1
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Born WK, O'Brien RL. Becoming aware of γδ T cells. Adv Immunol 2022; 153:91-117. [PMID: 35469596 DOI: 10.1016/bs.ai.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The discovery that B cells and αβ T cells exist was predictable: These cells gave themselves away through their products and biological effects. In contrast, there was no reason to anticipate the existence of γδ T cells. Even the accidental discovery of a novel TCR-like gene (later named γ) that did not encode TCR α or β proteins did not immediately change this. TCR-like γ had no obvious function, and its early expression in the thymus encouraged speculation about a possible role in αβ T cell development. However, the identification of human PBL-derived cell-lines which expressed CD3 in complex with the TCR-like γ protein, but not the αβ TCR, first indicated that a second T cell-type might exist, and the TCR-like γ chain was observed to co-precipitate with another protein. Amid speculation about a possible second TCR, this potential dimeric partner was named δ. To determine if the δ protein was indeed TCR-like, we undertook to sequence it. Meanwhile, a fourth TCR-like gene was discovered and provisionally named x. TCR-like x had revealed itself through genomic rearrangements early in T cell development, and was an attractive candidate for the gene encoding δ. The observation that δ protein sequences matched the predicted amino acid sequences encoded by the x gene, as well as serological cross-reactivity, confirmed that the TCR-like x gene indeed encoded the δ protein. Thus, the γδ heterodimer was established as a second TCR, and the cells that express it (the γδ T cells) consequently represented a third lymphocyte-population with the potential of recognizing diverse antigens. Soon, it became clear that γδ T cells are widely distributed and conserved among the vertebrate species, implying biological importance. Consistently, early functional studies revealed their roles in host resistance to pathogens, tissue repair, immune regulation, metabolism, organ physiology and more. Albeit discovered late, γδ T cells have repeatedly proven to play a distinct and often critical immunological role, and now generate much interest.
Collapse
Affiliation(s)
- Willi K Born
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.
| | - Rebecca L O'Brien
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States
| |
Collapse
|
3
|
Allam AH, Charnley M, Pham K, Russell SM. Developing T cells form an immunological synapse for passage through the β-selection checkpoint. J Cell Biol 2021; 220:e201908108. [PMID: 33464309 PMCID: PMC7814350 DOI: 10.1083/jcb.201908108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The β-selection checkpoint of T cell development tests whether the cell has recombined its genomic DNA to produce a functional T cell receptor β (TCRβ). Passage through the β-selection checkpoint requires the nascent TCRβ protein to mediate signaling through a pre-TCR complex. In this study, we show that developing T cells at the β-selection checkpoint establish an immunological synapse in in vitro and in situ, resembling that of the mature T cell. The immunological synapse is dependent on two key signaling pathways known to be critical for the transition beyond the β-selection checkpoint, Notch and CXCR4 signaling. In vitro and in situ analyses indicate that the immunological synapse promotes passage through the β-selection checkpoint. Collectively, these data indicate that developing T cells regulate pre-TCR signaling through the formation of an immunological synapse. This signaling platform integrates cues from Notch, CXCR4, and MHC on the thymic stromal cell to allow transition beyond the β-selection checkpoint.
Collapse
Affiliation(s)
- Amr H. Allam
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Mirren Charnley
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Kim Pham
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Australia
| | - Sarah M. Russell
- Optical Sciences Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Department of Pathology, The University of Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia
| |
Collapse
|
4
|
Giardino G, Borzacchiello C, De Luca M, Romano R, Prencipe R, Cirillo E, Pignata C. T-Cell Immunodeficiencies With Congenital Alterations of Thymic Development: Genes Implicated and Differential Immunological and Clinical Features. Front Immunol 2020; 11:1837. [PMID: 32922396 PMCID: PMC7457079 DOI: 10.3389/fimmu.2020.01837] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Combined Immunodeficiencies (CID) are rare congenital disorders characterized by defective T-cell development that may be associated with B- and NK-cell deficiency. They are usually due to alterations in genes expressed in hematopoietic precursors but in few cases, they are caused by impaired thymic development. Athymia was classically associated with DiGeorge Syndrome due to TBX1 gene haploinsufficiency. Other genes, implicated in thymic organogenesis include FOXN1, associated with Nude SCID syndrome, PAX1, associated with Otofaciocervical Syndrome type 2, and CHD7, one of the genes implicated in CHARGE syndrome. More recently, chromosome 2p11.2 microdeletion, causing FOXI3 haploinsufficiency, has been identified in 5 families with impaired thymus development. In this review, we will summarize the main genetic, clinical, and immunological features related to the abovementioned gene mutations. We will also focus on different therapeutic approaches to treat SCID in these patients.
Collapse
Affiliation(s)
- Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Carla Borzacchiello
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Martina De Luca
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| |
Collapse
|
5
|
Erarslan-Uysal B, Kunz JB, Rausch T, Richter-Pechańska P, van Belzen IA, Frismantas V, Bornhauser B, Ordoñez-Rueada D, Paulsen M, Benes V, Stanulla M, Schrappe M, Cario G, Escherich G, Bakharevich K, Kirschner-Schwabe R, Eckert C, Loukanov T, Gorenflo M, Waszak SM, Bourquin JP, Muckenthaler MU, Korbel JO, Kulozik AE. Chromatin accessibility landscape of pediatric T-lymphoblastic leukemia and human T-cell precursors. EMBO Mol Med 2020; 12:e12104. [PMID: 32755029 PMCID: PMC7507092 DOI: 10.15252/emmm.202012104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023] Open
Abstract
We aimed at identifying the developmental stage at which leukemic cells of pediatric T-ALLs are arrested and at defining leukemogenic mechanisms based on ATAC-Seq. Chromatin accessibility maps of seven developmental stages of human healthy T cells revealed progressive chromatin condensation during T-cell maturation. Developmental stages were distinguished by 2,823 signature chromatin regions with 95% accuracy. Open chromatin surrounding SAE1 was identified to best distinguish thymic developmental stages suggesting a potential role of SUMOylation in T-cell development. Deconvolution using signature regions revealed that T-ALLs, including those with mature immunophenotypes, resemble the most immature populations, which was confirmed by TF-binding motif profiles. We integrated ATAC-Seq and RNA-Seq and found DAB1, a gene not related to leukemia previously, to be overexpressed, abnormally spliced and hyper-accessible in T-ALLs. DAB1-negative patients formed a distinct subgroup with particularly immature chromatin profiles and hyper-accessible binding sites for SPI1 (PU.1), a TF crucial for normal T-cell maturation. In conclusion, our analyses of chromatin accessibility and TF-binding motifs showed that pediatric T-ALL cells are most similar to immature thymic precursors, indicating an early developmental arrest.
Collapse
Affiliation(s)
- Büşra Erarslan-Uysal
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Paulina Richter-Pechańska
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ianthe Aem van Belzen
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Viktoras Frismantas
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Diana Ordoñez-Rueada
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kseniya Bakharevich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renate Kirschner-Schwabe
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology and Congenital Heart Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sebastian M Waszak
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jan O Korbel
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
6
|
Villa A, Cairo G, Pozzi MR, Schiaffonati L, Bardella L, Lucchini R, Delia D, Besana C, Biunno I, Vezzoni P. Lack of TdT and Immunoglobulin and T-Cell Receptor Gene Rearrangements in Hodgkin's Disease. Int J Biol Markers 2018; 2:65-70. [PMID: 3132516 DOI: 10.1177/172460088700200202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To study the pathogenesis of Hodgkin's disease (HD), which today remains obscure, we have undertaken a combined experimental approach: determination of TdT and molecular analysis of rearrangements of immunoglobulin heavy chain (IgH), T-cell receptor (TCR) beta chain and the T-cell rearranging gamma (TRG) genes. TdT determination indicate would the presence of immature cells that are not detected in the normal lymphnode; molecular analysis of the rearrangements of these genes would reveal the presence of even a small monoclonal population of both T and B lineages in the lymphnodes. We believe that the combination of these two types of analysis can indicate whether an expanding lymphoid clone is responsible for this disease. TdT determination was negative in all 41 cases tested. Gene rearrangements were studied in 10 cases for IgH and TCR beta genes and in 5 cases for the TRG gene. No abnormal band beside the germ-line ones was detected in any of our cases, ruling out the presence of a minor neoplastic population. We can explain these results in at least three ways: first, the neoplastic population could represent less than 1% of the total, thus escaping detection by current techniques; second, the neoplastic population is not lymphoid in nature or is composed of mature cells that do not rearrange Ig and TCR genes and therefore belongs to a true non-B, non-T lineage; third, the pathogenesis of HD is completely different from that of non-Hodgkin's lymphomas (NHL) and does not involve the clonal expansion of a cell frozen at a particular maturative stage as is thought to happen in most NHL.
Collapse
Affiliation(s)
- A Villa
- Centro Studi di Fisiologia del Lavoro Muscolare, CNR, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Born WK, O'Brien RL. Discovery of the γδ TCR: Act II. THE JOURNAL OF IMMUNOLOGY 2018; 196:3507-8. [PMID: 27183646 DOI: 10.4049/jimmunol.1600404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Willi K Born
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; and Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| |
Collapse
|
8
|
Hosoya T, D'Oliveira Albanus R, Hensley J, Myers G, Kyono Y, Kitzman J, Parker SCJ, Engel JD. Global dynamics of stage-specific transcription factor binding during thymocyte development. Sci Rep 2018; 8:5605. [PMID: 29618724 PMCID: PMC5884796 DOI: 10.1038/s41598-018-23774-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 12/29/2022] Open
Abstract
In vertebrates, multiple transcription factors (TFs) bind to gene regulatory elements (promoters, enhancers, and silencers) to execute developmental expression changes. ChIP experiments are often used to identify where TFs bind to regulatory elements in the genome, but the requirement of TF-specific antibodies hampers analyses of tens of TFs at multiple loci. Here we tested whether TF binding predictions using ATAC-seq can be used to infer the identity of TFs that bind to functionally validated enhancers of the Cd4, Cd8, and Gata3 genes in thymocytes. We performed ATAC-seq at four distinct stages of development in mouse thymus, probing the chromatin accessibility landscape in double negative (DN), double positive (DP), CD4 single positive (SP4) and CD8 SP (SP8) thymocytes. Integration of chromatin accessibility with TF motifs genome-wide allowed us to infer stage-specific occupied TF binding sites within known and potentially novel regulatory elements. Our results provide genome-wide stage-specific T cell open chromatin profiles, and allow the identification of candidate TFs that drive thymocyte differentiation at each developmental stage.
Collapse
Affiliation(s)
- Tomonori Hosoya
- Department of Cell and Developmental Biology, Ann Arbor, USA
| | | | - John Hensley
- Department of Computational Medicine and Bioinformatics, Ann Arbor, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, Ann Arbor, USA
| | - Yasuhiro Kyono
- Department of Computational Medicine and Bioinformatics, Ann Arbor, USA.,Department of Human Genetics, University of Michigan, 3035 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan, 48109-2200, USA
| | - Jacob Kitzman
- Department of Computational Medicine and Bioinformatics, Ann Arbor, USA.,Department of Human Genetics, University of Michigan, 3035 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan, 48109-2200, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, Ann Arbor, USA.,Department of Human Genetics, University of Michigan, 3035 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan, 48109-2200, USA
| | | |
Collapse
|
9
|
Abstract
The accurate distinction of reactive and neoplastic lymphoid proliferations can present challenges. Given the different prognoses and treatment strategies, a correct diagnosis is crucial. Molecular clonality assays assess rearranged lymphocyte antigen receptor gene diversity and can help differentiate reactive from neoplastic lymphoid proliferations. Molecular clonality assays are commonly used to assess atypical, mixed, or mature lymphoid proliferations; small tissue fragments that lack architecture; and fluid samples. In addition, clonality testing can be utilized to track neoplastic clones over time or across anatomic sites. Molecular clonality assays are not stand-alone tests but useful adjuncts that follow clinical, morphologic, and immunophenotypic assessment. Even though clonality testing provides valuable information in a variety of situations, the complexities and pitfalls of this method, as well as its dependency on the experience of the interpreter, are often understated. In addition, a lack of standardized terminology, laboratory practices, and interpretational guidelines hinders the reproducibility of clonality testing across laboratories in veterinary medicine. The objectives of this review are twofold. First, the review is intended to familiarize the diagnostic pathologist or interested clinician with the concepts, potential pitfalls, and limitations of clonality testing. Second, the review strives to provide a basis for future harmonization of clonality testing in veterinary medicine by providing diagnostic guidelines.
Collapse
Affiliation(s)
- S. M. Keller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - W. Vernau
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - P. F. Moore
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Shibata S, Tada Y, Hau CS, Mitsui A, Kamata M, Asano Y, Sugaya M, Kadono T, Masamoto Y, Kurokawa M, Yamauchi T, Kubota N, Kadowaki T, Sato S. Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from γδ-T cells. Nat Commun 2015; 6:7687. [PMID: 26173479 DOI: 10.1038/ncomms8687] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Accumulating epidemiologic evidence has revealed that metabolic syndrome is an independent risk factor for psoriasis development and is associated with more severe psoriasis. Adiponectin, primarily recognized as a metabolic mediator of insulin sensitivity, has been newly drawing attention as a mediator of immune responses. Here we demonstrate that adiponectin regulates skin inflammation, especially IL-17-related psoriasiform dermatitis. Mice with adiponectin deficiency show severe psoriasiform skin inflammation with enhanced infiltration of IL-17-producing dermal Vγ4+γδ-T cells. Adiponectin directly acts on murine dermal γδ-T cells to suppress IL-17 synthesis via AdipoR1. We furthermore demonstrate here that the adiponectin level of skin tissue as well as subcutaneous fat is decreased in psoriasis patients. IL-17 production from human CD4- or CD8-positive T cells is also suppressed by adiponectin. Our data provide a regulatory role of adiponectin in skin inflammation, which would imply a mechanism underlying the relationship between psoriasis and metabolic disorders.
Collapse
Affiliation(s)
- Sayaka Shibata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yayoi Tada
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,Department of Dermatology, Teikyo Universtiy School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Carren Sy Hau
- Department of Dermatology, Teikyo Universtiy School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Aya Mitsui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masahiro Kamata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takafumi Kadono
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
11
|
Pauza CD, Cairo C. Evolution and function of the TCR Vgamma9 chain repertoire: It's good to be public. Cell Immunol 2015; 296:22-30. [PMID: 25769734 PMCID: PMC4466227 DOI: 10.1016/j.cellimm.2015.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 01/17/2023]
Abstract
Lymphocytes expressing a T cell receptor (TCR) composed of Vgamma9 and Vdelta2 chains represent a minor fraction of human thymocytes. Extrathymic selection throughout post-natal life causes the proportion of cells with a Vgamma9-JP rearrangement to increase and elevates the capacity for responding to non-peptidic phosphoantigens. Extrathymic selection is so powerful that phosphoantigen-reactive cells comprise about 1 in 40 circulating memory T cells in healthy adults and the subset expands rapidly upon infection or in response to malignancy. Skewing of the gamma delta TCR repertoire is accompanied by selection for public gamma chain sequences such that many unrelated individuals overlap extensive in their circulating repertoire. This type of selection implies the presence of a monomorphic antigen-presenting molecule that is an object of current research but remains incompletely defined. While selection on a monomorphic presenting molecule may seem unusual, similar mechanisms shape the alpha beta T cell repertoire including the extreme examples of NKT or mucosal-associated invariant T cells (MAIT) and the less dramatic amplification of public Vbeta chain rearrangements driven by individual MHC molecules and associated with resistance to viral pathogens. Selecting and amplifying public T cell receptors whether alpha beta or gamma delta, are important steps in developing an anticipatory TCR repertoire. Cell clones expressing public TCR can accelerate the kinetics of response to pathogens and impact host survival.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Evolution, Molecular
- Humans
- Immunologic Memory/immunology
- Natural Killer T-Cells/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sequence Homology
- T-Lymphocyte Subsets/immunology
- Thymocytes/immunology
Collapse
Affiliation(s)
- C David Pauza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
13
|
Abstract
The thymus presents two major problems in cellular differentiation. How is self-non-self discrimination achieved in developing thymocytes? What determines the development of T-cell classes? In this discussion, Alan Herbert and James Watson propose a mechanism for regulating T-cell differentiation which involves the alternative pathway of T-cell activation. They postulate that T cells with a stimulator-suppressor phenotype stimulate resting helper T cells (Th) to produce interleukin 2 (IL-2) and suppress T cells which have bound antigen through antigen-specific receptors by preventing induction of IL-2 receptors. Stimulator-suppressor T cells therefore suppress the clonal expansion of T cells in an antigen-specific manner, yet promote their own clonal expansion in a manner independent of antigen. They further suggest that the molecule responsible for suppression is the product of the γ genes known to rearrange in γ cells.
Collapse
Affiliation(s)
- A G Herbert
- Department of Immunobiology, University of Auckland, Private Bag Auckland, New Zealand
| | | |
Collapse
|
14
|
Zhang X, Chen S, Yang L, Li B, Zhu K, Li Y. The feature of TRGV and TRDV repertoire distribution and clonality in patients with immune thrombocytopenic purpura. Hematology 2013; 14:237-44. [PMID: 19635188 DOI: 10.1179/102453309x439755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xueli Zhang
- Department of HematologyFirst Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Shaohua Chen
- Institute of HematologyMedical College, Jinan University, Guangzhou, 510632, China
| | - Lijian Yang
- Institute of HematologyMedical College, Jinan University, Guangzhou, 510632, China
| | - Bo Li
- Institute of HematologyMedical College, Jinan University, Guangzhou, 510632, China
| | - Kanger Zhu
- Department of HematologyFirst Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Department of HematologyFirst Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
15
|
Xuan L, Wu X, Zhang Y, Fan Z, Ling Y, Huang F, Zhang F, Zhai X, Liu Q. Granulocyte colony-stimulating factor affects the distribution and clonality of TRGV and TRDV repertoire of T cells and graft-versus-host disease. J Transl Med 2011; 9:215. [PMID: 22171570 PMCID: PMC3261127 DOI: 10.1186/1479-5876-9-215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/15/2011] [Indexed: 02/08/2023] Open
Abstract
Background The immune modulatory effect of granulocyte colony-stimulating factor (G-CSF) on T cells resulted in an unexpected low incidence of graft-versus-host disease (GVHD) in allogeneic peripheral blood stem cell transplantation (allo-PBSCT). Recent data indicated that gamma delta+ T cells might participate in mediating graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic hematopoietic stem cell transplantation. However, whether G-CSF could influence the T cell receptors (TCR) of gamma delta+ T cells (TRGV and TRDV repertoire) remains unclear. To further characterize this feature, we compared the distribution and clonality of TRGV and TRDV repertoire of T cells before and after G-CSF mobilization and investigated the association between the changes of TCR repertoire and GVHD in patients undergoing G-CSF mobilized allo-PBSCT. Methods The complementarity-determining region 3 (CDR3) sizes of three TRGV and eight TRDV subfamily genes were analyzed in peripheral blood mononuclear cells (PBMCs) from 20 donors before and after G-CSF mobilization, using RT-PCR and genescan technique. To determine the expression levels of TRGV subfamily genes, we performed quantitative analysis of TRGVI~III subfamilies by real-time PCR. Results The expression levels of three TRGV subfamilies were significantly decreased after G-CSF mobilization (P = 0.015, 0.009 and 0.006, respectively). The pattern of TRGV subfamily expression levels was TRGVII >TRGV I >TRGV III before mobilization, and changed to TRGV I >TRGV II >TRGV III after G-CSF mobilization. The expression frequencies of TRGV and TRDV subfamilies changed at different levels after G-CSF mobilization. Most TRGV and TRDV subfamilies revealed polyclonality from pre-G-CSF-mobilized and G-CSF-mobilized samples. Oligoclonality was detected in TRGV and TRDV subfamilies in 3 donors before mobilization and in another 4 donors after G-CSF mobilization, distributed in TRGVII, TRDV1, TRDV3 and TRDV6, respectively. Significant positive association was observed between the invariable clonality of TRDV1 gene repertoire after G-CSF mobilization and low incidence of GVHD in recipients (P = 0.015, OR = 0.047). Conclusions G-CSF mobilization not only influences the distribution and expression levels of TRGV and TRDV repertoire, but also changes the clonality of gamma delta+ T cells. This alteration of TRGV and TRDV repertoire might play a role in mediating GVHD in G-CSF mobilized allo-PBSCT.
Collapse
Affiliation(s)
- Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The development and function of lymphocytes depend upon their precise migration in response to chemoattractant cytokines, or chemokines. Two recent reports suggest that, during thymic beta-selection, the binding of the chemokine CXCL12 to the receptor CXCR4 on thymocytes provides not only directional but also developmental cues.
Collapse
|
17
|
Hodes RJ. MHC Restricted Recognition by Cloned T Cells. Int Rev Immunol 2009. [DOI: 10.3109/08830188609056604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Li Y, Chen S, Yang L, Li B, Chan JYH, Cai D. TRGV and TRDV repertoire distribution and clonality of T cells from umbilical cord blood. Transpl Immunol 2008; 20:155-62. [PMID: 19013241 DOI: 10.1016/j.trim.2008.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/13/2008] [Accepted: 10/20/2008] [Indexed: 01/18/2023]
Abstract
Umbilical cord blood (CB) has been used as a valuable source of hematopoietic stem cells for allogeneic transplantation, specific CTL response and immunotherapy for decades. We previously analyzed the distribution and clonality of T-cell receptor alpha and beta variable region (TRAV) and (TRBV) of the subfamily T cell receptors in T cells from umbilical cord blood. Recent data indicated that gammadelta(+) T cells may play an important role in mediating the graft versus leukemia effect after stem cells transplantation and in anti-cancer response. In order to further characterize the repertoire of CB T-cells, the frequency of alphabeta(+) and gammadelta(+) T cells were examined in CB by FACS. The CDR3 size of 4 TRGV and 8 TRDV subfamily genes were analyzed in mononuclear cells (MCs) from 16 CB samples, using RT-PCR and genescan technique. To determine the expression level of TRGV subfamily genes, we performed quantitative analysis of TRGVI-III subfamilies by real-time PCR. Low percentage of CD3(+)TCRgammadelta(+) cells was observed in CB. The frequency of expression in TRGVI, TRGVII and TRGVIII in CBMCs was 93.75%, 81.25% and 56.25%, respectively. The mean value of the number of expressed TRDV subfamilies in CBMCs is higher than that from adult peripheral blood (PB) group. The frequently expressed members in CB were TRDV1 (100%), TRDV2 (93.75%), TRDV8 (93.75%) and TRDV3 (81.25%), respectively. The frequencies of TRDV5 and TRDV8 in CBMCs were significantly higher than those from PBMCs. Most of the PCR products of TRGV and TRDV subfamilies from 10 CB samples displayed polyclonal rearrangement pattern, whereas one or two PCR products from 6 CB samples showed oligoclonality or biclonality. In contrast, PCR products from 9 of 10 adult healthy controls contained at least an oligoclonal peak in different TRGV or TRDV subfamilies respectively. The pattern of TRGV subfamily expression level in CBMCs was TRGVI>TRGVIII>TRGVII, and in contrast, TRGVII>TRGVI>TRGVIII was found in PBMCs. In conclusion, our results indicate polyclonal and more diverse TRDV segment usage in CB gammadelta(+) T-cells. The pattern of TRGV expression levels in CB T cells was found to be quite different from the one in PB T cells. These findings are apparently the first report regarding the repression pattern of TRGV repertoire in CB. It also provides a detailed profile of the global TRGV and TRDV repertoire and TRGVI-III expression levels in cord blood T cells in Chinese subjects. The biological significance of the differences observed between CB and PB is at present obscure. However, this study will definitively contribute to understand the cellular immune features better and to exploit more efficiently the therapeutic potentials of CB.
Collapse
Affiliation(s)
- Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | |
Collapse
|
19
|
Li X, Gounari F, Protopopov A, Khazaie K, von Boehmer H. Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1. ACTA ACUST UNITED AC 2008; 205:2851-61. [PMID: 18981238 PMCID: PMC2585834 DOI: 10.1084/jem.20081561] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations resulting in overexpression of intracellular Notch1 (ICN1) are frequently observed in human T cell acute lymphoblastic leukemia (T-ALL). We have determined the consequences of ICN1 overexpression from retroviral vectors introduced into bone marrow cells. Early consequences are the generation of polyclonal nontumorigenic CD4(+)8(+) T cell receptor (TCR)-alphabeta(+) cells that do not qualify as tumor precursors despite the observation that they overexpress Notch 1 and c-Myc and degrade the tumor suppressor E2A by posttranslational modification. The first tumorigenic cells are detected among more immature CD4(-)8(+)TCR-alphabeta(-) cells that give rise to monoclonal tumors with a single, unique TCR-beta chain and diverse TCR-alpha chains, pinpointing malignant transformation to a stage after pre-TCR signaling and before completion of TCR-alpha rearrangement. In T-ALL, E2A deficiency is accompanied by further transcriptional up-regulation of c-Myc and concomitant dysregulation of the c-Myc-p53 axis at the transcriptional level. Even though the tumors consist of phenotypically heterogeneous cells, no evidence for tumor stem cells was found. As judged by array-based comparative genomic hybridization (array CGH) and spectral karyotype (SKY) analysis, none of the tumors arise because of genomic instability.
Collapse
Affiliation(s)
- Xiaoyu Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
20
|
Garbe AI, von Boehmer H. TCR and Notch synergize in αβ versus γδ lineage choice. Trends Immunol 2007; 28:124-31. [PMID: 17261380 DOI: 10.1016/j.it.2007.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/15/2006] [Accepted: 01/18/2007] [Indexed: 11/16/2022]
Abstract
At two checkpoints, T cell development is controlled by T cell receptor (TCR) signaling, which determines survival and lineage commitment. At the first of these checkpoints, signaling by the pre-TCR, the gammadeltaTCR or the alphabetaTCR has a major but nonexclusive impact on whether cells will become CD4-CD8- gammadelta or CD4+CD8+ alphabeta lineage cells. Pre-TCR signals synergize with moderate Notch signals to generate alphabeta lineage cells. Relatively strong signals by the gammadeltaTCR (or early expressed alphabetaTCR) in the absence of Notch signaling are sufficient to yield gammadelta lineage cells. However, relatively weak signals of the latter two receptors combined with strong Notch signaling result in the formation of alphabeta lineage cells that generate a diverse alphabetaTCR repertoire in pre-TCR-deficient mice. It remains to be determined whether TCR and/or Notch signals instruct or confirm predetermined lineage fate.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Gene Rearrangement, T-Lymphocyte
- Humans
- Lymphocyte Activation
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Interleukin-7/analysis
- Receptors, Notch/physiology
- Signal Transduction/physiology
- Transgenes
Collapse
Affiliation(s)
- Annette I Garbe
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Garbe AI, Krueger A, Gounari F, Zúñiga-Pflücker JC, von Boehmer H. Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. ACTA ACUST UNITED AC 2006; 203:1579-90. [PMID: 16754723 PMCID: PMC2118312 DOI: 10.1084/jem.20060474] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thymic precursors expressing the pre–T cell receptor (TCR), the γδTCR, or the αβTCR can all enter the CD4+8+ αβ lineage, albeit with different efficacy. Here it is shown that proliferation and differentiation of precursors with the different TCRs into αβ lineage cells require Notch signaling at the DN3 stage of thymic development. At the DN4 stage, Notch signaling still significantly contributes to the generation of αβ T cells. In particular, in αβ lineage commitment, the pre-TCR synergizes more efficiently with Notch signals than the other two TCRs, whereas γδTCR-expressing cells can survive and expand in the absence of Notch signals, even though Notch signaling enhances their proliferation. These observations suggest a new model of αβ versus γδ lineage choice in which lineage fate is determined by the extent of synergy between TCR and Notch signaling and in which the evolutionarily recent advent of the cell-autonomously signaling pre-TCR increased the efficacy of αβ T cell generation.
Collapse
MESH Headings
- Animals
- Homeodomain Proteins/genetics
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Annette I Garbe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 2006; 6:127-35. [PMID: 16491137 DOI: 10.1038/nri1781] [Citation(s) in RCA: 496] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lympho-stromal interactions in multiple microenvironments within the thymus have a crucial role in the regulation of T-cell development and selection. Recent studies have implicated that chemokines that are produced by thymic stromal cells have a pivotal role in positioning developing T cells within the thymus. In this Review, I discuss the importance of stroma-derived chemokines in guiding the traffic of developing thymocytes, with an emphasis on the processes of cortex-to-medulla migration and T-cell-repertoire selection, including central tolerance.
Collapse
Affiliation(s)
- Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
23
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Huang CY, Sleckman BP, Kanagawa O. Revision of T cell receptor {alpha} chain genes is required for normal T lymphocyte development. Proc Natl Acad Sci U S A 2005; 102:14356-61. [PMID: 16186502 PMCID: PMC1242309 DOI: 10.1073/pnas.0505564102] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To become mature alphabeta T cells, developing thymocytes must first assemble a T cell receptor (TCR) beta chain gene encoding a TCRbeta chain that forms a pre-TCR. These cells then need to generate a TCRalpha chain gene encoding a TCRalpha chain, which, when paired with the TCRbeta chain, forms a selectable alphabeta TCR. Newly generated VJalpha rearrangements that do not encode TCRalpha chains capable of forming selectable alphabeta TCRs can be excised from the chromosome and replaced with new VJalpha rearrangements. Such replacement occurs through the process of TCRalpha chain gene revision whereby a Valpha gene segment upstream of the VJalpha rearrangement is appended to a downstream Jalpha gene segment. A multistep, gene-targeting approach was used to generate a modified TCRalpha locus (TCRalpha(sJ)) with a limited capacity to undergo revision of TCRalpha chain genes. Thymocytes from mice homozygous for the TCRalpha(sJ) allele are defective in their ability to generate an alphabeta TCR. Furthermore, those thymocytes that do generate an alphabeta TCR have a diminished capacity to be positively selected, and TCRalpha(sJ/sJ) mice have significantly reduced numbers of mature alphabeta T cells. Together, these findings demonstrate that normal T cell development relies on the ability of developing thymocytes to revise their TCRalpha chain genes.
Collapse
Affiliation(s)
- Ching-Yu Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | | | | |
Collapse
|
25
|
Winrow CJ, Pankratz DG, Vibat CRT, Bowen TJ, Callahan MA, Warren AJ, Hilbush BS, Wynshaw-Boris A, Hasel KW, Weaver Z, Lockhart DJ, Barlow C. Aberrant recombination involving the granzyme locus occurs in Atm-/- T-cell lymphomas. Hum Mol Genet 2005; 14:2671-84. [PMID: 16087685 DOI: 10.1093/hmg/ddi301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ataxia telangiectasia (A-T) is an autosomal recessive disease caused by loss of function of the serine/threonine protein kinase ATM (ataxia telangiectasia mutated). A-T patients have a 250-700-fold increased risk of developing lymphomas and leukemias which are typically highly invasive and proliferative. In addition, a subset of adult acute lymphoblastic leukemias and aggressive B-cell chronic lymphocytic leukemias that occur in the general population show loss of heterozygosity for ATM. To define the specific role of ATM in lymphomagenesis, we studied T-cell lymphomas isolated from mice with mutations in ATM and/or p53 using cytogenetic analysis and mRNA transcriptional profiling. The analyses identified genes misregulated as a consequence of the amplifications, deletions and translocation events arising as a result of ATM loss. A specific recurrent disruption of the granzyme gene family locus was identified resulting in an aberrant granzyme B/C fusion product. The combined application of cytogenetic and gene expression approaches identified specific loci and genes that define the pathway of initiation and progression of lymphoreticular malignancies in the absence of ATM.
Collapse
Affiliation(s)
- Christopher J Winrow
- The Salk Institute for Biological Studies, The Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
von Boehmer H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat Rev Immunol 2005; 5:571-7. [PMID: 15999096 DOI: 10.1038/nri1636] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pre-T-cell receptor (pre-TCR) has a crucial role in the normal development of alphabeta T cells. Different views have emerged concerning the structure and function of the pre-TCR. This molecular complex can be viewed as a variant of the alphabeta-TCR in which the pre-TCR alpha-chain that is covalently associated with the TCR beta-chain is a 'surrogate' TCR alpha-chain. Alternatively, the unique structure of the pre-TCR might be associated with a unique function, owing to evolutionary selection of a pre-TCR alpha-chain that has different capabilities from the TCR alpha-chain. As described here, I consider that experimental evidence favours the latter view.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Lacorazza HD, Nikolich-Zugich J. Exclusion and inclusion of TCR alpha proteins during T cell development in TCR-transgenic and normal mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:5591-600. [PMID: 15494509 DOI: 10.4049/jimmunol.173.9.5591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immune receptor genes (and molecules) is incompletely understood. With regard to TCRalphabeta lineage T cells, exclusion at the tcr-b, but not tcr-a, locus seems to be strictly controlled at the locus rearrangement level. Consequently, while nearly all developing TCRalphabeta thymocytes express a single TCRbeta protein, many thymocytes rearrange and express two different TCRalpha chains and, thus, display two alphabetaTCRs on the cell surface. Of interest, the number of such dual TCR-expressing cells is appreciably lower among the mature T cells. To understand the details of TCR chain regulation at various stages of T cell development, we analyzed TCR expression in mice transgenic for two rearranged alphabetaTCR. We discovered that in such TCR double-transgenic (TCRdTg) mice peripheral T cells were functionally monospecific. Molecularly, this monospecificity was due to TCRalpha exclusion: one transgenic TCRalpha protein was selectively down-regulated from the thymocyte and T cell surface. In searching for the mechanism(s) governing this selective TCRalpha down-regulation, we present evidence for the role of protein tyrosine kinase signaling and coreceptor involvement. This mechanism may be operating in normal thymocytes.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Genes, Dominant
- Genes, T-Cell Receptor alpha
- Immunophenotyping
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- H Daniel Lacorazza
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
28
|
von Boehmer H. Selection of the T-Cell Repertoire: Receptor-Controlled Checkpoints in T-Cell Development. Adv Immunol 2004; 84:201-38. [PMID: 15246254 DOI: 10.1016/s0065-2776(04)84006-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| |
Collapse
|
29
|
von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L. Thymic selection revisited: how essential is it? Immunol Rev 2003; 191:62-78. [PMID: 12614352 DOI: 10.1034/j.1600-065x.2003.00010.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development represents one of the best studied paradigms of mammalian development. Lymphoid committed precursors enter the thymus and the Notch1 receptor plays an essential role in committing them to the T cell lineages. The pre-T cell receptor (TCR), as an autonomous cell signaling receptor, commits cells to the alphabeta lineage while its rival, the gammadeltaTCR, is involved in generating the gammadelta lineage of T cells. Positive and negative selection of immature alphabetaTCR-expressing cells are essential mechanisms for generating mature T cells, committing them to the CD4 and CD8 lineages and avoiding autoimmunity. Additional lineages of alphabetaT cells, such as the natural killer T cell lineage and the CD25+ regulatory T cell lineage, are formed when the alphabetaTCR encounters specific ligands in suitable microenvironments. Thus, positive selection and receptor-instructed lineage commitment represent a hallmark of the thymus. Ectopically expressed organ-specific antigens contribute to thymic self-nonself discrimination, which represents an essential feature for the evolutionary fitness of mammalian species.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ, Oud ME, van Dongen JJ. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001; 98:2456-65. [PMID: 11588043 DOI: 10.1182/blood.v98.8.2456] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
T-cell receptor (TCR) gene rearrangements are mediated via V(D)J recombination, which is strictly regulated during lymphoid differentiation, most probably through the action of specific transcription factors. Investigated was whether cotransfection of RAG1 and RAG2 genes in combination with lymphoid transcription factors can induce TCR gene rearrangements in nonlymphoid human cells. Transfection experiments showed that basic helix-loop-helix transcription factors E2A and HEB induce rearrangements in the TCRD locus (Ddelta2-Ddelta3 and Vdelta2-Ddelta3) and TCRG locus (psi Vgamma7-Jgamma2.3 and Vgamma8-Jgamma2.3). Analysis of these rearrangements and their circular excision products revealed some peculiar characteristics. The Vdelta2-Ddelta3 rearrangements were formed by direct coupling without intermediate Ddelta2 gene segment usage, and most Ddelta2-Ddelta3 recombinations occurred via direct coupling of the respective upstream and downstream recombination signal sequences (RSSs) with deletion of the Ddelta2 and Ddelta3 coding sequences. Subsequently, the E2A/HEB-induced TCR gene recombination patterns were compared with those in early thymocytes and acute lymphoblastic leukemias of T- and B-lineage origin, and it was found that the TCR rearrangements in the transfectants were early (immature) and not necessarily T-lineage specific. Apparently, some parts of the TCRD (Vdelta2-Ddelta region) and TCRG genes are accessible for recombination not only in T cells, but also in early B-cells and even in nonlymphoid cells if the appropriate transcription factors are present. The transfection system described here appeared to be useful for studying the accessibility of immunoglobulin and TCR genes for V(D)J recombination, but might also be applied to study the induction of RSS-mediated chromosome aberrations.
Collapse
MESH Headings
- Animals
- Base Sequence
- Basic Helix-Loop-Helix Transcription Factors
- Cell Line
- Cloning, Molecular
- DNA Nucleotidyltransferases/metabolism
- DNA Primers
- DNA-Binding Proteins/metabolism
- Gene Rearrangement, T-Lymphocyte
- Helix-Loop-Helix Motifs
- Humans
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombinant Proteins/metabolism
- Recombination, Genetic
- T-Lymphocytes/immunology
- Transcription Factors/metabolism
- Transfection
- VDJ Recombinases
Collapse
Affiliation(s)
- A W Langerak
- Department of Immunology, Erasmus University Rotterdam/University Hospital Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Matsunaga T, Rahman A. In search of the origin of the thymus: the thymus and GALT may be evolutionarily related. Scand J Immunol 2001; 53:1-6. [PMID: 11169200 DOI: 10.1046/j.1365-3083.2001.00854.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thymus is the major primary immune tissue for the production of functional T lymphocytes in vertebrates. However, its evolutionary origin is unknown. It has recently been shown that the generation of local T cells also occurs in gut-associated lymphoid tissues (GALT). This suggests that the thymus and GALT have similar functions and that they might be evolutionarily related. We discuss the possibility that the thymus may have evolved from mucosa-associated lymphoid tissues (MALT) located in the gill region in early vertebrates. Various facts supporting this proposal are summarized.
Collapse
Affiliation(s)
- T Matsunaga
- Department of Immunology, Umeå University, Umeå, SE-901 85, Sweden
| | | |
Collapse
|
32
|
Abstract
Reduced numbers of lymphocytes and antigen presenting cells have been described as some of the main factors responsible for antigenic tolerance or low responsiveness in neonates. However, by changing the parameters of immunization, such as dose of antigen and frequency of antigen presenting cells we and others have shown that neonates have the option of developing the same variety of immune responses seen in adults. Several aspects of the development of cellular immunity in human and murine neonates are reviewed in this article, with a special focus on the development of T cell mediated responses, from ontogeny to effector function.
Collapse
Affiliation(s)
- S Fadel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
33
|
Abstract
The process of clonal selection is a central feature of the immune system, but immune specificity is also regulated by receptor selection, in which the fate of a lymphocyte's antigen receptor is uncoupled from that of the cell itself. Whereas clonal selection controls cell death or survival in response to antigen receptor signaling, receptor selection regulates the process of V(D)J recombination, which can alter or fix antigen receptor specificity. Receptor selection is carried out in both T and B cells and can occur at different stages of lymphocyte differentiation, in which it plays a key role in allelic exclusion, positive selection, receptor editing, and the diversification of the antigen receptor repertoire. Thus, the immune system takes advantage of its control of V(D)J recombination to modify antigen receptors in such a way that self/non-self discrimination is enhanced. New information about receptor editing in T cells and B-1 B cells is also discussed.
Collapse
Affiliation(s)
- D Nemazee
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
34
|
Oh SH, Kim K. Expression of interleukin-1 receptors in the later period of foetal thymic organ culture and during suspension culture of thymocytes from aged mice. Immunol Cell Biol 1999; 77:491-8. [PMID: 10571669 DOI: 10.1046/j.1440-1711.1999.00852.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin-1 has been reported to be involved in thymocyte development by exerting a variety of effects on immature CD4-CD8- double-negative (DN) thymocytes. In contrast to the well-documented involvement of IL-1 in thymocyte development, expression of IL-1 receptors (IL-1R) on thymocytes has not been well demonstrated. In the present study, expression of IL-1R on the developing thymocytes was investigated. Although normal thymocytes barely express IL-1R, expression of IL-1R (type I) substantially increased at days 12-15 of foetal thymic organ culture (FTOC), with an increase of the DN subset. The CD4/CD8 profile of the IL-1R (type I)+ cells showed that these cells were mostly restricted to the DN and CD4+CD8+ subsets. Interestingly, in vitro culture of the thymocytes from an aged mouse, but not those from young adult or newborn mice, revealed similar results to those of FTOC. In addition, half of the IL-1R+ cells that increased in the later period of FTOC were gammadelta thymocytes. These results demonstrate IL-1R expression on thymocytes during ex vivo culture and suggest that IL-1R is expressed in a certain environment during normal thymocyte differentiation.
Collapse
Affiliation(s)
- S H Oh
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
35
|
β-Selection Is Associated With the Onset of CD8β Chain Expression on CD4+CD8+ Pre-T Cells During Human Intrathymic Development. Blood 1999. [DOI: 10.1182/blood.v94.10.3491.422k30_3491_3498] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell precursors that undergo productive rearrangements at the T-cell receptor (TCR) β locus are selected for proliferation and further maturation, before TCR expression, by signaling through a pre–TCR composed of the TCRβ chain paired with a pre–TCR (pT) chain. Such a critical developmental checkpoint, known as β-selection, results in progression from CD4−CD8− double negative (DN) to CD4+CD8+ double positive (DP) TCRβ−thymocytes. In contrast to mice, progression to the DP compartment occurs in humans via a CD4+ CD8−intermediate stage. Here we show that the CD4+CD8− to CD4+ CD8+ transition involves the sequential acquisition of the and β chains of CD8 at distinct maturation stages. Our results indicate that CD8, but not CD8β, is expressed in vivo in a minor subset of DP TCRβ− thymocytes, referred to as CD4+CD8+ pre-T cells, mostly composed of resting cells lacking cytoplasmic TCRβ chain (TCRβic). In contrast, expression of CD8β heterodimers was selectively found on DP TCRβ− thymocytes that express TCRβicand are enriched for cycling cells. Interestingly, CD4+CD8+ pre-T cells are shown to be functional intermediates between CD4+ CD8−TCRβic− and CD4+CD8β+ TCRβic+thymocytes. More importantly, evidence is provided that onset of CD8β and TCRβic expression are coincident developmental events associated with acquisition of CD3 and pT chain on the cell surface. Therefore, we propose that the CD4+CD8+ to CD4+CD8β+ transition marks the key control point of pre-TCR–mediated β-selection in human T-cell development.
Collapse
|
36
|
Gascoigne NR, Alam SM. Allelic exclusion of the T cell receptor alpha-chain: developmental regulation of a post-translational event. Semin Immunol 1999; 11:337-47. [PMID: 10497088 DOI: 10.1006/smim.1999.0190] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Allelic exclusion of the alpha and beta chains of the T cell receptor is maintained by different mechanisms. Exclusion of the beta-chain is primarily by allowing the successful rearrangement of only one of the two beta-chain loci. In the case of the alpha-chain, rearrangement on both chromosomes is very common, as is expression of alpha-chain mRNA and protein encoded by both loci. For the most part, however, functional alpha-chain allelic exclusion is maintained at the cell surface after positive selection in the thymus. The mechanism by which this is accomplished is not yet known, but recent evidence indicates that it is an active process coupled to signalling through the T cell receptor.
Collapse
Affiliation(s)
- N R Gascoigne
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
37
|
Zhong XP, Krangel MS. Enhancer-Blocking Activity Within the DNase I Hypersensitive Site 2 to 6 Region Between the TCR α and Dad1 Genes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Although tightly linked, the TCR α and δ genes are expressed specifically in T lymphocytes, whereas the Dad1 gene is ubiquitously expressed. Between TCR α and Dad1 are eight DNase I hypersensitive sites (HS). HS1 colocalizes with the TCR α enhancer (Eα) and is T cell-specific; HS2, -3, -4, -5, and -6 map downstream of HS1 and are tissue-nonspecific. The region spanning HS2–6 was reported to display chromatin-opening activity and to confer copy number-dependent and integration site-independent transgene expression in transgenic mice. Here, we demonstrate that HS2–6 also displays enhancer-blocking activity, as it can block an enhancer from activating a promoter when located between the two in a chromatin-integrated context, and can do so without repressing either the enhancer or the promoter. Multiple enhancer-blocking elements are arrayed across HS2–6. We show that HS2–6 by itself does not activate transcription in chromatin context, but can synergize with an enhancer when located upstream of an enhancer and promoter. We propose that HS2–6 primarily functions as an insulator or boundary element that may be critical for the autonomous regulation of the TCR α and Dad1 genes.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Michael S. Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
38
|
Rytkönen-Nissinen M, Hurwitz JL, Pelkonen S, Levelt C, Pelkonen J. Early activation of TCR alpha gene rearrangement in fetal thymocytes. Eur J Immunol 1999; 29:2288-96. [PMID: 10427992 DOI: 10.1002/(sici)1521-4141(199907)29:07<2288::aid-immu2288>3.0.co;2-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that the onset of TCR alpha gene rearrangement is mainly restricted to the J alpha50 gene in fetal day 1delta thymocyte hybridomas. Now, J alpha50 rearrangements from fetal thymocyte hybridomas and from day 15.5 fetal thymus have been isolated and sequenced. We demonstrate that J alpha50 is rearranged to the rearranged Vdelta1 Ddelta2 gene segment. This indicates that the TCR alpha rearrangement process is initiated in fetal thymocytes far earlier than previously thought. These thymocytes have their delta genes still accessible for rearrangement and therefore, are controlled by the TCR delta enhancer (Edelta) (and/or another TCR delta specific cis-acting element). Our results further suggest that both Edelta and the TCR alpha enhancer (Ealpha) are active at the onset of alpha rearrangements or alternatively, the initial activation of the J alpha locus is controlled by Edelta. In addition, Vdelta1 Ddelta2 J alpha50 gene segments are replaced by secondary alpha rearrangements, indicating that thymocytes with the early alpha rearrangement are committed to the alphabeta lineage.
Collapse
|
39
|
Eberl G, Fehling HJ, von Boehmer H, MacDonald HR. Absolute requirement for the pre-T cell receptor alpha chain during NK1.1+ TCRalphabeta cell development. Eur J Immunol 1999; 29:1966-71. [PMID: 10382759 DOI: 10.1002/(sici)1521-4141(199906)29:06<1966::aid-immu1966>3.0.co;2-g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Most natural killer T (NKT) cells express a highly skewed alphabeta TCR repertoire, consisting of an invariant V alpha14-J alpha281 chain paired preferentially with a polyclonal Vbeta8.2 chain. This repertoire is positively selected by the monomorphic CD1d molecule expressed on cells of hematopoietic origin. The origin of NKT cells and their lineage relationship to conventional T cells is controversial. We show here that the development of NKT cells is absolutely dependent on expression of the pre-TCRalpha chain, in marked contrast to conventional T cells which arise in significant numbers even in the absence of a functional pre-TCR. Distinct developmental requirements for pre-TCR expression in the NKT and T cell lineages may reflect differences in the ability of the TCRalphabeta to substitute functionally for the pre-TCR in immature precursor cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Female
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- G Eberl
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | |
Collapse
|
40
|
Aifantis I, Azogui O, Feinberg J, Saint-Ruf C, Buer J, von Boehmer H. On the role of the pre-T cell receptor in alphabeta versus gammadelta T lineage commitment. Immunity 1998; 9:649-55. [PMID: 9846486 DOI: 10.1016/s1074-7613(00)80662-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of the pre-T cell receptor (TCR) in lineage commitment to the gammadelta versus alphabeta lineage of T cells was addressed by analyzing TCRbeta chain rearrangements in gammadelta T cells from wild-type and pre-TCR-deficient mice by single cell polymerase chain reaction. Results show that the pre-TCR selects against gammadelta T cells containing rearranged Vbeta genes and that gammadelta T cell precursors but not gammadelta T cells express the pre-TCRalpha protein. Furthermore, pre-TCR-induced proliferation could not be detected in gammadelta T cells. We propose that the pre-TCR commits developing T cells to the alphabeta lineage by an instructive mechanism that has largely replaced an evolutionary more ancient stochastic mechanism of lineage commitment.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- I Aifantis
- Institut Necker, INSERM U373, Faculté de Médecine, Necker-Enfants-Malades, Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
von Boehmer H, Aifantis I, Azogui O, Feinberg J, Saint-Ruf C, Zober C, Garcia C, Buer J. Crucial function of the pre-T-cell receptor (TCR) in TCR beta selection, TCR beta allelic exclusion and alpha beta versus gamma delta lineage commitment. Immunol Rev 1998; 165:111-9. [PMID: 9850856 DOI: 10.1111/j.1600-065x.1998.tb01234.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The analysis of T-cell receptor (TCR) beta selection, TCR beta allelic exclusion and TCR beta rearrangement in gamma delta T cells from normal and pre-TCR-deficient mice has shown that the pre-TCR has a crucial role in T-lymphocyte development: The pre-TCR is by far the most effective receptor that generates large numbers of CD4+8+ T cells with productive TCR beta rearrangements. In the absence of the pre-TCR, TCR beta rearrangement proceeds in developing cells irrespective of whether they already contain a productive TCR beta gene. The pre-TCR directs developing T cells to the alpha beta lineage because gamma delta T cells from pT alpha-/- mice proceed much further in TCR beta rearrangement than gamma delta T cells from wild-type mice. It is argued that the pre-TCR commits developing T cells to the alpha beta lineage by an instructive mechanism, which has largely replaced an evolutionarily more ancient mechanism that involves stochastic alpha beta lineage commitment.
Collapse
Affiliation(s)
- H von Boehmer
- Institut Necker, INSERM U373, Faculté de Médecine, Necker-Enfants-Malades, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang F, Huang CY, Kanagawa O. Rapid deletion of rearranged T cell antigen receptor (TCR) Valpha-Jalpha segment by secondary rearrangement in the thymus: role of continuous rearrangement of TCR alpha chain gene and positive selection in the T cell repertoire formation. Proc Natl Acad Sci U S A 1998; 95:11834-9. [PMID: 9751751 PMCID: PMC21726 DOI: 10.1073/pnas.95.20.11834] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/1998] [Accepted: 08/11/1998] [Indexed: 11/18/2022] Open
Abstract
A rearranged T cell receptor (TCR) Valpha and Jalpha gene from a cytochrome c-specific T cell hybridoma was introduced into the genomic Jalpha region. The introduced TCR alpha chain gene is expressed in a majority of CD3 positive and CD4 CD8 double-negative immature thymocytes. However, only a few percent of the double-positive and single-positive thymocytes express this TCR alpha chain. This decrease is caused by a rearrangement of TCR alpha chain locus, which deletes the introduced TCR gene. Analysis of the mice carrying the introduced TCR alpha chain and the transgenic TCR beta chain from the original cytochrome c-specific T cell hybridoma revealed that positive selection efficiently rescues double-positive thymocytes from the loss of the introduced TCR alpha chain gene. In the mice with negatively selecting conditions, T cells expressing the introduced TCR alphabeta chains were deleted at the double-positive stage. However, a large number of thymocytes escape negative selection by using an endogenous TCR alpha chain created by secondary rearrangement maintaining normal thymocyte development. These results suggest that secondary rearrangements of the TCR alpha chain gene play an important role in the formation of the T cell repertoire.
Collapse
Affiliation(s)
- F Wang
- Center for Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
43
|
|
44
|
Sutton KA, Vu MN, Wilkinson MF. Distal V beta promoters transcribe novel T-cell receptor-beta transcripts in early development. Immunol Suppl 1998; 93:213-20. [PMID: 9616371 PMCID: PMC1364181 DOI: 10.1046/j.1365-2567.1998.00410.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional activation of germline T-cell receptor (TCR) and immunoglobulin (Ig) genes has been proposed to promote the rearrangement of these genes. Here we report the identification of distal TCR promoters (PDs), located upstream of the previously characterized promoters in the mouse V beta 5.1 and V beta 8.1 gene segments, that are active in germline TCR genes in fetal thymus and liver in vivo. We also identified an immature T-cell clone, SL12.4, that expresses both endogenous and transfected PDs in a regulated manner in vitro. We propose that the transcription of these distal promoters in germline TCR genes may be important for inducing TCR gene rearrangements during T-cell development. Northern blot, RNase protection and reverse transcription-polymerase chain reaction (RT-PCR) analyses demonstrated that PDs are also transcribed from fully rearranged TCR genes in adult thymus, lymph node, and spleen. Although the functional significance of this expression is not known, our sequence analysis of the 5' leader in PD-derived V beta 5.1 and V beta 8.1 transcripts revealed the presence of several open reading frames (ORFs) that may encode novel polypeptides or regulate the efficiency of TCR beta translation.
Collapse
Affiliation(s)
- K A Sutton
- Department of Immunology, University of Texas M. D. Anderson Cancer Centre, Houston, USA
| | | | | |
Collapse
|
45
|
Fehling HJ, Gilfillan S, Ceredig R. αβ/γδ Lineage Commitment in the Thymus of Normal and Genetically Manipulated Mice. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60399-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Buer J, Aifantis I, DiSanto JP, Fehling HJ, von Boehmer H. T-cell development in the absence of the pre-T-cell receptor. Immunol Lett 1997; 57:5-8. [PMID: 9232417 DOI: 10.1016/s0165-2478(97)00078-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of pre-T-cells with productive T-cell receptor beta (TCR beta) rearrangements can be furthered by each of the pre-T-cell receptors (pre-TCR), the alpha beta TCR as well as the gamma delta TCR, albeit by distinct mechanisms. While the gamma delta TCR affects CD4-8- precursor cells irrespective of their TCR beta rearrangement status both the pre-TCR and the alpha beta TCR select only cells with productive TCR beta genes for expansion and maturation. The alpha beta TCR is much less effective than the pre-TCR because of the paucity of TCR alpha proteins in TCR beta positive precursors.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/cytology
- Cell Differentiation
- Hematopoietic Stem Cells/cytology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
Collapse
Affiliation(s)
- J Buer
- INSERM 373, Institut Necker, Paris, France
| | | | | | | | | |
Collapse
|
47
|
Buer J, Aifantis I, DiSanto JP, Fehling HJ, von Boehmer H. Role of different T cell receptors in the development of pre-T cells. J Exp Med 1997; 185:1541-7. [PMID: 9151891 PMCID: PMC2196301 DOI: 10.1084/jem.185.9.1541] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of pre-T cells with productive TCR-beta rearrangements can be mediated by each the pre-T cell receptor (pre-TCR), the TCR-alphabeta as well as the TCR-gammadelta, albeit by distinct mechanisms. Although the TCR-gammadelta affects CD4-8- precursor cells irrespective of their rearrangement status by TCR-beta mechanisms not involving TCR-beta selection, both the pre-TCR and the TCR-alphabeta select only cells with productive TCR-beta genes for expansion and maturation. The TCR-alphabeta appears to be much less effective than the pre-TCR because of the paucity of TCR-alpha proteins in TCR-beta-positive precursors since an early expressed transgenic TCR-alphabeta can largely substitute for the pre-TCR. Thus, the TCR-alphabeta can assume a role not only in the rescue from programmed cell death of CD4+8+ but also of CD4-8- thymocytes. In evolution this double function of the TCR-alphabeta may have been responsible for the maturation of alphabeta T cells before the advent of the pre-TCR-alpha chain.
Collapse
Affiliation(s)
- J Buer
- Institut Necker, Institut National de la Sante et de la Recherche Medicale, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
The pre-T cell receptor (pre-TCR) that minimally consists of the TCR beta chain and the disulfide-linked pre-T cell receptor alpha (pT alpha) chain in association with signal-transducing CD3 molecules rescues from programmed cell death cells with productive TCR beta rearrangements. The pre-TCR induces expansion and differentiation of these cells such that they become TCR alpha beta bearing CD4+8+ thymocytes, which express only a single TCR beta chain and then either die of neglect or--upon TCR-ligand interaction--undergo either positive or negative selection. The newly discovered pT alpha gene encodes a transmembrane protein that belongs to the Ig superfamily and contains a cytoplasmic tail that, however, has no essential function in signal transduction, which is mediated by CD3 molecules and most likely p56lck. Experiments in pT alpha gene-deficient mice show that the pre-TCR has a crucial role in maturation as well as allelic exclusion of alpha beta T cells but is not required for the development of gamma delta-expressing cells. The function of the pre-TCR cannot be fully assumed by an alpha beta TCR that is expressed abnormally early in T cell development.
Collapse
MESH Headings
- Animals
- CD3 Complex/metabolism
- Cell Differentiation
- Chromosome Mapping
- Gene Expression Regulation, Developmental
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Structure
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
Collapse
|
49
|
Affiliation(s)
- M Adinolfi
- Galton Laboratory, University College London, UK
| |
Collapse
|
50
|
Ramiro AR, Trigueros C, Márquez C, San Millán JL, Toribio ML. Regulation of pre-T cell receptor (pT alpha-TCR beta) gene expression during human thymic development. J Exp Med 1996; 184:519-30. [PMID: 8760805 PMCID: PMC2192728 DOI: 10.1084/jem.184.2.519] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In murine T cell development, early thymocytes that productively rearrange the T cell receptor (TCR) beta locus are selected to continue maturation, before TCR alpha expression, by means of a pre-TCR alpha- (pT alpha-) TCR beta heterodimer (pre-TCR). The aim of this study was to identify equivalent stages in human thymocyte development. We show here that variable-diversity-joining region TCR beta rearrangement and the expression of full-length TCR beta transcripts have been initiated in some immature thymocytes at the TCR alpha/beta- CD4+CD8- stage, and become common in a downstream subset of TCR alpha/beta- CD4+CD8+ thymocytes that is highly enriched in large cycling cells. TCR beta chain expression was hardly detected in TCR alpha/beta- CD4+CD8- thymocytes, whereas cytoplasmic TCR beta chain was found in virtually all TCR alpha/beta- CD4+CD8+ blasts. In addition, a TCR beta complex distinct from the mature TCR alpha/beta heterodimer was immunoprecipitated only from the latter subset. cDNA derived from TCR alpha/beta- CD4+CD8+ blasts allowed us to identify and clone the gene encoding the human pT alpha chain, and to examine its expression at different stages of thymocyte development. Our results show that high pT alpha transcription occurs only in CD4+CD8- and CD4+CD8+ TCR alpha/beta- thymocytes, whereas it is weaker in earlier and later stages of development. Based on these results, we propose that the transition from TCR alpha/beta- CD4+CD8- to TCR alpha/beta- CD4+CD8+ thymocytes represents a critical developmental stage at which the successful expression of TCR beta promotes the clonal expansion and further maturation of human thymocytes, independent of TCR alpha.
Collapse
Affiliation(s)
- A R Ramiro
- Centro de Biología Molecular Severo Ochoa, CSIC: Consejo Superior de Investigaciones Cientificas, Facultad de Biología, Universidad Autónoma de Madrid Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|