1
|
Liu N, Xu S, Yao Q, Zhu Q, Kai Y, Hsu JY, Sakon P, Pinello L, Yuan GC, Bauer DE, Orkin SH. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat Genet 2021; 53:511-520. [PMID: 33649594 PMCID: PMC8038971 DOI: 10.1038/s41588-021-00798-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
BCL11A, the major regulator of fetal hemoglobin (HbF, α2γ2) level, represses γ-globin expression through direct promoter binding in adult erythroid cells in a switch to adult hemoglobin (HbA, α2β2). To uncover how BCL11A initiates repression, we used CRISPR-Cas9, dCas9, dCas9-KRAB and dCas9-VP64 screens to dissect the γ-globin promoters and identified an activator element near the BCL11A-binding site. Using CUT&RUN and base editing, we demonstrate that a proximal CCAAT box is occupied by the activator NF-Y. BCL11A competes with NF-Y binding through steric hindrance to initiate repression. Occupancy of NF-Y is rapidly established following BCL11A depletion, and precedes γ-globin derepression and locus control region (LCR)-globin loop formation. Our findings reveal that the switch from fetal to adult globin gene expression within the >50-kb β-globin gene cluster is initiated by competition between a stage-selective repressor and a ubiquitous activating factor within a remarkably discrete region of the γ-globin promoters.
Collapse
Affiliation(s)
- Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuqian Xu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiuming Yao
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yan Kai
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan Y Hsu
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phraew Sakon
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Genetics and Genomic Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel E Bauer
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
3
|
Abstract
The structural and functional conservation of hemoglobin throughout mammals has made the laboratory mouse an exceptionally useful organism in which to study both the protein and the individual globin genes. Early researchers looked to the globin genes as an excellent model in which to examine gene regulation – bountifully expressed and displaying a remarkably consistent pattern of developmental activation and silencing. In parallel with the growth of research into expression of the globin genes, mutations within the β-globin gene were identified as the cause of the β-hemoglobinopathies such as sickle cell disease and β-thalassemia. These lines of enquiry stimulated the development of transgenic mouse models, first carrying individual human globin genes and then substantial human genomic fragments incorporating the multigenic human β-globin locus and regulatory elements. Finally, mice were devised carrying mutant human β-globin loci on genetic backgrounds deficient in the native mouse globins, resulting in phenotypes of sickle cell disease or β-thalassemia. These years of work have generated a group of model animals that display many features of the β-hemoglobinopathies and provided enormous insight into the mechanisms of gene regulation. Substantive differences in the expression of human and mouse globins during development have also come to light, revealing the limitations of the mouse model, but also providing opportunities to further explore the mechanisms of globin gene regulation. In addition, animal models of β-hemoglobinopathies have demonstrated the feasibility of gene therapy for these conditions, now showing success in human clinical trials. Such models remain in use to dissect the molecular events of globin gene regulation and to identify novel treatments based upon the reactivation of developmentally silenced γ-globin. Here, we describe the development of animal models to investigate globin switching and the β-hemoglobinopathies, a field that has paralleled the emergence of modern molecular biology and clinical genetics.
Collapse
Affiliation(s)
- Bradley McColl
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jim Vadolas
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
4
|
Masuda T, Wang X, Maeda M, Canver MC, Sher F, Funnell APW, Fisher C, Suciu M, Martyn GE, Norton LJ, Zhu C, Kurita R, Nakamura Y, Xu J, Higgs DR, Crossley M, Bauer DE, Orkin SH, Kharchenko PV, Maeda T. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 2016; 351:285-9. [PMID: 26816381 DOI: 10.1126/science.aad3312] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes encoding human β-type globin undergo a developmental switch from embryonic to fetal to adult-type expression. Mutations in the adult form cause inherited hemoglobinopathies or globin disorders, including sickle cell disease and thalassemia. Some experimental results have suggested that these diseases could be treated by induction of fetal-type hemoglobin (HbF). However, the mechanisms that repress HbF in adults remain unclear. We found that the LRF/ZBTB7A transcription factor occupies fetal γ-globin genes and maintains the nucleosome density necessary for γ-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A. Our study may provide additional opportunities for therapeutic targeting in the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Takeshi Masuda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Manami Maeda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Falak Sher
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chris Fisher
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Maria Suciu
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura J Norton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Catherine Zhu
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jian Xu
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Douglas R Higgs
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
| | - Takahiro Maeda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Bauer DE, Orkin SH. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 2015; 33:62-70. [PMID: 26375765 DOI: 10.1016/j.gde.2015.08.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 12/23/2022]
Abstract
The major disorders of β-globin, sickle cell disease and β-thalassemia, may be ameliorated by expression of the fetal gene paralog γ-globin. Uncertainty regarding the mechanisms repressing fetal hemoglobin in the adult stage has served as a puzzle of developmental gene regulation as well as a barrier to rational therapeutic design. Recent genome-wide association studies implicated the zinc-finger transcriptional repressor BCL11A in fetal hemoglobin regulation. Extensive genetic analyses have validated BCL11A as a potent repressor of fetal hemoglobin level. Studies of BCL11A exemplify how contextual gene regulation may often be the substrate for trait-associated common genetic variation. These discoveries have suggested novel rational approaches for the β-hemoglobin disorders including therapeutic genome editing.
Collapse
Affiliation(s)
- Daniel E Bauer
- Boston Children's Hospital, Boston, MA 02115, United States; Dana-Farber Cancer Institute, Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States; Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| | - Stuart H Orkin
- Boston Children's Hospital, Boston, MA 02115, United States; Dana-Farber Cancer Institute, Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States; Harvard Stem Cell Institute, Cambridge, MA 02138, United States; Howard Hughes Medical Institute, Boston, MA 02115, United States.
| |
Collapse
|
6
|
Extensively self-renewing erythroblasts derived from transgenic β-yac mice is a novel model system for studying globin switching and erythroid maturation. Exp Hematol 2014; 42:536-46.e8. [PMID: 24704162 DOI: 10.1016/j.exphem.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/22/2022]
Abstract
Globin gene regulation occurs in the context of a maturing erythroid cell, which is undergoing significant changes in chromatin structure and gene expression. There are few model systems available that facilitate studies of globin gene regulation in the context of erythroid maturation. Extensively self-renewing erythroblasts (ESREs) are a nontransformed model of erythroid maturation derived from murine fetal liver or yolk sac. Imaging flow cytometry and RNA-seq studies demonstrate that ESREs functionally and molecularly model erythroid maturation. To address the need for a model system that also recapitulates human globin switching, ESREs were derived from mice transgenic for the complete human β-globin locus (β-yac ESREs). β-yac ESREs express β-globin from the transgenic human locus, with minimal γ-globin expression. When treated with hydroxyurea or inhibitors to histone deacetylases, DNA methyltransferases, or the histone demethylase lysine specific demethylase 1 (LSD1), β-Yac ESREs significantly increase their γ-globin expression, demonstrating their utility for studying agents that influence maturational globin switching. β-yac ESREs were further used to characterize the secondary effects of LSD1 inhibition on erythroid maturation, with inhibition of LSD1 resulting in altered cell and nuclear size, prolonged Kit expression, and decreased rates of enucleation consistent with impaired maturation. Taken together, these studies demonstrate that β-yac ESREs have significant utility for identifying modulators of maturational globin switching as well as for studying the broader role of those modulators in erythroid maturation.
Collapse
|
7
|
Abstract
The level of fetal hemoglobin (HbF) modifies the severity of the common β-globin disorders. Knowledge of the normal mechanisms that repress HbF in the adult stage has remained limited until recently despite nearly 3 decades of molecular investigation, in part because of imperfect model systems. Recent studies have provided new insights into the developmental regulation of globin genes and identified specific transcription factors and epigenetic regulators responsible for physiologic silencing of HbF. Most prominent among these regulators is BCL11A, a transcriptional repressor that inhibits adult-stage HbF expression. KLF1 and c-Myb are additional critical HbF-regulating erythroid transcription factors more broadly involved in erythroid gene expression programs. Chromatin modifiers, including histone deacetylases and DNA methyltransferases, also play key roles in orchestrating appropriate globin gene expression. Taken together, these discoveries present novel therapeutic targets for further consideration. Although substantial hurdles remain, opportunities are now rich for the rational design of HbF inducers.
Collapse
|
8
|
Mouse models of prostate cancer. Prostate Cancer 2011; 2011:895238. [PMID: 22111002 PMCID: PMC3221286 DOI: 10.1155/2011/895238] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/12/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023] Open
Abstract
The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer.
Collapse
|
9
|
Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 2011; 117:3945-53. [PMID: 21321359 DOI: 10.1182/blood-2010-11-316893] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In humans, embryonic, fetal, and adult hemoglobins are sequentially expressed in developing erythroblasts during ontogeny. For the past 40 years, this process has been the subject of intensive study because of its value to enlighten the biology of developmental gene regulation and because fetal hemoglobin can significantly ameliorate the clinical manifestations of both sickle cell disease and β-thalassemia. Understanding the normal process of loss of fetal globin expression and activation of adult globin expression could potentially lead to new therapeutic approaches for these hemoglobin disorders. Herein, we briefly review the history of the study of hemoglobin switching and then focus on recent discoveries in the field that now make new therapeutic approaches seem feasible in the future. Erythroid-specific knockdown of fetal gene repressors or enforced expression of fetal gene activators may provide clinically applicable approaches for genetic treatment of hemoglobin disorders that would benefit from increased fetal hemoglobin levels.
Collapse
|
10
|
Sankaran VG, Xu J, Orkin SH. Advances in the understanding of haemoglobin switching. Br J Haematol 2010; 149:181-94. [PMID: 20201948 DOI: 10.1111/j.1365-2141.2010.08105.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study of haemoglobin switching has represented a focus in haematology due in large part to the clinical relevance of the fetal to adult haemoglobin switch for developing targeted approaches to ameliorate the severity of the beta-haemoglobinopathies. Additionally, the process by which this switch occurs represents an important paradigm for developmental gene regulation. In this review, we provide an overview of both the embryonic primitive to definitive switch in haemoglobin expression, as well as the fetal to adult switch that is unique to humans and old world monkeys. We discuss the nature of these switches and models of their regulation. The factors that have been suggested to regulate this process are then discussed. With the increased understanding and discovery of molecular regulators of haemoglobin switching, such as BCL11A, new avenues of research may lead ultimately to novel therapeutic, mechanism-based approaches to fetal haemoglobin reactivation in patients.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
11
|
Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production. Nat Struct Mol Biol 2009; 16:1195-9. [PMID: 19838191 PMCID: PMC2880176 DOI: 10.1038/nsmb.1677] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
Through the shuffling of predefined modular zinc finger (ZF) domains with predictable target site recognition in vitro, we have generated a large repertoire of artificial transcription factors (ATFs) with five ZF domains (TFZFs). Here we report an effective strategy for the selection of ATF libraries through the coupling of the expression of transcriptional activators of the promoter of interest to the enhanced production of retroviral vector particles transferring the gene encoding the TFZF. Using this strategy, we successfully selected specific TFZFs that upregulate the expression of the γ-globin promoter. Selected transcription factors induced the expression of γ-globin when coupled to an activation domain and reduced expression when linked to a repression domain. This novel retroviral approach might be used to select other TFZFs but also might be generalized for the selection of other protein and small molecule interactions.
Collapse
|
12
|
Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudine M, Bender MA, Tucker PW, Orkin SH. Developmental and species-divergent globin switching are driven by BCL11A. Nature 2009; 460:1093-7. [PMID: 19657335 DOI: 10.1038/nature08243] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 06/30/2009] [Indexed: 11/09/2022]
Abstract
The contribution of changes in cis-regulatory elements or trans-acting factors to interspecies differences in gene expression is not well understood. The mammalian beta-globin loci have served as a model for gene regulation during development. Transgenic mice containing the human beta-globin locus, consisting of the linked embryonic (epsilon), fetal (gamma) and adult (beta) genes, have been used as a system to investigate the temporal switch from fetal to adult haemoglobin, as occurs in humans. Here we show that the human gamma-globin (HBG) genes in these mice behave as murine embryonic globin genes, revealing a limitation of the model and demonstrating that critical differences in the trans-acting milieu have arisen during mammalian evolution. We show that the expression of BCL11A, a repressor of human gamma-globin expression identified by genome-wide association studies, differs between mouse and human. Developmental silencing of the mouse embryonic globin and human gamma-globin genes fails to occur in mice in the absence of BCL11A. Thus, BCL11A is a critical mediator of species-divergent globin switching. By comparing the ontogeny of beta-globin gene regulation in mice and humans, we have shown that alterations in the expression of a trans-acting factor constitute a critical driver of gene expression changes during evolution.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Palstra R, de Laat W, Grosveld F. Chapter 4 β‐Globin Regulation and Long‐Range Interactions. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:107-42. [DOI: 10.1016/s0065-2660(07)00004-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Fedosyuk H, Peterson KR. Deletion of the human beta-globin LCR 5'HS4 or 5'HS1 differentially affects beta-like globin gene expression in beta-YAC transgenic mice. Blood Cells Mol Dis 2007; 39:44-55. [PMID: 17433733 PMCID: PMC1934938 DOI: 10.1016/j.bcmd.2007.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
A 213 kb human beta-globin locus yeast artificial chromosome (beta-YAC) was modified by homologous recombination to delete 2.9 kb of cross-species conserved sequence similarity encompassing the LCR 5' hypersensitive site (HS) 4 (Delta5'HS4 beta-YAC). In three transgenic mouse lines, completion of the gamma- to beta-globin switch during definitive erythropoiesis was delayed relative to wild-type beta-YAC mice. In addition, quantitative per-copy human beta-like globin mRNA levels were similar to wild-type beta-YAC transgenic lines, although beta-globin gene expression was slightly decreased in the day 12 fetal liver of Delta5'HS4 beta-YAC mice. A 0.8 kb 5'HS1 fragment was similarly deleted in the YAC. Three Delta5'HS1 beta-YAC transgenic lines were established. epsilon-globin gene expression was markedly reduced, approximately 16 fold, during primitive erythropoiesis compared to wild-type beta-YAC mice, but gamma-globin expression levels were unaffected. However, during the fetal stage of definitive erythropoiesis, gamma-globin gene expression was decreased approximately 4 fold at day 12 and approximately 5 fold at day 14. Temporal developmental expression profiles of the beta-like globin genes were unaffected by deletion of 5'HS1. Decreased expression of the epsilon- and gamma-globin genes is the first phenotype ascribed to a 5'HS1 mutation in the human beta-globin locus, suggesting that this HS does indeed have a role in LCR function beyond simply a combined synergism with the other LCR HSs.
Collapse
Affiliation(s)
- Halyna Fedosyuk
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
15
|
Yu M, Han H, Xiang P, Li Q, Stamatoyannopoulos G. Autonomous silencing as well as competition controls gamma-globin gene expression during development. Mol Cell Biol 2006; 26:4775-81. [PMID: 16782867 PMCID: PMC1489144 DOI: 10.1128/mcb.00406-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To investigate the control of the gamma-globin gene during development, we produced transgenic mice in which sequences of the beta-gene promoter were replaced by equivalent sequences of the gamma-gene promoter in the context of a human beta-globin locus yeast artificial chromosome (betaYAC) and analyzed the effects on globin gene expression during development. Replacement of 1,077 nucleotides (nt) of the beta-gene promoter by 1,359 nt of the gamma promoter resulted in striking inhibition of the gamma-promoter/beta-gene expression in the adult stage of development, providing direct evidence that the expression of the gamma gene in the adult is mainly controlled by autonomous silencing. Measurements of the expression of the gamma promoter/beta-globin gene as well as the wild gamma genes showed that gene competition is also involved in the control of gamma-gene expression in the fetal stage of development. We conclude that autonomous silencing is the main mechanism controlling gamma-gene expression in the adult, while autonomous silencing as well as competition between gamma and beta genes contributes to the control of gamma to beta switching during fetal development.
Collapse
Affiliation(s)
- Man Yu
- Medical Genetics, Box 357720, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
16
|
Navas PA, Li Q, Peterson KR, Stamatoyannopoulos G. Investigations of a human embryonic globin gene silencing element using YAC transgenic mice. Exp Biol Med (Maywood) 2006; 231:328-34. [PMID: 16514181 PMCID: PMC2812921 DOI: 10.1177/153537020623100314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A silencing element has been previously located upstream of the human epsilon-globin gene promoter using transient assays and transgenic mice carrying plasmid constructs in which the element has been deleted or its transcriptional motifs have been mutated. To investigate whether this element functions in the context of the whole beta-globin locus, we analyzed epsilon-globin gene expression in transgenic mice carrying a deletion of the silencing element in the context of a 213-kilobase human beta-globin yeast artificial chromosome (beta-YAC). epsilon-Globin gene expression was measured during embryonic and fetal development and in adult mice. epsilon-mRNA levels in embryonic cells in Day 12 blood were as high as those measured in wild-type beta-YAC controls, indicating that the deletion does not affect epsilon gene promoter function. epsilon-Globin gene expression was confined to the embryonic cells, indicating that deletion of this silencing element did not affect epsilon-globin developmental expression in the context of the beta-YAC. These results suggest that in the context of the whole beta-globin locus, other proximal and upstream epsilon gene promoter elements as well as competition by the downstream globin genes contribute to the silencing of the epsilon-globin gene in the cells of definitive erythropoiesis.
Collapse
Affiliation(s)
- Patrick A Navas
- Division of Medical Genetics, University of Washington, Seattle, 98195, USA.
| | | | | | | |
Collapse
|
17
|
Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P. Developmental regulation of the beta-globin gene locus. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:183-206. [PMID: 15881896 DOI: 10.1007/3-540-27310-7_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The beta-globin genes have become a classical model for studying regulation of gene expression. Wide-ranging studies have revealed multiple levels of epigenetic regulation that coordinately ensure a highly specialised, tissue- and stage-specific gene transcription pattern. Key players include cis-acting elements involved in establishing and maintaining specific chromatin conformations and histone modification patterns, elements engaged in the transcription process through long-range regulatory interactions, transacting general and tissue-specific factors. On a larger scale, molecular events occurring at the locus level take place in the context of a highly dynamic nucleus as part of the cellular epigenetic programme.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li Q, Han H, Ye X, Stafford M, Barkess G, Stamatoyannopoulos G. Transcriptional potentials of the beta-like globin genes at different developmental stages in transgenic mice and hemoglobin switching. Blood Cells Mol Dis 2005; 33:318-25. [PMID: 15528151 DOI: 10.1016/j.bcmd.2004.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Indexed: 11/17/2022]
Abstract
Developmental-stage-specific regulation and physiological levels of expression of the globin genes can be recaptured in transgenic mice carrying a YAC/BAC- or cosmid-based construct. By contrast, proper developmental regulation and high-level expression cannot be achieved coordinately in transgenic mice carrying a more manipulated construct, such as a plasmid-based globin gene construct. These differences provide us an opportunity to define the requirements for a developmentally regulated, high-level expression of the globin genes in vivo. To achieve this, as a first step, we studied maximum transcriptional potentials of the beta-globin genes at various stages of development. microLCR-enhanced expression of the epsilon-, gamma-, and beta-globin genes driven by their minimal promoters was estimated and compared with that in betaYAC transgenic mice. Quantitative measurements of steady state mRNA levels of the epsilon-, gamma-, and beta-globin genes showed that the microLCR was able to enhance expression of each beta-like globin gene to levels similar to those in the betaYAC mice. Moreover, transcriptional potentials of each globin gene were unchanged during the entire course of development. These observations indicate that the highest level of expression of the globin genes can be achieved in both embryonic and definitive erythropoiesis regardless of developmental specificity of the genes. This finding implies that transcription suppression is the major mechanism of the developmental specificity of the expression of the beta-like globin genes.
Collapse
Affiliation(s)
- Qiliang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Gräslund T, Li X, Magnenat L, Popkov M, Barbas CF. Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of gamma-globin expression and the treatment of sickle cell disease. J Biol Chem 2004; 280:3707-14. [PMID: 15537646 DOI: 10.1074/jbc.m406809200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Artificial transcription factors can be engineered to interact with specific DNA sequences to modulate endogenous gene expression within cells. A significant hurdle to implementation of this approach is the selection of the appropriate DNA sequence for targeting. We reasoned that a good target site should be located in chromatin, where it is accessible to DNA-binding proteins, and it should be in the close vicinity of known transcriptional regulators of the gene. Here we have explored the efficacy of these criteria to guide our selection of potential regulators of gamma-globin expression. Several zinc finger-based transcriptional activators were designed to target the sites proximal to the -117-position of the gamma-globin promoter. This region is proximal to the binding sites of known and potential natural transcription factors. Design and study of three transcription factors identified the potent transcriptional activator, gg1-VP64-HA. This transcription factor was able to interact directly with the gamma-globin promoter and up-regulate expression of reporter gene constructs as well as the endogenous gene in a selective manner. Transfection of a gg1-VP64-HA expression vector or retroviral delivery of this transcription factor into the erythroleukemia cell line K562 resulted in an increase of fetal hemoglobin. The gamma-globin content of cells expressing gg1-vp64-HA showed up to 16-fold higher levels of fetal hemoglobin than the native K562 cell line. These transcriptional activators constitute a novel class of regulators of the globin locus that may be suitable for treatment of diseases arising from mutations in this locus such as sickle cell disease and thalassemic diseases.
Collapse
Affiliation(s)
- Torbjörn Gräslund
- Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Increased levels of fetal hemoglobin (HbF) are clinically beneficial in patients with sickle cell disease. Hydroxurea fails to increase HbF in at least 25% of patients, and therefore, better drugs are needed. Recent clinical studies have shown that the DNA methyltransferase (DNMT) inhibitor decitabine effectively increased HbF in hydroxyurea-refractory patients. The rational use of DNMT inhibitors as therapeutic agents to reactivate HbF expression in patients with sickle cell disease is based on nearly 25 years of experimental evidence, reviewed in this article, that supports a fundamental role of DNA methylation in the silencing of gamma-globin gene expression in adults.
Collapse
Affiliation(s)
- Donald E Lavelle
- Department of Medicine, University of Illinois at Chicago, Jesse Brown Veterans' Affairs Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Li Q, Fang X, Han H, Stamatoyannopoulos G. The minimal promoter plays a major role in silencing of the galago gamma-globin gene in adult erythropoiesis. Proc Natl Acad Sci U S A 2004; 101:8096-101. [PMID: 15148375 PMCID: PMC419563 DOI: 10.1073/pnas.0402594101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human gamma-globin gene and its orthologous galago gamma-globin gene evolved from an ancestral epsilon-globin gene. In galago, expression of the gamma-gene remained restricted to the embryonic stage of development, whereas in humans, expression of the gamma-gene was recruited to the fetal stage. To localize the cis-elements responsible for this developmentally distinct regulation, we studied the expression patterns of the human gamma-gene driven by either the human or the galago gamma-promoters in transgenic mice. gamma-gene transcription driven by either promoter reached similar levels in embryonic erythropoiesis. In adult erythropoiesis the gamma-gene was silenced when controlled by the galago gamma-promoter, but it was expressed at a high level when it was linked to the human gamma-promoter. By a series of gamma-promoter truncations the sequences required for the down-regulation of the galago gamma-globin gene were localized to the minimal promoter. Furthermore, by interchanging the TATA, CCAAT, and CACCC elements between the human and galago minimal promoters we found that whereas each box made a developmentally distinctive contribution to gamma-globin gene expression, the CACCC box was largely responsible for the down-regulation of the gamma-gene in adult erythropoiesis.
Collapse
Affiliation(s)
- Qiliang Li
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
22
|
Katsantoni EZ, Langeveld A, Wai AWK, Drabek D, Grosveld F, Anagnou NP, Strouboulis J. Persistent gamma-globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences. Blood 2003; 102:3412-9. [PMID: 12855570 DOI: 10.1182/blood-2003-05-1681] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletions at the 3' end of the human beta-globin locus are associated with the hereditary persistence of fetal hemoglobin (HPFH) in adults, potentially through the juxtaposition of enhancer elements in the vicinity of the fetal gamma-globin genes. We have tested how sequences at the HPFH-2, HPFH-3, and HPFH-6 breakpoints, which act as enhancers in vitro, affect the silencing of a locus control region A gamma (LCRA gamma) transgene in the adult stage of mice. We found persistent A gamma expression in the adult blood of most of the multicopy HPFH-2, HPFH-3, or HPFH-6 lines, in contrast to the control LCRA gamma lines which were silenced. Cre-mediated generation of single copy lines showed persistent gamma gene expression maintained in some of the HPFH-2 and HPFH-6 lines, but not in any of the HPFH-3 or LCRA gamma lines. In the HPFH-2 and HPFH-6 lines, persistent gamma gene expression correlated with euchromatic transgene integrations. Thus, our observations provide support for a model whereby HPFH conditions arise from the juxtaposition of enhancers as well as permissive chromatin subdomains in the vicinity of the gamma-globin genes.
Collapse
Affiliation(s)
- Eleni Z Katsantoni
- Department of Basic Sciences, University of Crete School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
23
|
Haley JD, Smith DE, Schwedes J, Brennan R, Pearce C, Moore C, Wang F, Petti F, Grosveld F, Jane SM, Noguchi CT, Schechter AN. Identification and characterization of mechanistically distinct inducers of γ-globin transcription. Biochem Pharmacol 2003; 66:1755-68. [PMID: 14563486 PMCID: PMC1351252 DOI: 10.1016/s0006-2952(03)00542-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of HbS polymerization is a major target for therapeutic approaches in sickle cell anemia. Toward this goal, initial efforts at pharmacological elevation of fetal hemoglobin (HbF) has shown therapeutic efficacy. In order to identify well-tolerated, novel agents that induce HbF in patients, we developed a high-throughput screening approach based on induction of gamma-globin gene expression in erythroid cells. We measured gamma-globin transcription in K562 cells transfected with either gamma promoter elements fused with the locus control region hypersensitivity site 2 and luciferase reporter gene (HS2 gamma) or a beta-yeast artificial chromosome in which the luciferase reporter gene was recombined into the gamma-globin coding sequences (gamma YAC). Corresponding pharmacological increases in HbF protein were confirmed in both K562 cells and in human primary erythroid progenitor cells. Approximately 186,000 defined chemicals and fungal extracts were evaluated for their ability to increase gamma gene transcription in either HS2 gamma or gamma YAC models. Eleven distinct classes of compounds were identified, the majority of which were active within 24-48 hr. The short chain hydroxamate-containing class generally exhibited delayed maximal activity, which continued to increase transcription up to 120 hr. The cyclic tetrapeptide OSI-2040 and the hydroxamates were shown to have histone deacetylase inhibitory activity. In primary hematopoietic progenitor cell cultures, OSI-2040 increased HbF by 4.5-fold at a concentration of only 40 nM, comparable to the effects of hydroxyurea at 100 microM. This screening methodology successfully identifies active compounds for further mechanistic and preclinical evaluation as potential therapeutic agents for sickle cell anemia.
Collapse
Affiliation(s)
- John D Haley
- OSI Pharmaceuticals Inc., Farmingdale, NY 11735, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G. Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Hum Mol Genet 2003; 12:2941-8. [PMID: 14506128 PMCID: PMC2808411 DOI: 10.1093/hmg/ddg319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-level beta-globin gene expression is dependent on the presence of the locus control region (LCR), a powerful regulatory element physically characterized by five DNase I-hypersensitive sites (HS), designated HS1-HS5. Of these, HS3 contains seven GT motifs that are essential for its activity. One of the motifs, GT6, has been shown by in vivo footprinting to display the largest difference in signal between fetal and adult globin expressing cells. We assessed the contribution of GT6 on the downstream globin gene expression by mutating this motif in a 248 kb beta-globin locus yeast artificial chromosome and measuring the activity of beta-globin genes in GT6m beta-YAC transgenic mice. Seven transgenic lines were established, three of which contained at least one intact copy of the beta-globin locus and were further investigated. The mutation of the GT6 motif reduced the expression of epsilon- and gamma-globin genes during embryonic erythropoiesis. During definitive erythropoiesis, gamma-globin gene expression was significantly reduced while beta-globin gene expression was virtually indistinguishable from wild-type controls. We conclude that the GT6 motif of hypersensitive site 3 of the LCR is required for normal epsilon- and gamma-globin gene expression during embryonic erythropoiesis and for gamma-globin gene expression during definitive erythropoiesis in the fetal liver. Our results provide evidence that mutations of single transcriptional motifs of distant regulatory elements can have profound effects on gene expression.
Collapse
|
25
|
Gaensler KML, Zhang Z, Lin C, Yang S, Hardt K, Flebbe-Rehwaldt L. Sequences in the (A)gamma-delta intergenic region are not required for stage-specific regulation of the human beta-globin gene locus. Proc Natl Acad Sci U S A 2003; 100:3374-9. [PMID: 12629213 PMCID: PMC152300 DOI: 10.1073/pnas.0634132100] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human beta-globin locus has been extensively studied as a model of tissue and developmental stage-specific gene expression. Structural mapping of naturally occurring mutations, including transfection and transgenic studies, and the recent finding of intergenic transcripts have suggested that there are cis-acting sequence elements in the (A)gamma-delta intergenic region involved in regulating gamma- and beta-globin gene expression. To determine whether previously identified sequences in the (A)gamma-delta intergenic region are required for appropriate developmental expression of the human beta-globin gene cluster, transgenic mice were generated by transfer of yeast artificial chromosomes containing the entire human beta-globin locus. Three different deletions of the (A)gamma-delta intergenic region were introduced, including (i) deletion of the 750-bp (A)gamma 3' regulatory element ((A)gammae), (ii) deletion of 3.2 kb upstream of the delta-globin gene encompassing pyrimidine-rich sequences and the recently described intergenic transcript initiation site, and (iii) deletion of a 12.5-kb fragment encompassing most of the (A)gamma-delta globin intergenic region. Analysis of multiple transgenic lines carrying these deletion constructs demonstrated that the normal stage-specific sequential expression of the epsilon -, gamma-, and beta-globin genes was preserved, despite deletion of these putative regulatory sequences. These studies suggest that regulatory sequences required for activation and silencing of the human beta-globin gene family during ontogeny reside proximally to the genes and immediately 5' to the human gamma- and beta-globin genes.
Collapse
Affiliation(s)
- Karin M L Gaensler
- Department of Medicine and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Harju S, McQueen KJ, Peterson KR. Chromatin structure and control of beta-like globin gene switching. Exp Biol Med (Maywood) 2002; 227:683-700. [PMID: 12324650 DOI: 10.1177/153537020222700902] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human beta-globin locus is a complex genetic system widely used for analysis of eukaryotic gene expression. The locus consists of five functional beta-like globin genes, epsilon, (G)gamma, (A)gamma, delta, and beta, arrayed on the chromosome in the order that they are expressed during ontogeny. Globin gene expression is regulated, in part, by the locus control region, which physically consists of five DNaseI-hypersensitive sites located 6-22 Kb upstream of the epsilon -globin gene. During ontogeny two switches occur in beta-globin gene expression that reflect the changing oxygen requirements of the fetus. The first switch from embryonic epsilon - to fetal gamma-globin occurs at six weeks of gestation. The second switch from gamma- to adult delta- and beta-globin occurs shortly after birth. Throughout the locus, cis-acting elements exist that are dynamically bound by trans-acting proteins, including transcription factors, co-activators, repressors, and chromatin modifiers. Discovery of novel erythroid-specific transcription factors and a role for chromatin structure in gene expression have enhanced our understanding of the mechanism of globin gene switching. However, the hierarchy of events regulating gene expression during development, from extracellular signaling to transcriptional activation or repression, is complex. In this review we attempt to unify the current knowledge regarding the interplay of cis-acting elements, transcription factors, and chromatin modifiers into a comprehensive overview of globin gene switching.
Collapse
Affiliation(s)
- Susanna Harju
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
27
|
Schnell S, Maini PK, McInerney D, Gavaghan DJ, Houston P. Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology. C R Biol 2002; 325:179-89. [PMID: 12017765 DOI: 10.1016/s1631-0691(01)01418-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Somitogenesis, the process by which a bilaterally symmetric pattern of cell aggregations is laid down in a cranio-caudal sequence in early vertebrate development, provides an excellent model study for the coupling of interactions at the molecular and cellular level. Here, we review some of the key experimental results and theoretical models related to this process. We extend a recent chemical pre-pattern model based on the cell cycle Journal of Theoretical Biology 207 (2000) 305-316, by including cell movement and show that the resultant model exhibits the correct spatio-temporal dynamics of cell aggregation. We also postulate a model to account for the recently observed spatio-temporal dynamics at the molecular level.
Collapse
Affiliation(s)
- Santiago Schnell
- Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles', Oxford OX1 3LB, UK.
| | | | | | | | | |
Collapse
|
28
|
Navas PA, Peterson KR, Li Q, McArthur M, Stamatoyannopoulos G. The 5'HS4 core element of the human beta-globin locus control region is required for high-level globin gene expression in definitive but not in primitive erythropoiesis. J Mol Biol 2001; 312:17-26. [PMID: 11545582 DOI: 10.1006/jmbi.2001.4939] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the contribution of DNase I-hypersensitive site 4 (HS4) of the beta-globin locus control region (LCR) to overall LCR function we deleted a 280 bp fragment encompassing the core element of 5'HS4 from a 248 kb beta-globin locus yeast artificial chromosome (beta-YAC) and analyzed globin gene expression during development in beta-YAC transgenic mice. Four transgenic lines were established; each contained at least one intact copy of the beta-globin locus. The deletion of the 5'HS4 core element had no effect on globin gene expression during embryonic erythropoiesis. In contrast, deletion of the 5'HS4 core resulted in a significant decrease of gamma and beta-globin gene expression during definitive erythropoiesis in the fetal liver and a decrease of beta-globin gene expression in adult blood. We conclude that the core element of 5'HS4 is required for globin gene expression only in definitive erythropoiesis. Absence of the core element of HS4 may limit the ability of the LCR to provide an open chromatin domain and/or enhance gamma and beta-globin gene expression in the adult erythroid cells.
Collapse
Affiliation(s)
- P A Navas
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Jon W. Gordon
- Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Tanimoto K, Liu Q, Grosveld F, Bungert J, Engel JD. Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells of YAC transgenic mice. Genes Dev 2000; 14:2778-94. [PMID: 11069894 PMCID: PMC317038 DOI: 10.1101/gad.822500] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We explored the mechanism of definitive-stage epsilon-globin transcriptional inactivity within a human beta-globin YAC expressed in transgenic mice. We focused on the globin CAC and CAAT promoter motifs, as previous laboratory and clinical studies indicated a pivotal role for these elements in globin gene activation. A high-affinity CAC-binding site for the erythroid krüppel-like factor (EKLF) was placed in the epsilon-globin promoter at a position corresponding to that in the adult beta-globin promoter, thereby simultaneously ablating a direct repeat (DR) element. This mutation led to EKLF-independent epsilon-globin transcription during definitive erythropoiesis. A second 4-bp substitution in the epsilon-globin CAAT sequence, which simultaneously disrupts a second DR element, further enhanced ectopic definitive erythroid activation of epsilon-globin transcription, which surprisingly became EKLF dependent. We finally examined factors in nuclear extracts prepared from embryonic or adult erythroid cells that bound these elements in vitro, and we identified a novel DR-binding protein (DRED) whose properties are consistent with those expected for a definitive-stage epsilon-globin repressor. We conclude that the suppression of epsilon-globin transcription during definitive erythropoiesis is mediated by the binding of a repressor that prevents EKLF from activating the epsilon-globin gene.
Collapse
Affiliation(s)
- K Tanimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | |
Collapse
|
31
|
Sabatino DE, Wong C, Cline AP, Pyle L, Garrett LJ, Gallagher PG, Bodine DM. A minimal ankyrin promoter linked to a human gamma-globin gene demonstrates erythroid specific copy number dependent expression with minimal position or enhancer dependence in transgenic mice. J Biol Chem 2000; 275:28549-54. [PMID: 10878017 DOI: 10.1074/jbc.m004043200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In red blood cells ankyrin (ANK-1) provides the primary linkage between the erythrocyte membrane skeleton and the plasma membrane. We have previously demonstrated that a 271-bp 5'-flanking region of the ANK-1 gene has promoter activity in erythroid, but not non-erythroid, cell lines. To determine whether the ankyrin promoter could direct erythroid-specific expression in vivo, we analyzed transgenic mice containing the ankyrin promoter fused to the human (A)gamma-globin gene. Sixteen of 17 lines expressed the transgene in erythroid cells indicating nearly position-independent expression. We also observed a significant correlation between the level of Ank/(A)gamma-globin mRNA and transgene copy number. The level of Ank/(A)gamma mRNA averaged 11% of mouse alpha-globin mRNA per gene copy at all developmental stages. The addition of the HS2 enhancer from the beta-globin locus control region to the Ank/(A)gamma-globin transgene resulted in Ank/(A)gamma-globin mRNA expression in embryonic and fetal erythroid cells in six of eight lines but resulted in absent or dramatically reduced levels of Ank/(A)gamma-globin mRNA in adult erythroid cells in eight of eight transgenic lines. These data indicate that the minimal ankyrin promoter contains all sequences necessary and sufficient for erythroid-specific, copy number-dependent, position-independent expression of the human (A)gamma-globin gene.
Collapse
Affiliation(s)
- D E Sabatino
- Hematopoiesis Section, Genetics and Molecular Biology Branch, NHGRI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Tanimoto K, Liu Q, Bungert J, Engel JD. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR. Nucleic Acids Res 1999; 27:3130-7. [PMID: 10454609 PMCID: PMC148539 DOI: 10.1093/nar/27.15.3130] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The polyoma virus enhancer (PyE) is capable of conferring integration position-independent expression to linked genes in stably transfected erythroid cells after joining to DNase I hypersensitive site (HS) 5 of the human beta-globin locus control region (LCR). In attempting to separate the chromatin opening activity of the LCR from its enhancer activity and to investigate contributions of the individual HS core elements to LCR function, the human beta-globin LCR HS2, HS3 and HS4 core elements were replaced with the PyE within the context of a yeast artificial chromosome (YAC) bearing the whole locus. We show here that, in contrast to its function in cultured cells, the PyE is unable to replace HS core element function in vivo. We found that the PyE substitution mutant LCR is unable to provide either chromatin opening or transcriptional potentiating activity at any erythroid developmental stage in transgenic mice. These data provide direct evidence that the human beta-globin LCR core elements specify unique functions that cannot be replaced by a ubiquitous enhancer activity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Artificial, Yeast/genetics
- Deoxyribonuclease I/metabolism
- Enhancer Elements, Genetic/genetics
- Erythrocytes/metabolism
- Gene Dosage
- Gene Expression Regulation, Developmental
- Globins/genetics
- Humans
- Locus Control Region/genetics
- Mice
- Mice, Transgenic
- Mutagenesis, Site-Directed/genetics
- Mutation
- Polyomavirus/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Transgenes/genetics
- Yeasts/genetics
- Yolk Sac/metabolism
Collapse
Affiliation(s)
- K Tanimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
33
|
Irving DN. Cloning: Legal, Medical, Ethical and Social Issues: Hearing before the Subcommittee on Health and Environment of the Committee on Commerce U.S. House of Representatives. Linacre Q 1999. [DOI: 10.1080/20508549.1999.11877537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Sabatino DE, Cline AP, Gallagher PG, Garrett LJ, Stamatoyannopoulos G, Forget BG, Bodine DM. Substitution of the human beta-spectrin promoter for the human agamma-globin promoter prevents silencing of a linked human beta-globin gene in transgenic mice. Mol Cell Biol 1998; 18:6634-40. [PMID: 9774678 PMCID: PMC109248 DOI: 10.1128/mcb.18.11.6634] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Accepted: 07/23/1998] [Indexed: 11/20/2022] Open
Abstract
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human beta-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Agamma-globin gene linked to a 576-bp fragment containing the human beta-spectrin promoter. In these mice, the beta-spectrin Agamma-globin (betasp/Agamma) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, betasp/Agamma-, psibeta-, delta-, and beta-globin genes showed no developmental switching and expressed both human gamma- and beta-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Agamma-globin gene promoter showed developmental switching and expressed Agamma-globin mRNA in yolk sac and fetal liver erythroid cells and beta-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the gamma-globin promoter with the beta-spectrin promoter allows the expression of the beta-globin gene. We conclude that the gamma-globin promoter is necessary and sufficient to suppress the expression of the beta-globin gene in yolk sac erythroid cells.
Collapse
Affiliation(s)
- D E Sabatino
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
HSU CHUNX, ROSS BRIAND, CHRISP CLARENCEE, DERROW SOLOMONZ, CHARLES LINDAG, PIENTA KENNETHJ, GREENBERG NORMANM, ZENG ZHI, SANDA MARTING. LONGITUDINAL COHORT ANALYSIS OF LETHAL PROSTATE CANCER PROGRESSION IN TRANSGENIC MICE. J Urol 1998. [DOI: 10.1016/s0022-5347(01)62603-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- CHUN X. HSU
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - BRIAN D. ROSS
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - CLARENCE E. CHRISP
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - SOLOMON Z. DERROW
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - LINDA G. CHARLES
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - KENNETH J. PIENTA
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - NORMAN M. GREENBERG
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - ZHI ZENG
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | - MARTIN G. SANDA
- From the Departments of Surgery/Urology, Radiology and Biological Chemistry, Unit for Laboratory Animal Medicine, and Medicine/Oncology, University of Michigan School of Medicine, the Surgery Service, Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, and the Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
37
|
Ley TJ, Hug B, Fiering S, Epner E, Bender MA, Groudine M. Reduced beta-globin gene expression in adult mice containing deletions of locus control region 5' HS-2 or 5' HS-3. Ann N Y Acad Sci 1998; 850:45-53. [PMID: 9668526 DOI: 10.1111/j.1749-6632.1998.tb10461.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To gain insights into the functions of individual DNA'se hypersensitive sites within the beta globin locus control region (LCR), we deleted the endogenous 5' HS-2 and HS-3 regions from the mouse germline using homologous recombination techniques. We demonstrated that the deletion of either murine 5' HS-2 or 5' HS-3 reduced the expression of the embryonic epsilon y and beta h1 globin genes minimally in yolk sac-derived erythrocytes, but that both knockouts reduced the output of the adult beta (beta-Major + beta-Minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-Neo cassette was retained within either the HS-2 or HS-3 region, a much more severe reduction in globin gene expression was observed at all developmental stages. PGK-Neo was shown to be expressed in an erythroid-specific fashion when it was retained in the HS-3 position. These results show that neither 5' HS-2 nor HS-3 is required for the activity of embryonic globin genes, nor are these sites required for correct developmental switching. However, each site is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult red blood cells. Each site therefore contains some non-redundant information that contributes to adult globin gene function.
Collapse
Affiliation(s)
- T J Ley
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri 63110-1093, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Li J, Noguchi CT, Miller W, Hardison R, Schechter AN. Multiple regulatory elements in the 5'-flanking sequence of the human epsilon-globin gene. J Biol Chem 1998; 273:10202-9. [PMID: 9553070 DOI: 10.1074/jbc.273.17.10202] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported, on the basis of transfection experiments, the existence of a silencer element in the 5'-flanking region of the human embryonic (epsilon) globin gene, located at -270 base pairs 5' to the cap site, which provides negative regulation for this gene. Experiments in transgenic mice suggest the physiological importance of this epsilon-globin silencer, but also suggest that down-regulation of epsilon-globin gene expression may involve other negative elements flanking the epsilon-globin gene. We have now extended the analysis of epsilon-globin gene regulation to include the flanking region spanning up to 6 kilobase pairs 5' to the locus control region using reporter gene constructs with deletion mutations and transient transfection assays. We have identified and characterized other strong negative regulatory regions, as well as several positive regions that affect transcription activation. The negative regulatory regions at -3 kilobase pairs (epsilonNRA-I and epsilonNRA-II), flanked by a positive control element, has a strong effect on the epsilon-globin promoter both in erythroid K562 and nonerythroid HeLa cells and contains several binding sites for transcription factor GATA-1, as evidenced from DNA-protein binding assays. The GATA-1 sites within epsilonNRA-II are directly needed for negative control. Both epsilonNRA-I and epsilonNRA-II are active on a heterologous promoter and hence appear to act as transcription silencers. Another negative control region located at -1.7 kilobase pairs (epsilonNRB) does not exhibit general silencer activity as epsilonNRB does not affect transcription activity when used in conjunction with an epsilon-globin minimal promoter. The negative effect of epsilonNRB is erythroid specific, but not stage-specific as it can repress transcription activity in both K562 erythroid cells as well as in primary cultures of adult erythroid cells. Phylogenetic DNA sequence comparisons with other primate and other mammalian species show unusual degree of flanking sequence homology for the epsilon-globin gene, including in several of the regions identified in these functional and DNA-protein binding analyses, providing alternate evidence for their potential importance. We suggest that the down-regulation of epsilon-globin gene expression as development progresses involves complex, cooperative interactions of these negative regulatory elements, epsilonNRA-I/epsilonNRA-II, epsilonNRB, the epsilon-globin silencer and probably other negative and positive elements in the 5'-flanking region of the epsilon-globin gene.
Collapse
Affiliation(s)
- J Li
- Laboratory of Chemical Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
39
|
The Human β Globin Locus Introduced by YAC Transfer Exhibits a Specific and Reproducible Pattern of Developmental Regulation in Transgenic Mice. Blood 1997. [DOI: 10.1182/blood.v90.11.4602] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The human β globin locus spans an 80-kb chromosomal region encompassing both the five expressed globin genes and the cis-acting elements that direct their stage-specific expression during ontogeny. Sequences proximal to the genes and in the locus control region, 60 kb upstream of the adult β globin gene, are required for developmental regulation. Transgenic studies have shown that altering the structural organization of the locus disrupts the normal pattern of globin gene regulation. Procedures for introducing yeast artificial chromosomes (YACs) containing large genetic loci now make it possible to define the sequences required for stage-restricted gene expression in constructs that preserve the integrity of the β globin locus. We demonstrate that independent YAC transgenic lines exhibit remarkably similar patterns of globin gene expression during development. The switch from γ to β globin predominant expression occurs between day 11.5 and 12.5 of gestation, with no more than twofold differences in human β globin mRNA levels between lines. Human β globin mRNA levels were twofold to fourfold lower than that of mouse βmaj, revealing potentially significant differences in the regulatory sequences of the two loci. These findings provide an important basis for studying regulatory elements within the β globin locus.
Collapse
|
40
|
The Human β Globin Locus Introduced by YAC Transfer Exhibits a Specific and Reproducible Pattern of Developmental Regulation in Transgenic Mice. Blood 1997. [DOI: 10.1182/blood.v90.11.4602.4602_4602_4609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β globin locus spans an 80-kb chromosomal region encompassing both the five expressed globin genes and the cis-acting elements that direct their stage-specific expression during ontogeny. Sequences proximal to the genes and in the locus control region, 60 kb upstream of the adult β globin gene, are required for developmental regulation. Transgenic studies have shown that altering the structural organization of the locus disrupts the normal pattern of globin gene regulation. Procedures for introducing yeast artificial chromosomes (YACs) containing large genetic loci now make it possible to define the sequences required for stage-restricted gene expression in constructs that preserve the integrity of the β globin locus. We demonstrate that independent YAC transgenic lines exhibit remarkably similar patterns of globin gene expression during development. The switch from γ to β globin predominant expression occurs between day 11.5 and 12.5 of gestation, with no more than twofold differences in human β globin mRNA levels between lines. Human β globin mRNA levels were twofold to fourfold lower than that of mouse βmaj, revealing potentially significant differences in the regulatory sequences of the two loci. These findings provide an important basis for studying regulatory elements within the β globin locus.
Collapse
|
41
|
A Shortened Life Span of EKLF−/− Adult Erythrocytes, Due to a Deficiency of β-Globin Chains, Is Ameliorated by Human γ-Globin Chains. Blood 1997. [DOI: 10.1182/blood.v90.3.1291.1291_1291_1299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using homologous recombination, both EKLF alleles in murine embryonic stem (ES) cells were inactivated. These EKLF−/− ES cells were capable of undergoing in vitro differentiation to form definitive erythroid colonies that were similar in size and number to those formed by wild-type ES cells. However, the EKLF−/− colonies were poorly hemoglobinized and enucleated erythrocytes in these colonies contained numerous Heinz bodies. Reverse transcriptase-polymerase chain reaction (RT-PCR) analyses revealed that adult and embryonic globin genes were appropriately regulated, with the exception of βh1-globin, which continued to be expressed at a very low level. The ratio of adult β-globin/α-globin mRNA in the mutant ES cells was 1/15 of that in wild-type ES cells. When the EKLF−/− cells were injected into blastocysts, they did not contribute at a detectable level to the mature erythrocyte compartment of the chimeric animals, based on analysis of glucose phosphate isomerase-1 (GPI-1) isozymes and hemoglobins that distinguish ES cell-derived erythrocytes from host blastocyst-derived erythrocytes. In contrast, semiquantitative RT-PCR analysis of RNA from reticulocytes of the same chimeric animals suggested that the ES cell-derived reticulocytes were present at a level of 6% to 8%. This indicated that the EKLF−/− erythrocytes in adult animals must be short-lived, apparently due to the imbalance of β-versus α-globin chains, leading to the precipitation of excess α-globin chains to form Heinz bodies. Consistent with this hypothesis, the short life span was ameliorated by introduction into the EKLF−/− ES cells of a human LCR/γ-globin gene, as evidenced by the presence of ES cell-derived reticulocytes as well as mature erythrocytes in the blood of the chimeric animals.
Collapse
|
42
|
A Shortened Life Span of EKLF−/− Adult Erythrocytes, Due to a Deficiency of β-Globin Chains, Is Ameliorated by Human γ-Globin Chains. Blood 1997. [DOI: 10.1182/blood.v90.3.1291] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractUsing homologous recombination, both EKLF alleles in murine embryonic stem (ES) cells were inactivated. These EKLF−/− ES cells were capable of undergoing in vitro differentiation to form definitive erythroid colonies that were similar in size and number to those formed by wild-type ES cells. However, the EKLF−/− colonies were poorly hemoglobinized and enucleated erythrocytes in these colonies contained numerous Heinz bodies. Reverse transcriptase-polymerase chain reaction (RT-PCR) analyses revealed that adult and embryonic globin genes were appropriately regulated, with the exception of βh1-globin, which continued to be expressed at a very low level. The ratio of adult β-globin/α-globin mRNA in the mutant ES cells was 1/15 of that in wild-type ES cells. When the EKLF−/− cells were injected into blastocysts, they did not contribute at a detectable level to the mature erythrocyte compartment of the chimeric animals, based on analysis of glucose phosphate isomerase-1 (GPI-1) isozymes and hemoglobins that distinguish ES cell-derived erythrocytes from host blastocyst-derived erythrocytes. In contrast, semiquantitative RT-PCR analysis of RNA from reticulocytes of the same chimeric animals suggested that the ES cell-derived reticulocytes were present at a level of 6% to 8%. This indicated that the EKLF−/− erythrocytes in adult animals must be short-lived, apparently due to the imbalance of β-versus α-globin chains, leading to the precipitation of excess α-globin chains to form Heinz bodies. Consistent with this hypothesis, the short life span was ameliorated by introduction into the EKLF−/− ES cells of a human LCR/γ-globin gene, as evidenced by the presence of ES cell-derived reticulocytes as well as mature erythrocytes in the blood of the chimeric animals.
Collapse
|
43
|
Abstract
Techniques that allow modification of the mammalian genome have made a considerable contribution to many areas of biological science. Despite these achievements, challenges remain in two principal areas of transgenic technology, namely gene regulation and efficient transgenic livestock production. Obtaining reliable and sophisticated expression that rivals that of endogenous genes is frequently problematic. Transgenic science has played an important part in increasing understanding of the complex processes that underlie gene regulation, and this in turn has assisted in the design of transgene constructs expressed in a tightly regulated and faithful manner. The production of transgenic livestock is an inefficient process compared to that of laboratory models, and the lack of totipotential embryonic stem (ES) cell lines in farm animal species hampers the development of this area of work. This article highlights recent progress in efficient trans gene expression systems, and the current efforts being made to find alternative means of generating transgenic livestock.
Collapse
Affiliation(s)
- E R Cameron
- Department of Veterinary Clinical Studies, Glasgow University Veterinary School.
| |
Collapse
|
44
|
Abstract
AbstractHypersensitive site 3 (HS3) of the β-like globin locus control region has been implicated as an important regulator of the β-like globin genes, but the trans factors that bind HS3 have only been partially characterized. Using a five-species alignment (human, galago, rabbit, goat, and mouse) that represents 370 million years of evolution, we have identified 24 phylogenetic footprints in the HS3 core and surrounding regions. Probes corresponding to the human sequence at each footprint have been used in binding studies to identify the nuclear factors that bind within and near these conserved sequence elements. Among the high-affinity interactions observed were several binding sites for proteins with repressor activity, including YY1, CCAAT displacement protein, and G1/G2 complexes (uncharacterized putative repressors) and several binding sites for the stage selector protein. To complement this analysis, orthologous galago sequences were also used to derive probes and the pattern of proteins binding to human and galago probes was compared. Binding interactions differing between these two species could be responsible for the different expression patterns shown by the two γ genes (galago γ is embryonic; human γ is fetal). Alternatively, binding interactions that are conserved in the two species may be important in the regulation of common expression patterns (eg, repression of γ in adult life).
Collapse
|
45
|
Arcasoy MO, Romana M, Fabry ME, Skarpidi E, Nagel RL, Forget BG. High levels of human gamma-globin gene expression in adult mice carrying a transgene of deletion-type hereditary persistence of fetal hemoglobin. Mol Cell Biol 1997; 17:2076-89. [PMID: 9121456 PMCID: PMC232055 DOI: 10.1128/mcb.17.4.2076] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Persistent expression of the gamma-globin genes in adults with deletion types of hereditary persistence of fetal hemoglobin (HPFH) is thought to be mediated by enhancer-like effects of DNA sequences at the 3' breakpoints of the deletions. A transgenic mouse model of deletion-type HPFH was generated by using a DNA fragment containing both human gamma-globin genes and HPFH-2 breakpoint DNA sequences linked to the core sequences of the locus control region (LCR) of the human beta-globin gene cluster. Analysis of gamma-globin expression in six HPFH transgenic lines demonstrated persistence of gamma-globin mRNA and peptides in erythrocytes of adult HPFH transgenic mice. Analysis of the hemoglobin phenotype of adult HPFH transgenic animals by isoelectric focusing showed the presence of hybrid mouse alpha2-human gamma2 tetramers as well as human gamma4 homotetramers (hemoglobin Bart's). In contrast, correct developmental regulation of the gamma-globin genes with essentially absent gamma-globin gene expression in adult erythroid cells was observed in two control non-HPFH transgenic lines, consistent with autonomous silencing of normal human gamma-globin expression in adult transgenic mice. Interestingly, marked preferential overexpression of the LCR-distal (A)gamma-globin gene but not of the LCR-proximal (G)gamma-globin gene was observed at all developmental stages in erythroid cells of HPFH-2 transgenic mice. These findings were also associated with the formation of a DNase I-hypersensitive site in the HPFH-2 breakpoint DNA of transgenic murine erythroid cells, as occurs in normal human erythroid cells in vivo. These results indicate that breakpoint DNA sequences in deletion-type HPFH-2 can modify the developmentally regulated expression of the gamma-globin genes.
Collapse
Affiliation(s)
- M O Arcasoy
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
46
|
Li Q, Clegg C, Peterson K, Shaw S, Raich N, Stamatoyannopoulos G. Binary transgenic mouse model for studying the trans control of globin gene switching: evidence that GATA-1 is an in vivo repressor of human epsilon gene expression. Proc Natl Acad Sci U S A 1997; 94:2444-8. [PMID: 9122214 PMCID: PMC20107 DOI: 10.1073/pnas.94.6.2444] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To test whether human GATA-1 (hGATA-1) is involved in the transcriptional control of globin gene switching, we produced transgenic mice overexpressing hGATA-1, crossed them with mice carrying a human beta-globin locus yeast artificial chromosome (beta YAC), and analyzed globin gene expression in their progeny. Mice carrying both the hGATA-1 and the beta YAC transgenes had normal levels of gamma- and beta-globin mRNA and no distortion in the rate or in the timing of gamma-to-beta switch, indicating that hGATA-1 is not involved in the developmental control of gamma- and beta-globin genes. In contrast, mice carrying the hGATA-1 and the beta YAC transgenes had 5- to 6-fold lower expression of the human epsilon globin gene compared with beta YAC mice lacking the hGATA-1 transgene. These results provide direct in vivo evidence that hGATA-1 is a specific repressor of human epsilon gene expression. Our findings also suggest that binary transgenic mouse systems based on overexpression of transcriptional factors can be used to investigate the trans control of human globin gene switching. Systems as the one we describe here should be useful in the study of any developmentally controlled human gene for which transgenic mice are available.
Collapse
Affiliation(s)
- Q Li
- Division of Medical Genetics, University of Washington, Seattle 98185, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Abstract
We have examined the pattern of human globin gene switching in transgenic mice containing three different γ and β gene constructs (HS2GγAγδβ, HS2Aγβneo, and HS2Aγenβ) and compared the results with previously described transgenics (HS2Aγβ, HS2GγAγ-117δβ, and LCRεGγAγδβ). Developmental regulation was observed in all cases with identical patterns in lines bearing the same construct. Three different patterns of switching were observed: LCRεGγAγδβ and HS2Aγβneo mice switched rapidly, HS2GγAγδβ and HS2GγAγ-117δβ at an intermediate rate, and HS2Aγβ and HS2Aγenβ mice showed delayed switching, with a plateau in late fetal-early neonatal life and readily detectable levels of γ mRNA in adults. No difference was observed in the time of switching of the HS2GγAγδβ mice compared with those with the Aγ-117 hereditary persistence of fetal hemoglobin mutation, but adult levels of γ mRNA were significantly higher (≈5%) in lines carrying the mutation than in those without (≈1%). Reversion to the rapid switch of the LCRεGγAγδβ mice was observed in three lines with the HS2Aγβ neo construct in which expression of the tk-neo gene was approximately equal to that of the globin genes. The inclusion of the Aγ enhancer in HS2Aγβ mice did not alter the pattern of switching, or reduce the relatively high levels of γ mRNA in these lines. However, unlike other HS2 mice, the combination of HS2 and the Aγ enhancer resulted in copy number-dependent expression in HS2Aγenβ lines, with intrauterine death at ≈12.5 days gestation at high copy numbers. These results demonstrate that numerous elements throughout the β globin gene cluster interact to produce the correct pattern of developmental regulation of these genes. Furthermore, extinction of γ gene expression in adult life is not completely autonomous and is incomplete when HS2 is the only LCR element present.
Collapse
|
48
|
Cavallesco R, Tuan D. Modulatory subdomains of the HS2 enhancer differentially regulate enhancer activity in erythroid cells at different developmental stages. Blood Cells Mol Dis 1997; 23:8-26. [PMID: 9215747 DOI: 10.1006/bcmd.1997.0115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The HS2 enhancer in the locus control region of human beta-like globin genes displays developmental-stage-independent enhancer function. The mechanism by which it regulates the transcription of the globin genes in erythroid cells throughout development is not fully understood. In this paper we dissect the HS2 enhancer into an enhancer core and five modulatory subdomains M1 to M5. The enhancer core possesses developmental-stage-independent enhancer activity. The modulatory subdomains by themselves do not possess such enhancer activity, but they apparently respond to environmental signals and modulate enhancer core activity in a developmental-stage specific manner. M1 located 5' of the core strongly stimulates core activity in K562 cells at the embryonic stage. M2 and M3 located 3' of the core strongly stimulate core activity in MEL cells at the adult stage. Moreover, M3 suppresses core activity at the embryonic stage and exhibits an adult-stage-selector activity. These findings indicate that the apparent developmental-stage-independence of the HS2 enhancer is a result of multiple interactions between the core and the modulatory subdomains located both near and far from the core.
Collapse
Affiliation(s)
- R Cavallesco
- Harvard-MIT Division of Health Science and Technology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
49
|
|
50
|
Perkins AC, Gaensler KM, Orkin SH. Silencing of human fetal globin expression is impaired in the absence of the adult beta-globin gene activator protein EKLF. Proc Natl Acad Sci U S A 1996; 93:12267-71. [PMID: 8901569 PMCID: PMC37979 DOI: 10.1073/pnas.93.22.12267] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.
Collapse
Affiliation(s)
- A C Perkins
- Department of Hematology, Children's Hospital, Boston, MA, USA
| | | | | |
Collapse
|