogenic relevance of the prognostic markers CD38 and CD49d in chronic lymphocytic leukemia. Ann Hematol 2014; 93:361-74. [PMID: 24288111 PMCID: PMC4032465 DOI: 10.1007/s00277-013-1967-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
The interactions of chronic lymphocytic leukemia cells with the microenvironment in secondary lymphoid tissues and the bone marrow are known to promote CLL cell survival and proliferation. CD38 and CD49d are both independent prognostic risk parameters in CLL with important roles in shaping these interactions. Both are reported to influence CLL cell trafficking between blood and lymphoid organs as well as their survival and proliferation within the lymphoid organs, thereby impacting the pathophysiology of the disease. The expression of CD38 and CD49d is associated in the majority of cases, and they exist as part of macromolecular complexes. Here, we review the current evidence for the individual and associated contributions of these molecules to CLL pathophysiology.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/blood
- ADP-ribosyl Cyclase 1/metabolism
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Movement
- Cell Proliferation
- Cell Survival
- Humans
- Integrin alpha4/blood
- Integrin alpha4/metabolism
- Integrin alpha4beta1/blood
- Integrin alpha4beta1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Membrane Glycoproteins/blood
- Membrane Glycoproteins/metabolism
- Models, Biological
- Neoplasm Proteins/blood
- Neoplasm Proteins/metabolism
- Prognosis
- Tumor Microenvironment
Collapse
Affiliation(s)
- Gabriele Brachtl
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| | - Josefina Piñón Hofbauer
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| | - Tanja Nicole Hartmann
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| |
Collapse
|
32
|
Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca 2+ signaling pathway. World J Biol Chem 2014; 5:58-67. [PMID: 24600514 PMCID: PMC3942542 DOI: 10.4331/wjbc.v5.i1.58] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/09/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mobilization of intracellular Ca2+ stores is involved in many diverse cell functions, including: cell proliferation; differentiation; fertilization; muscle contraction; secretion of neurotransmitters, hormones and enzymes; and lymphocyte activation and proliferation. Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizing nucleotide present in many cell types and species, from plants to animals. cADPR is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide. The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. It has been shown that many extracellular stimuli can induce cADPR production that leads to calcium release or influx, establishing cADPR as a second messenger. cADPR has been linked to a wide variety of cellular processes, but the molecular mechanisms regarding cADPR signaling remain elusive. The aim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advances involving the mechanism and physiological functions of cADPR-mediated Ca2+ mobilization.
Collapse
|
33
|
Abstract
Cell-surface expression of CD38 in CLL has been recognised recently as a marker of progressive disease and poor outcome. In contrast to traditional staging systems, CD38 is able to identify progressive cases at an early stage. Measurement of CD38, in conjunction with other novel prognostic factors such as p53 and ZAP-70 helps to identify patients who might benefit from early and more intensive therapy. In addition, CD38 positivity can predict unmutated IgVH gene mutation status in most cases. These features, together with its easy applicability, render CD38 a valuable tool in the routine diagnostics of CLL. Questions remaining to be clarified about CD38 include the incidence and significance of its variations during the course of the disease, the optimal method to define CD38 positivity and the impact of different methodologies on results. Only after these issues are resolved can the definitive place of CD38 be defined in the diagnostics of CLL.
Collapse
Affiliation(s)
- Zoltan Matrai
- Department of Clinical Haematology, national Medical Center, Budapest, Hungary.
| |
Collapse
|
34
|
Resende RR, Andrade LM, Oliveira AG, Guimarães ES, Guatimosim S, Leite MF. Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 2013; 11:14. [PMID: 23433362 PMCID: PMC3599436 DOI: 10.1186/1478-811x-11-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/12/2013] [Indexed: 01/19/2023] Open
Abstract
Calcium (Ca2+) is an essential signal transduction element involved in the regulation of several cellular activities and it is required at various key stages of the cell cycle. Intracellular Ca2+ is crucial for the orderly cell cycle progression and plays a vital role in the regulation of cell proliferation. Recently, it was demonstrated by in vitro and in vivo studies that nucleoplasmic Ca2+ regulates cell growth. Even though the mechanism by which nuclear Ca2+ regulates cell proliferation is not completely understood, there are reports demonstrating that activation of tyrosine kinase receptors (RTKs) leads to translocation of RTKs to the nucleus to generate localized nuclear Ca2+ signaling which are believed to modulate cell proliferation. Moreover, nuclear Ca2+ regulates the expression of genes involved in cell growth. This review will describe the nuclear Ca2+ signaling machinery and its role in cell proliferation. Additionally, the potential role of nuclear Ca2+ as a target in cancer therapy will be discussed.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Zhao Y, Graeff R, Lee HC. Roles of cADPR and NAADP in pancreatic cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:719-29. [PMID: 22677461 DOI: 10.1093/abbs/gms044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are Ca(2+)-mobilizing nucleotides that were discovered in the late 1980s. Two decades of investigations have built up a considerable understanding about these two molecules that are related because both are derived from pyridine nucleotides and known to be generated by CD38/ADP-ribosyl cyclases. cADPR has been shown to target the ryanodine receptors in the endoplasmic reticulum whereas NAADP stimulates the two-pore channels in the endo-lysosomes. Accumulating results indicate that cADPR and NAADP are second messenger molecules mediating Ca(2+) signaling activated by a wide range of agonists. This article reviews what is known about these two molecules, especially regarding their signaling roles in the pancreatic cells.
Collapse
Affiliation(s)
- Yongjuan Zhao
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
36
|
Kwong AKY, Chen Z, Zhang H, Leung FP, Lam CMC, Ting KY, Zhang L, Hao Q, Zhang LH, Lee HC. Catalysis-based inhibitors of the calcium signaling function of CD38. Biochemistry 2011; 51:555-64. [PMID: 22142305 DOI: 10.1021/bi201509f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD38 is a signaling enzyme responsible for catalyzing the synthesis of cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate; both are universal Ca(2+) messenger molecules. Ablation of the CD38 gene in mice causes multiple physiological defects, including impaired oxytocin release, that result in altered social behavior. A series of catalysis-based inhibitors of CD38 were designed and synthesized, starting with arabinosyl-2'-fluoro-2'-deoxynicotinamide mononucleotide. Structure-function relationships were analyzed to assess the structural determinants important for inhibiting the NADase activity of CD38. X-ray crystallography was used to reveal the covalent intermediates that were formed with the catalytic residue, Glu226. Metabolically stable analogues that were resistant to inactivation by phosphatase and esterase were synthesized and shown to be effective in inhibiting intracellular cADPR production in human HL-60 cells during induction of differentiation by retinoic acid. The inhibition was species-independent, and the analogues were similarly effective in blocking the cyclization reaction of CD38 in rat ventricular tissue extracts, as well as inhibiting the α-agonist-induced constriction in rat mesentery arteries. These compounds thus represent the first generally applicable and catalysis-based inhibitors of the Ca(2+) signaling function of CD38.
Collapse
Affiliation(s)
- Anna Ka Yee Kwong
- Department of Physiology, 4/F Lab Block, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vences-Catalán F, Santos-Argumedo L. CD38 through the life of a murine B lymphocyte. IUBMB Life 2011; 63:840-6. [PMID: 21901817 DOI: 10.1002/iub.549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/02/2011] [Indexed: 12/15/2022]
Abstract
CD38 is a 45 kDa transmembrane receptor expressed in B lymphocytes and other cells from the immune system. It is involved in apoptosis, cell activation, differentiation, and proliferation. CD38 has been used extensively to classify various subpopulations of lymphocytes in both humans and mice. It has also been used as a marker of poor prognosis in some lymphoid pathologies. However, CD38 is not a marker but rather an ectoenzyme and a receptor, where it performs several functions. The CD38 signaling pathway has only been partially studied in various cells of the immune system, where apparently the signaling is different depending on the lineage and differentiation state of the cell, leading to distinct outcomes. In this review, we provide an overview of well-established roles of CD38 signaling B lymphocytes from mice. We also discuss areas that need further clarification to get a broader image of how CD38 performs different functions in B cells and to understand its role in B lymphocyte biology under normal versus pathological conditions.
Collapse
Affiliation(s)
- Felipe Vences-Catalán
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | |
Collapse
|
38
|
Masuda W, Jimi E. CD38/ADP-ribosyl cyclase in the rat sublingual gland: Subcellular localization under resting and saliva-secreting conditions. Arch Biochem Biophys 2011; 513:131-9. [DOI: 10.1016/j.abb.2011.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/01/2022]
|
39
|
Lee HC. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:699-711. [PMID: 21786193 DOI: 10.1007/s11427-011-4197-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 12/17/2022]
Abstract
The concept advanced by Berridge and colleagues that intracellular Ca(2+)-stores can be mobilized in an agonist-dependent and messenger (IP(3))-mediated manner has put Ca(2+)-mobilization at the center stage of signal transduction mechanisms. During the late 1980s, we showed that Ca(2+)-stores can be mobilized by two other messengers unrelated to inositol trisphosphate (IP(3)) and identified them as cyclic ADP-ribose (cADPR), a novel cyclic nucleotide from NAD, and nicotinic acid adenine dinucleotide phosphate (NAADP), a linear metabolite of NADP. Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms. Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum, while that of NAADP is the two pore channel in endolysosomes.As cADPR and NAADP are structurally and functionally distinct, it is remarkable that they are synthesized by the same enzyme. They are thus fraternal twin messengers. We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and, through homology, found its mammalian homolog, CD38. Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion, susceptibility to bacterial infection, to social behavior of mice through modulating neuronal oxytocin secretion. We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis. This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
40
|
Zhao YJ, Zhang HM, Lam CMC, Hao Q, Lee HC. Cytosolic CD38 protein forms intact disulfides and is active in elevating intracellular cyclic ADP-ribose. J Biol Chem 2011; 286:22170-7. [PMID: 21524995 DOI: 10.1074/jbc.m111.228379] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD38 catalyzes the synthesis of cyclic ADP-ribose (cADPR), a Ca(2+) messenger responsible for regulating a wide range of physiological functions. It is generally regarded as an ectoenzyme, but its intracellular localization has also been well documented. It is not known if internal CD38 is enzymatically active and contributes to the Ca(2+) signaling function. In this study, we engineered a novel soluble form of CD38 that can be efficiently expressed in the cytosol and use cytosolic NAD as a substrate to produce cADPR intracellularly. The activity of the engineered CD38 could be decreased by mutating the catalytic residue Glu-226 and increased by the double mutation E146A/T221F, which increased its cADPR synthesis activity by >11-fold. Remarkably, the engineered CD38 exhibited the ability to form the critical disulfide linkages required for its enzymatic activity. This was verified by using a monoclonal antibody generated against a critical disulfide, Cys-254-Cys-275. The specificity of the antibody was established by x-ray crystallography and site-directed mutagenesis. The engineered CD38 is thus a novel example challenging the general belief that cytosolic proteins do not possess disulfides. As a further refinement of this approach, the engineered CD38 was placed under the control of tetracycline using an autoregulated construct. This study has set the stage for in vivo manipulation of cADPR metabolism.
Collapse
Affiliation(s)
- Yong Juan Zhao
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
41
|
Vaisitti T, Audrito V, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S. NAD+-metabolizing ecto-enzymes shape tumor-host interactions: the chronic lymphocytic leukemia model. FEBS Lett 2011; 585:1514-20. [PMID: 21514298 DOI: 10.1016/j.febslet.2011.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential co-enzyme that can be released in the extracellular milieu. Here, it may elicit signals through binding purinergic receptors. Alternatively, NAD(+) may be dismantled to adenosine, up-taken by cells and transformed to reconstitute the intracellular nucleotide pool. An articulated ecto-enzyme network is responsible for the nucleotide-nucleoside conversion. CD38 is the main mammalian enzyme that hydrolyzes NAD(+), generating Ca(2+)-active metabolites. Evidence suggests that this extracellular network may be altered or used by tumor cells to (i) nestle in protected areas, and (ii) evade the immune response. We have exploited chronic lymphocytic leukemia as a model to test the role of the ecto-enzyme network, starting by analyzing the individual elements that make up the whole picture.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Expression of CD38 with intracellular enzymatic activity: a possible explanation for the insulin release induced by intracellular cADPR. Mol Cell Biochem 2011; 352:293-9. [PMID: 21387169 DOI: 10.1007/s11010-011-0765-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
CD38 is a transmembrane glycoprotein expressed in multiple cell types, including pancreatic β cells. It can serve as an enzyme that catalyzes the metabolism of two different Ca(2+)-mobilizing compounds, cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate. One of these metabolites, cADPR, is known to be involved in glucose-induced insulin secretion from pancreatic β cells. Although the essential role of CD38 for endogenous cADPR synthesis has been established, the relationship between the proposed extracellular enzymatic activity of CD38 and the intracellular Ca(2+) modulation caused by the intracellular cADPR accumulation has not yet been fully explained. For a better understanding of the role of CD38 in the insulin secretion machinery, analysis of the intracellular localization of this molecule in pancreatic β cells is essential. In an attempt to provide a method to probe the N-terminal and C-terminal of CD38 separately, we generated an insulin-secreting MIN6 murine pancreatic β cell line expressing a human CD38 bearing an N-terminal FLAG epitope tag. We found a weak but consistent expression of the FLAG epitope outside of the cells, indicating the presence of a small amount of CD38 with cytoplasmic enzymatic activity. MIN6 cells transfected with human CD38 exhibited increased glucose-induced insulin release. In addition, anti-FLAG cross-linking further enhanced the insulin release, suggesting that the N-terminal of CD38 expressed on the cell surface functions as a receptor for an unknown ligand and triggers positive signals for insulin secretion.
Collapse
|
43
|
Alonso MT, García-Sancho J. Nuclear Ca(2+) signalling. Cell Calcium 2010; 49:280-9. [PMID: 21146212 DOI: 10.1016/j.ceca.2010.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 10/30/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Ca(2+) signalling is important for controlling gene transcription. Changes of the cytosolic Ca(2+) ([Ca(2+)](C)) may promote migration of transcription factors or transcriptional regulators to the nucleus. Changes of the nucleoplasmic Ca(2+) ([Ca(2+)](N)) can also regulate directly gene expression. [Ca(2+)](N) may change by propagation of [Ca(2+)](C) changes through the nuclear envelope or by direct release of Ca(2+) inside the nucleus. In the last case nuclear and cytosolic signalling can be dissociated. Phosphatidylinositol bisphosphate, phospholipase C and cyclic ADP-ribosyl cyclase are present inside the nucleus. Inositol trisphosphate receptors (IP(3)R) and ryanodine receptors (RyR) have also been found in the nucleus and can be activated by agonists. Furthermore, nuclear location of the synthesizing enzymes and receptors may be atypical, not associated to the nuclear envelope or other membranes. The possible role of nuclear subdomains such as speckles, nucleoplasmic reticulum, multi-macromolecular complexes and nuclear nanovesicles is discussed.
Collapse
Affiliation(s)
- Maria Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | | |
Collapse
|
44
|
van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XHT. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 2010; 122:2669-79. [PMID: 21098440 DOI: 10.1161/circulationaha.110.982298] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND approximately half of patients with heart failure die suddenly as a result of ventricular arrhythmias. Although abnormal Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors (RyR2) has been linked to arrhythmogenesis, the molecular mechanisms triggering release of arrhythmogenic Ca(2+) remain unknown. We tested the hypothesis that increased RyR2 phosphorylation by Ca(2+)/calmodulin-dependent protein kinase II is both necessary and sufficient to promote lethal ventricular arrhythmias. METHODS AND RESULTS mice in which the S2814 Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 is constitutively activated (S2814D) develop pathological sarcoplasmic reticulum Ca(2+) release events, resulting in reduced sarcoplasmic reticulum Ca(2+) load on confocal microscopy. These Ca(2+) release events are associated with increased RyR2 open probability in lipid bilayer preparations. At baseline, young S2814D mice have structurally and functionally normal hearts without arrhythmias; however, they develop sustained ventricular tachycardia and sudden cardiac death on catecholaminergic provocation by caffeine/epinephrine or programmed electric stimulation. Young S2814D mice have a significant predisposition to sudden arrhythmogenic death after transverse aortic constriction surgery. Finally, genetic ablation of the Ca(2+)/calmodulin-dependent protein kinase II site on RyR2 (S2814A) protects mutant mice from pacing-induced arrhythmias versus wild-type mice after transverse aortic constriction surgery. CONCLUSIONS our results suggest that Ca(2+)/calmodulin-dependent protein kinase II phosphorylation of RyR2 Ca(2+) release channels at S2814 plays an important role in arrhythmogenesis and sudden cardiac death in mice with heart failure.
Collapse
Affiliation(s)
- Ralph J van Oort
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2010; 17:212-33. [PMID: 20388721 DOI: 10.1177/1753425910361989] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Collapse
Affiliation(s)
- Andreas Grahnert
- Department of Immunobiology, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Sun L, Zhang Z, Zhu LL, Peng Y, Liu X, Li J, Agrawal M, Robinson LJ, Iqbal J, Blair HC, Zaidi M. Further evidence for direct pro-resorptive actions of FSH. Biochem Biophys Res Commun 2010; 394:6-11. [PMID: 20171951 PMCID: PMC3144627 DOI: 10.1016/j.bbrc.2010.02.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 11/15/2022]
Abstract
We confirm that FSH stimulates osteoclast formation, function and survival to enhance bone resorption. It does so via the activation of a pertussis toxin-sensitive G(i)-coupled FSH receptor that we and others have identified on murine and human osteoclast precursors and mature osteoclasts. FSH additionally enhances the production of several osteoclastogenic cytokines, importantly TNFalpha, likely within the bone marrow microenvironment, to augment its pro-resorptive action. FSH levels in humans rise before estrogen falls, and this hormonal change coincides with the most rapid rates of bone loss. On the basis of accumulating evidence, we reaffirm that FSH contributes to the rapid peri-menopausal and early post-menopausal bone loss, which might thus be amenable to FSH blockade.
Collapse
Affiliation(s)
- Li Sun
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Zhiyuan Zhang
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Ling-Ling Zhu
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Yuanzhen Peng
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Xuan Liu
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Jianhua Li
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Manasi Agrawal
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Lisa J. Robinson
- Department of Pathology, University of Pittsburgh and Pittsburgh VA Medical Center, Pittsburgh PA 15243, USA
| | - Jameel Iqbal
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| | - Harry C. Blair
- Department of Pathology, University of Pittsburgh and Pittsburgh VA Medical Center, Pittsburgh PA 15243, USA
| | - Mone Zaidi
- Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
47
|
Kou W, Banerjee S, Eudy J, Smith LM, Persidsky R, Borgmann K, Wu L, Sakhuja N, Deshpande MS, Walseth TF, Ghorpade A. CD38 regulation in activated astrocytes: implications for neuroinflammation and HIV-1 brain infection. J Neurosci Res 2009; 87:2326-39. [PMID: 19365854 DOI: 10.1002/jnr.22060] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive astrogliosis is a key pathological aspect of neuroinflammatory disorders including human immunodeficiency virus type 1 (HIV-1)-associated neurological disease. On the basis of previous data that showedastrocytes activated with interleukin (IL)-1beta induce neuronal injury, we analyzed global gene changes in IL-1beta-activated human astrocytes by gene microarray. Among the up-regulated genes, CD38, a 45-kDa type II single chain transmembrane glycoprotein, was a top candidate, with a 17.24-fold change that was validated by real-time polymerase chain reaction. Key functions of CD38 include enzymatic activities and involvement in adhesion and cell signaling. Importantly, CD38(+)CD8(+) T-cell expression is a clinical correlate for progression of HIV-1 infection and biological marker for immune activation. Thus, CD38 expression in HIV-1 and/or IL-1beta-stimulated human astrocytes and human brain tissues was analyzed. IL-1beta and HIV-1 activation of astrocytes enhanced CD38 mRNA levels. Both CD38 immunoreactivity and adenosine 5'-diphosphate (ADP)-ribosyl cyclase activity were up-regulated in IL-1beta-activated astrocytes. CD38 knockdown using specific siRNAs significantly reduced astrocyte proinflammatory cytokine and chemokine production. However, CD38 mRNA levels were unchanged in IL-1beta knockdown conditions, suggesting that IL-1beta autocrine loop is not implicated in this process. Quantitative immunohistochemical analysis of HIV-seropositive without encephalitis and HIV-1 encephalitis brain tissues showed significant up-regulation of CD38, which colocalized with glial fibrillary acidic protein-positive cells in areas of inflammation. These results suggest an important role of CD38 in the regulation of astrocyte dysfunction during the neuroinflammatory processes involved in neurodegenerative/neuroinflammatory disorders such as HIV-1 encephalitis.
Collapse
Affiliation(s)
- Wei Kou
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Q, Graeff R, Kriksunov IA, Jiang H, Zhang B, Oppenheimer N, Lin H, Potter BVL, Lee HC, Hao Q. Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase. J Biol Chem 2009; 284:27637-45. [PMID: 19640846 PMCID: PMC2785692 DOI: 10.1074/jbc.m109.031005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) is a universal calcium messenger molecule that regulates many physiological processes. The production and degradation of cADPR are catalyzed by a family of related enzymes, including the ADP-ribosyl cyclase from Aplysia california (ADPRAC) and CD38 from human. Although ADPRC and CD38 share a common evolutionary ancestor, their enzymatic functions toward NAD and cADPR homeostasis have evolved divergently. Thus, ADPRC can only generate cADPR from NAD (cyclase), whereas CD38, in contrast, has multiple activities, i.e. in cADPR production and degradation, as well as NAD hydrolysis (NADase). In this study, we determined a number of ADPRC and CD38 structures bound with various nucleotides. From these complexes, we elucidated the structural features required for the cyclization (cyclase) reaction of ADPRC and the NADase reaction of CD38. Using the structural approach in combination with site-directed mutagenesis, we identified Phe-174 in ADPRC as a critical residue in directing the folding of the substrate during the cyclization reaction. Thus, a point mutation of Phe-174 to glycine can turn ADPRC from a cyclase toward an NADase. The equivalent residue in CD38, Thr-221, is shown to disfavor the cyclizing folding of the substrate, resulting in NADase being the dominant activity. The comprehensive structural comparison of CD38 and APDRC presented in this study thus provides insights into the structural determinants for the functional evolution from a cyclase to a hydrolase.
Collapse
Affiliation(s)
- Qun Liu
- MacCHESS, Cornell High Energy Synchrotron Source, CornellUniversity, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL. An update on nuclear calcium signalling. J Cell Sci 2009; 122:2337-50. [PMID: 19571113 DOI: 10.1242/jcs.028100] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the past 15 years or so, numerous studies have sought to characterise how nuclear calcium (Ca2+) signals are generated and reversed, and to understand how events that occur in the nucleoplasm influence cellular Ca2+ activity, and vice versa. In this Commentary, we describe mechanisms of nuclear Ca2+ signalling and discuss what is known about the origin and physiological significance of nuclear Ca2+ transients. In particular, we focus on the idea that the nucleus has an autonomous Ca2+ signalling system that can generate its own Ca2+ transients that modulate processes such as gene transcription. We also discuss the role of nuclear pores and the nuclear envelope in controlling ion flux into the nucleoplasm.
Collapse
Affiliation(s)
- Martin D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | | | | | | | | |
Collapse
|
50
|
Chini EN. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des 2009; 15:57-63. [PMID: 19149603 DOI: 10.2174/138161209787185788] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD38 is a multifunctional enzyme that uses nicotinamide adenine dinucleotide (NAD) as a substrate to generate second messengers. Recently, CD38 was also identified as one of the main cellular NADases in mammalian tissues and appears to regulate cellular levels of NAD in multiple tissues and cells. Due to the emerging role of NAD as a key molecule in multiple signaling pathways, and metabolic conditions it is imperative to determine the cellular mechanisms that regulate the synthesis and degradation of this nucleotide. In fact, recently it has been shown that NAD participates in multiple physiological processes such as insulin secretion, control of energy metabolism, neuronal and cardiac cell survival, airway constriction, asthma, aging and longevity. The discovery of CD38 as the main cellular NADase in mammalian tissues, and the characterization of its role on the control of cellular NAD levels indicate that CD38 may serve as a pharmacological target for multiple conditions.
Collapse
Affiliation(s)
- Eduardo Nunes Chini
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| |
Collapse
|