1
|
George MAR, Dopfer O. Microhydration of the adamantane cation: intracluster proton transfer to solvent in [Ad(H 2O) n=1-5] + for n ≥ 3. Phys Chem Chem Phys 2023; 25:13593-13610. [PMID: 37144298 DOI: 10.1039/d3cp01514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Radical cations of diamondoids are important intermediates in their functionalization reactions in polar solvents. To explore the role of the solvent at the molecular level, we characterize herein microhydrated radical cation clusters of the parent molecule of the diamondoid family, adamantane (C10H16, Ad), by infrared photodissociation (IRPD) spectroscopy of mass-selected [Ad(H2O)n=1-5]+ clusters. IRPD spectra of the cation ground electronic state recorded in the CH/OH stretch and fingerprint ranges reveal the first steps of this fundamental H-substitution reaction at the molecular level. Analysis of size-dependent frequency shifts with dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ) provides detailed information about the acidity of the proton of Ad+ as a function of the degree of hydration, the structure of the hydration shell, and the strengths of the CH⋯O and OH⋯O hydrogen bonds (H-bonds) of the hydration network. For n = 1, H2O strongly activates the acidic C-H bond of Ad+ by acting as a proton acceptor in a strong CH⋯O ionic H-bond with cation-dipole configuration. For n = 2, the proton is almost equally shared between the adamantyl radical (C10H15, Ady) and the (H2O)2 dimer in a strong C⋯H⋯O ionic H-bond. For n ≥ 3, the proton is completely transferred to the H-bonded hydration network. The threshold for this size-dependent intracluster proton transfer to solvent is consistent with the proton affinities of Ady and (H2O)n and confirmed by collision-induced dissociation experiments. Comparison with other related microhydrated cations reveals that the acidity of the CH proton of Ad+ is in the range of strongly acidic phenol+ but lower than for cationic linear alkanes such as pentane+. Significantly, the presented IRPD spectra of microhydrated Ad+ provide the first spectroscopic molecular-level insight of the chemical reactivity and reaction mechanism of the important class of transient diamondoid radical cations in aqueous solution.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
2
|
George MAR, Dopfer O. Microhydrated clusters of a pharmaceutical drug: infrared spectra and structures of amantadineH +(H 2O) n. Phys Chem Chem Phys 2023; 25:5529-5549. [PMID: 36723361 DOI: 10.1039/d2cp04556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Solvation of pharmaceutical drugs has an important effect on their structure and function. Analysis of infrared photodissociation spectra of amantadineH+(H2O)n=1-4 clusters in the sensitive OH, NH, and CH stretch range by quantum chemical calculations (B3LYP-D3/cc-pVTZ) provides a first impression of the interaction of this pharmaceutically active cation with water at the molecular level. The size-dependent frequency shifts reveal detailed information about the acidity of the protons of the NH3+ group of N-protonated amantadineH+ (AmaH+) and the strength of the NH⋯O and OH⋯O hydrogen bonds (H-bonds) of the hydration network. The preferred cluster growth begins with sequential hydration of the NH3+ group by NH⋯O ionic H-bonds (n = 1-3), followed by the extension of the solvent network through OH⋯O H-bonds. However, smaller populations of cluster isomers with an H-bonded solvent network and free N-H bonds are already observed for n ≥ 2, indicating the subtle competition between noncooperative ion hydration and cooperative H-bonding. Interestingly, cyclic water ring structures are identified for n ≥ 3, each with two NH⋯O and two OH⋯O H-bonds. Despite the increasing destabilization of the N-H proton donor bonds upon gradual hydration, no proton transfer to the (H2O)n solvent cluster is observed up to n = 4. In addition to ammonium cluster ions, a small population of microhydrated iminium isomers is also detected, which is substantially lower for the hydrophilic H2O than for the hydrophobic Ar environment.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
3
|
George MAR, Dopfer O. Opening of the Diamondoid Cage upon Ionization Probed by Infrared Spectra of the Amantadine Cation Solvated by Ar, N 2 , and H 2 O. Chemistry 2022; 28:e202200577. [PMID: 35611807 PMCID: PMC9400954 DOI: 10.1002/chem.202200577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Radical cations of diamondoids, a fundamental class of very stable cyclic hydrocarbon molecules, play an important role in their functionalization reactions and the chemistry of the interstellar medium. Herein, we characterize the structure, energy, and intermolecular interaction of clusters of the amantadine radical cation (Ama+ , 1-aminoadamantane) with solvent molecules of different interaction strength by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+ Ln clusters, with L=Ar (n≤3) and L=N2 and H2 O (n=1), and dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ). Three isomers of Ama+ generated by electron ionization are identified by the vibrational properties of their rather different NH2 groups. The ligands bind preferentially to the acidic NH2 protons, and the strength of the NH…L ionic H-bonds are probed by the solvation-induced red-shifts in the NH stretch modes. The three Ama+ isomers include the most abundant canonical cage isomer (I) produced by vertical ionization, which is separated by appreciable barriers from two bicyclic distonic iminium ions obtained from cage-opening (primary radical II) and subsequent 1,2 H-shift (tertiary radical III), the latter of which is the global minimum on the Ama+ potential energy surface. The effect of solvation on the energetics of the potential energy profile revealed by the calculations is consistent with the observed relative abundance of the three isomers. Comparison to the adamantane cation indicates that substitution of H by the electron-donating NH2 group substantially lowers the barriers for the isomerization reaction.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
| |
Collapse
|
4
|
George MAR, Dopfer O. Infrared spectra and structures of protonated amantadine isomers: detection of ammonium and open-cage iminium ions. Phys Chem Chem Phys 2022; 24:16101-16111. [PMID: 35748364 DOI: 10.1039/d2cp01947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protonated form of amantadine (1-C10H15NH2, Ama), the amino derivative of adamantane (C10H16, Ada), is a wide-spread antiviral and anti-Parkinsonian drug and plays a key role in many pharmaceutical processes. Recent studies reveal that the adamantyl cage (C10H15) of Ama can open upon ionization leading to distonic bicyclic iminium isomers, in addition to the canonical nascent Ama+ isomer. Herein, we study protonation of Ama using infrared photodissociation spectroscopy (IRPD) of Ar-tagged ions and density functional theory calculations to characterize cage and open-cage isomers of AmaH+ and the influence of the electron-donating NH2 group on the cage-opening reaction potential. In addition to the canonical ammonium isomer (AmaH+(I)) with an intact adamantyl cage, we identify at least one slightly less stable protonated bicyclic iminium ion (AmaH+(II)). While the ammonium ion is generated by protonation of the basic NH2 group, AmaH+(II) is formally formed by H addition to a distonic bicyclic iminium ion produced upon ionization of Ama and subsequent cage opening.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
5
|
Robert George MA, Dopfer O. Infrared Spectrum of the Amantadine Cation: Opening of the Diamondoid Cage upon Ionization. J Phys Chem Lett 2022; 13:449-454. [PMID: 34990124 DOI: 10.1021/acs.jpclett.1c03948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radical cations of diamondoids, a fundamental class of highly stable cycloalkanes, are intermediates in functionalization reactions and possibly present in the interstellar medium. Herein, we characterize the structure of the radical cation of 1-amantadine (1-C10H15NH2+, Ama+), the amino derivative of the parent adamantane (C10H16+, Ada+), by infrared spectroscopy and density functional theory calculations. The structural isomers of Ama+ produced by electron ionization are probed by infrared photodissociation of cold Ar-tagged ions. In addition to the canonical nascent Ama+ isomer with an intact C10H15 cage, we identify two distonic bicyclic iminium isomers in which the adamantyl cage opens upon ionization, one of which is lower in energy than the cage isomer. The reaction profile with barriers and intermediates for this cage-opening reaction are determined. Comparison with Ada+ suggests that this type of ionization-induced cage-opening may be a common feature for diamondoids and important for their reactivity.
Collapse
Affiliation(s)
- Martin Andreas Robert George
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrsase 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrsase 36, 10623 Berlin, Germany
| |
Collapse
|
6
|
Xie L, He D, He J. SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties. MATERIALS HORIZONS 2021; 8:1847-1865. [PMID: 34846469 DOI: 10.1039/d1mh00091h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermoelectric (TE) materials, which enable direct energy conversion between waste heat and electricity, have witnessed enormous and exciting developments over last several decades due to innovative breakthroughs both in materials and the synergistic optimization of structures and properties. Among the promising state-of-the-art materials for next-generation thermoelectrics, tin selenide (SnSe) has attracted rapidly growing research interest for its high TE performance and the intrinsic layered structure that leads to strong anisotropy. Moreover, complex interactions between lattice, charge, and orbital degrees of freedom in SnSe make up a large phase space for the optimization of its TE properties via the simultaneous tuning of structural and chemical features. Various techniques, especially advanced electron microscopy (AEM), have been devoted to exploring these critical multidiscipline correlations between TE properties and microstructures. In this review, we first focus on the intrinsic layered structure as well as the extrinsic structural "imperfectness" of various dimensions in SnSe as studied by AEM. Based on these characterization results, we give a comprehensive discussion on the current understanding of the structure-property relationship. We then point out the challenges and opportunities as provided by modern AEM techniques toward a deeper knowledge of SnSe based on electronic structures and lattice dynamics at the nanometer or even atomic scale, for example, the measurements of local charge and electric field distribution, phonon vibrations, bandgap, valence state, temperature, and resultant TE effects.
Collapse
Affiliation(s)
- Lin Xie
- Shenzhen Key Laboratory of Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
| | | | | |
Collapse
|
7
|
Dang C, Chou JP, Dai B, Chou CT, Yang Y, Fan R, Lin W, Meng F, Hu A, Zhu J, Han J, Minor AM, Li J, Lu Y. Achieving large uniform tensile elasticity in microfabricated diamond. Science 2021; 371:76-78. [PMID: 33384375 DOI: 10.1126/science.abc4174] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/23/2020] [Indexed: 11/02/2022]
Abstract
Diamond is not only the hardest material in nature, but is also an extreme electronic material with an ultrawide bandgap, exceptional carrier mobilities, and thermal conductivity. Straining diamond can push such extreme figures of merit for device applications. We microfabricated single-crystalline diamond bridge structures with ~1 micrometer length by ~100 nanometer width and achieved sample-wide uniform elastic strains under uniaxial tensile loading along the [100], [101], and [111] directions at room temperature. We also demonstrated deep elastic straining of diamond microbridge arrays. The ultralarge, highly controllable elastic strains can fundamentally change the bulk band structures of diamond, including a substantial calculated bandgap reduction as much as ~2 electron volts. Our demonstration highlights the immense application potential of deep elastic strain engineering for photonics, electronics, and quantum information technologies.
Collapse
Affiliation(s)
- Chaoqun Dang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jyh-Pin Chou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan
| | - Bing Dai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Chang-Ti Chou
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yang Yang
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Weitong Lin
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fanling Meng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alice Hu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong. .,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China.
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Andrew M Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong. .,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
8
|
George MAR, Buttenberg F, Förstel M, Dopfer O. Microhydration of substituted diamondoid radical cations of biological relevance: infrared spectra of amantadine +-(H 2O) n = 1-3 clusters. Phys Chem Chem Phys 2020; 22:28123-28139. [PMID: 33290468 DOI: 10.1039/d0cp05299j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydration of biomolecules and pharmaceutical compounds has a strong impact on their structure, reactivity, and function. Herein, we explore the microhydration structure around the radical cation of the widespread pharmaceutical drug amantadine (C16H15NH2, Ama) by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+Wn = 1-3 clusters (W = H2O) recorded in the NH, CH, and OH stretch range of the cation ground electronic state. Analysis of the size-dependent frequency shifts by dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ) provides detailed information about the acidity of the protons of the NH2 group of Ama+ and the structure and strength of the NHO and OHO hydrogen bonds (H-bonds) of the hydration network. The preferred sequential cluster growth begins with hydration of the two acidic NH protons of the NH2 group (n = 1-2) and continues with an extension of the H-bonded hydration network by forming an OHO H-bond of the third W to one ligand in the first hydration subshell (n = 3), like in the W2 dimer. For n = 2, a minor population corresponds to Ama+W2 structures with a W2 unit attached to Ama+via a NHW2 H-bond. Although the N-H proton donor bonds are progressively destabilized by gradual microhydration, no proton transfer to the Wn solvent cluster is observed in the investigated size range (n ≤ 3). Besides the microhydration structure, we also obtain a first impression of the structure and IR spectrum of bare Ama+, as well as the effects of both ionization and hydration on the structure of the adamantyl cage. Comparison of Ama+ with aliphatic and aromatic primary amine radical cations reveals differences in the acidity of the NH2 group and the resulting interaction with W caused by substitution of the cycloalkyl cage.
Collapse
|
9
|
George MAR, Förstel M, Dopfer O. Infrared Spectrum of the Adamantane
+
–Water Cation: Hydration‐Induced C−H Bond Activation and Free Internal Water Rotation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Marko Förstel
- Institut für Optik und Atomare Physik Technische Universität Berlin Hardenbergstrasse 36 10623 Berlin Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik Technische Universität Berlin Hardenbergstrasse 36 10623 Berlin Germany
| |
Collapse
|
10
|
George MAR, Förstel M, Dopfer O. Infrared Spectrum of the Adamantane + -Water Cation: Hydration-Induced C-H Bond Activation and Free Internal Water Rotation. Angew Chem Int Ed Engl 2020; 59:12098-12104. [PMID: 32392402 PMCID: PMC7383494 DOI: 10.1002/anie.202003637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/21/2022]
Abstract
Diamondoid cations are reactive intermediates in their functionalization reactions in polar solution. Hydration is predicted to strongly activate their C-H bonds in initial proton abstraction reactions. To study the effects of microhydration on the properties of diamondoid cations, we characterize herein the prototypical monohydrated adamantane cation (C10 H16 + -H2 O, Ad+ -W) in its ground electronic state by infrared photodissociation spectroscopy in the CH and OH stretch ranges and dispersion-corrected density functional theory (DFT) calculations. The water (W) ligand binds to the acidic CH group of Jahn-Teller distorted Ad+ via a strong CH⋅⋅⋅O ionic H-bond supported by charge-dipole forces. Although W further enhances the acidity of this CH group along with a proton shift toward the solvent, the proton remains with Ad+ in the monohydrate. We infer essentially free internal W rotation from rotational fine structure of the ν3 band of W, resulting from weak angular anisotropy of the Ad+ -W potential.
Collapse
Affiliation(s)
- Martin Andreas Robert George
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Marko Förstel
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| |
Collapse
|
11
|
Hernández-Rojas J, Calvo F. The Structure of Adamantane Clusters: Atomistic vs. Coarse-Grained Predictions From Global Optimization. Front Chem 2019; 7:573. [PMID: 31475136 PMCID: PMC6707085 DOI: 10.3389/fchem.2019.00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 11/24/2022] Open
Abstract
Candidate structures for the global minima of adamantane clusters, (C10H16)N, are presented. Based on a rigid model for individual molecules with atom-atom pairwise interactions that include Lennard-Jones and Coulomb contributions, low-energy structures were obtained up to N = 42 using the basin-hopping method. The results indicate that adamantane clusters initially grow accordingly with an icosahedral packing scheme, followed above N = 14 by a structural transition toward face-centered cubic structures. The special stabilities obtained at N = 13, 19, and 38 are consistent with these two structural families, and agree with recent mass spectrometry measurements on cationic adamantane clusters. Coarse-graining the intermolecular potential by averaging over all possible orientations only partially confirm the all-atom results, the magic numbers at 13 and 38 being preserved. However, the details near the structural transition are not captured well, because despite their high symmetry the adamantane molecules are still rather anisotropic.
Collapse
Affiliation(s)
- Javier Hernández-Rojas
- Departamento de Física e IUdEA, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | |
Collapse
|
12
|
Anders E, Zinner E. Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1945-5100.1993.tb00274.x] [Citation(s) in RCA: 444] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Patzer A, Schütz M, Möller T, Dopfer O. Infrared Spectrum and Structure of the Adamantane Cation: Direct Evidence for Jahn-Teller Distortion. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108937] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Patzer A, Schütz M, Möller T, Dopfer O. Infrared Spectrum and Structure of the Adamantane Cation: Direct Evidence for Jahn-Teller Distortion. Angew Chem Int Ed Engl 2012; 51:4925-9. [DOI: 10.1002/anie.201108937] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Indexed: 11/08/2022]
|
15
|
Nanodiamonds do not provide unique evidence for a Younger Dryas impact. Proc Natl Acad Sci U S A 2011; 108:40-4. [PMID: 21173270 DOI: 10.1073/pnas.1007695108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microstructural, δ(13)C isotope and C/N ratio investigations were conducted on excavated material from the black Younger Dryas boundary in Lommel, Belgium, aiming for a characterisation of the carbon content and structures. Cubic diamond nanoparticles are found in large numbers. The larger ones with diameters around or above 10 nm often exhibit single or multiple twins. The smaller ones around 5 nm in diameter are mostly defect-free. Also larger flake-like particles, around 100 nm in lateral dimension, with a cubic diamond structure are observed as well as large carbon onion structures. The combination of these characteristics does not yield unique evidence for an exogenic impact related to the investigated layer.
Collapse
|
16
|
Abstract
Diamond is a remarkable mineral and has been long recognized for its unusual physical and chemical properties: robust and widespread in industry, yet regally adorned. This diversity is even greater than formally appreciated because diamond is recognized as an extraordinary recorder of astrophysical and geodynamic events that extend from the far reaches of space to Earth's deep interior. Many diamonds are natural antiques that formed in presolar supernovae by carbon vapor deposition, in asteroidal impacts and meteorite craters by shock metamorphism, and in Earth's mantle 1 to 2 billion years after planetary accretion from fluids and melts. The carbon in diamond is primordial, but there are unexplained isotopic fractionations and uncertainties in heterogeneity.
Collapse
Affiliation(s)
- SE Haggerty
- Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
|
18
|
Abstract
C
60
has not yet been detected in primitive meteorites, a finding that could demonstrate its existence in the early solar nebular or as a component of presolar dust. However, other allotropes of carbon, diamond and graphite, have been isolated from numerous chondritic samples. Studies of the isotopic composition and trace element content and these forms of carbon suggest that they condensed in cireumstellar environments. Diamond may also have been produced in the early solar nebula and meteorite parent bodies by both low-temperature—low-pressure processes and shock events. Evidence for the occurrence of another carbon allotrope, with sp hybridized bonding, commonly known as carbyne, is presented.
Collapse
|
19
|
Grabau BJ, Gude NM, King RG, Riley SC, Brennecke SP. Endothelins-1, 2 and 3 are released in vitro from the human bilaterally perfused placenta. J Perinat Med 1997; 25:11-6. [PMID: 9085198 DOI: 10.1515/jpme.1997.25.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunoreactive-endothelin (ir-ET) has previously been detected in human fetal effluents from in vitro perfused placentae. To date however, because of a lack of radio-immunoassay specificity, the ET isoforms in fetal effluents had not been determined, nor had placental maternal effluents been examined for ETs. The aim of this study was to identify the isoforms of ET released into the maternal and fetal circulations of the human in vitro bilaterally perfused placenta. Both circulations of placentae, obtained after normal vaginal delivery, were perfused with a modified Krebs solution and maternal and fetal effluents from the start of the second hour of perfusion were collected, extracted on Scp-pak C18 cartridges, concentrated by vacuum evaporation and separated by reverse-phase HPLC separation. HPLC fractions were measured by ET-RIA and compared to known synthetic standards. Maternal and fetal effluents contained ET-1 (natural and oxidised ET-1), ET-2 and ET-3 (n = 5). Maternal and fetal release of ET-1 was 2.2 +/- 0.7 and 1.4 +/- 0.1 fmol/min/g wet weight of tissue respectively, ET-2 was 0.4 +/- 0.2 and 0.5 +/- 0.2 and fmol/min/g respectively, and ET-3 was 0.5 +/- 0.2 and 0.7 +/- 0.4 fmol/min/g respectively. There were no significant differences between the release of either ET-1, ET-2 or ET-3 in the maternal or fetal circulations. In conclusion, this study indicated that ET-1, ET-2 and ET-3 were all released into both the maternal and fetal effluents from the in vitro perfused human placenta.
Collapse
Affiliation(s)
- B J Grabau
- Department of Perinatal Medicine, Royal Women's Hospital, Carlton, Victoria, Australia
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Sandford SA. The inventory of interstellar materials available for the formation of the solar system. METEORITICS & PLANETARY SCIENCE 1996; 31:449-476. [PMID: 11541166 DOI: 10.1111/j.1945-5100.1996.tb02088.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tremendous progress has been made in the field of interstellar dust in recent years through the use of telescopic observations, theoretical studies, laboratory studies of analogs, and the study of actual interstellar samples found in meteorites. It is increasingly clear that the interstellar medium (ISM) contains an enormous diversity of materials created by a wide range of chemical and physical processes. This understanding is a far cry from the picture of interstellar materials held as recently as two decades ago, a picture which incorporated only a few generic types of grains and few molecules. In this paper, I attempt to review some of our current knowledge of the more abundant materials thought to exist in the ISM. The review concentrates on matter in interstellar dense molecular clouds since it is the materials in these environments from which new stars and planetary systems are formed. However, some discussion is reserved for materials in circumstellar environments and in the diffuse ISM. The paper also focuses largely on solid materials as opposed to gases since solids contain a major fraction of the heavier elements in clouds and because solids are most likely to survive incorporation into new planetary systems in identifiable form. The paper concludes with a discussion of some of the implications resulting from the recent growth of our knowledge about interstellar materials and also considers a number of areas in which future work might be expected to yield important results.
Collapse
Affiliation(s)
- S A Sandford
- Astrophysics Branch, NASA-Ames Research Center, Moffett Field, California 94035-1000, USA.
| |
Collapse
|
22
|
|
23
|
Fomenkova MN, Chang S, Mukhin LM. Carbonaceous components in the comet Halley dust. GEOCHIMICA ET COSMOCHIMICA ACTA 1994; 58:4503-4512. [PMID: 11539150 DOI: 10.1016/0016-7037(94)90351-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approximately 22% of the total population of measured cometary dust particles. They usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the interstellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggests the gentle formation of cometary nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.
Collapse
Affiliation(s)
- M N Fomenkova
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | |
Collapse
|
24
|
Visscher GT, Nesting DC, Badding JV, Bianconi PA. Poly(phenylcarbyne): A Polymer Precursor to Diamond-Like Carbon. Science 1993; 260:1496-9. [PMID: 17739806 DOI: 10.1126/science.260.5113.1496] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The synthesis of poly(phenylcarbyne), one of a class of carbon-based random network polymers, is reported. The network backbone of this polymer is composed of tetrahedrally hybridized carbon atoms, each bearing one phenyl substituent and linking, by means of three carbon-carbon single bonds, into a three-dimensional random network of fused rings. This atomic-level carbon network backbone confers unusual properties on the polymer, including facile thermal decomposition, which yields diamond or diamond-like carbon phases at atmospheric pressure.
Collapse
|
25
|
Allamandola LJ, Sandford SA, Tielens AG, Herbst TM. Diamonds in dense molecular clouds: a challenge to the standard interstellar medium paradigm. Science 1993; 260:64-6. [PMID: 11538059 DOI: 10.1126/science.11538059] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Observations of a newly discovered infrared C-H stretching band indicate that interstellar diamond-like material appears to be characteristic of dense clouds. In sharp contrast, the spectral signature of dust in the diffuse interstellar medium is dominated by -CH2- and -CH3 groups. This dichotomy in the aliphatic organic component between the dense and diffuse media challenges standard assumptions about the processes occurring in, and interactions between, these two media. The ubiquity of this interstellar diamond-like material rules out models for meteoritic diamond formation in unusual circumstellar environments and implies that the formation of the diamond-like material is associated with common interstellar processes or stellar types.
Collapse
Affiliation(s)
- L J Allamandola
- National Aeronautics and Space Administration, Ames Research Center, Mountain View, CA 94035
| | | | | | | |
Collapse
|
26
|
|
27
|
Lewis RS, Anders E, Draine BT. Properties, detectability and origin of interstellar diamonds in meteorites. Nature 1989. [DOI: 10.1038/339117a0] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
|
29
|
|