1
|
Karakaya E, Akdur A, Ayvazoğlu Soy E, Moray G, Haberal M. Success Rate of Grafts With Multiple Renal Vessels in 3136 Kidney Transplants. EXP CLIN TRANSPLANT 2020; 19:14-19. [PMID: 32967599 DOI: 10.6002/ect.2020.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Multiple renal vessels are often detected in living and deceased organ donors. In the past, transplant with multiple renal vessel grafts has been a contraindication because of high vascular and urological complication rates. However, improvements in vascular reconstruction and anastomosis techniques have allowed graft function to be maintained for many years. Here, we retrospectively evaluated transplant of multiple renal vessel grafts and graft survival and postoperative vascular and urological complications. MATERIALS AND METHODS From November 1975 to July 2020, there were 3136 renal transplants (716 deceased donors, 2420 living donors) performed in our center. There were 2167 living donors and 643 deceased donors with single renal vessel grafts and 253 living donors and 73 deceased donors with multiple renal vessel grafts. For anastomoses, external iliac, internal iliac, common iliac, and inferior epigastric arteries and external iliac veins were used. Cold ischemia time, anastomosis time, postoperative vascular and urological complications, acute tubular necrosis, creatinine clearance, serum creatinine levels, graft rejection episodes, and graft and patient survival rates were evaluated. RESULTS With regard to creatinine clearance, cold ischemia and anastomosis time, acute tubular necrosis, rejection episodes, and 1-, 2-, and 5-year posttransplant serum creatinine levels, there were no significant differences between the groups. Graft survival rates in the single renal vessel group were 92.9% at 1 year posttransplant and 78.3% at 5 years posttransplant; rates in the multiple renal vessel group were 93.1% at 1 year and 79.7% at 5 years. The corresponding patient survival rates were 95.5% (1 year) and 92.9% (5 years) for the single renal vessel group and 96.9% (1 year) and 87.2% (5 years) for the multiple renal vessel group. CONCLUSIONS Improved anastomosis and recon struction techniques have allowed the safe transplant of multiple renal vessel grafts that may remain functional for many years.
Collapse
Affiliation(s)
- Emre Karakaya
- From the Department of General Surgery, Baskent University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
2
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Cheng Y, Liu P, Zheng Q, Gao G, Yuan J, Wang P, Huang J, Xie L, Lu X, Tong T, Chen J, Lu Z, Guan J, Wang G. Mitochondrial Trafficking and Processing of Telomerase RNA TERC. Cell Rep 2019; 24:2589-2595. [PMID: 30184494 DOI: 10.1016/j.celrep.2018.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunctions play major roles in many diseases. However, how mitochondrial stresses are relayed to downstream responses remains unclear. Here we show that the RNA component of mammalian telomerase TERC is imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. We found that the import is regulated by PNPASE, and the processing is controlled by mitochondrion-localized RNASET2. Cytosolic TERC-53 levels respond to changes in mitochondrial functions but have no direct effect on these functions. These findings uncover a mitochondrial RNA trafficking pathway and provide a potential mechanism for mitochondria to relay their functional states to other cellular compartments.
Collapse
Affiliation(s)
- Ying Cheng
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peipei Liu
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Zheng
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Gao
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiapei Yuan
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pengfeng Wang
- Peking University Research Center on Aging, Beijing 100191, China
| | - Jinliang Huang
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Leiming Xie
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinping Lu
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing 100191, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing 100191, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhi Lu
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jisong Guan
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Geng Wang
- MOE Key Laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of Non-Coding RNAs into Human Mitochondria: A Critical Review and Emerging Approaches. Cells 2019; 8:E286. [PMID: 30917553 PMCID: PMC6468882 DOI: 10.3390/cells8030286] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
Mitochondria harbor their own genetic system, yet critically depend on the import of a number of nuclear-encoded macromolecules to ensure their expression. In all eukaryotes, selected non-coding RNAs produced from the nuclear genome are partially redirected into the mitochondria, where they participate in gene expression. Therefore, the mitochondrial RNome represents an intricate mixture of the intrinsic transcriptome and the extrinsic RNA importome. In this review, we summarize and critically analyze data on the nuclear-encoded transcripts detected in human mitochondria and outline the proposed molecular mechanisms of their mitochondrial import. Special attention is given to the various experimental approaches used to study the mitochondrial RNome, including some recently developed genome-wide and in situ techniques.
Collapse
Affiliation(s)
- Damien Jeandard
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Anna Smirnova
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Ivan Tarassov
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Eric Barrey
- GABI-UMR1313, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Nina Entelis
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| |
Collapse
|
5
|
Zheng Q, Liu P, Gao G, Yuan J, Wang P, Huang J, Xie L, Lu X, Di F, Tong T, Chen J, Lu Z, Guan J, Wang G. Mitochondrion-processed TERC regulates senescence without affecting telomerase activities. Protein Cell 2019; 10:631-648. [PMID: 30788732 PMCID: PMC6711880 DOI: 10.1007/s13238-019-0612-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunctions play major roles in ageing. How mitochondrial stresses invoke downstream responses and how specificity of the signaling is achieved, however, remains unclear. We have previously discovered that the RNA component of Telomerase TERC is imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. Cytosolic TERC-53 levels respond to mitochondrial functions, but have no direct effect on these functions, suggesting that cytosolic TERC-53 functions downstream of mitochondria as a signal of mitochondrial functions. Here, we show that cytosolic TERC-53 plays a regulatory role on cellular senescence and is involved in cognition decline in 10 months old mice, independent of its telomerase function. Manipulation of cytosolic TERC-53 levels affects cellular senescence and cognition decline in 10 months old mouse hippocampi without affecting telomerase activity, and most importantly, affects cellular senescence in terc−/− cells. These findings uncover a senescence-related regulatory pathway with a non-coding RNA as the signal in mammals.
Collapse
Affiliation(s)
- Qian Zheng
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peipei Liu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ge Gao
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiapei Yuan
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengfeng Wang
- Peking University Research Center on Aging, Beijing, 100191, China
| | - Jinliang Huang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Leiming Xie
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinping Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Di
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing, 100191, China.,Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhi Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jisong Guan
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Geng Wang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Blackburn E, Gilley D, Ware T, Bhattacharyya A, Kirk K, Wang H. Studying the telomerase RNA in Tetrahymena. Methods Cell Biol 1999; 62:417-32. [PMID: 10503207 DOI: 10.1016/s0091-679x(08)61546-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- E Blackburn
- Department of Microbiology and Immunology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|