1
|
Bröhm A, Schoch T, Dukatz M, Graf N, Dorscht F, Mantai E, Adam S, Bashtrykov P, Jeltsch A. Methylation of recombinant mononucleosomes by DNMT3A demonstrates efficient linker DNA methylation and a role of H3K36me3. Commun Biol 2022; 5:192. [PMID: 35236925 PMCID: PMC8891314 DOI: 10.1038/s42003-022-03119-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the structure of the DNMT3A2/3B3 heterotetramer complex bound to a mononucleosome was reported. Here, we investigate DNA methylation of recombinant unmodified, H3KC4me3 and H3KC36me3 containing mononucleosomes by DNMT3A2, DNMT3A catalytic domain (DNMT3AC) and the DNMT3AC/3B3C complex. We show strong protection of the nucleosomal bound DNA against methylation, but efficient linker-DNA methylation next to the nucleosome core. High and low methylation levels of two specific CpG sites next to the nucleosome core agree well with details of the DNMT3A2/3B3-nucleosome structure. Linker DNA methylation next to the nucleosome is increased in the absence of H3K4me3, likely caused by binding of the H3-tail to the ADD domain leading to relief of autoinhibition. Our data demonstrate a strong stimulatory effect of H3K36me3 on linker DNA methylation, which is independent of the DNMT3A-PWWP domain. This observation reveals a direct functional role of H3K36me3 on the stimulation of DNA methylation, which could be explained by hindering the interaction of the H3-tail and the linker DNA. We propose an evolutionary model in which the direct stimulatory effect of H3K36me3 on DNA methylation preceded its signaling function, which could explain the evolutionary origin of the widely distributed "active gene body-H3K36me3-DNA methylation" connection.
Collapse
Affiliation(s)
- Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Tabea Schoch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Nora Graf
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Franziska Dorscht
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Evelin Mantai
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Sabrina Adam
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
2
|
Kalisz S, Purugganan MD. Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 2004; 19:309-14. [PMID: 16701276 DOI: 10.1016/j.tree.2004.03.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In plants, naturally occurring methylation of genes can affect the level of gene expression. Variation among individuals in the degree of methylation of a gene, termed epialleles, produces novel phenotypes that are heritable across generations. To date, ecologically important genes with methylated epialleles have been found to affect floral shape, vegetative and seed pigmentation, pathogen resistance and development in plants. Currently, the extent to which epiallelic variation is an important common contributor to phenotypic variation in natural plant populations and its fitness consequences are not known. Because epiallele phenotypes can have identical underlying DNA sequences, response to selection on these phenotypes is likely to differ from expectations based on traditional models of microevolution. Research is needed to understand the role of epialleles in natural plant populations. Recent advances in molecular genetic techniques could enable population biologists to screen for epiallelic variants within plant populations and disentangle epigenetic from more standard genetic sources of phenotypic variance, such as additive genetic variance, dominance variance, epistasis and maternal genetic effects.
Collapse
Affiliation(s)
- Susan Kalisz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
3
|
Abstract
Gene silencing has evolved in a broad range of organisms probably as defense mechanisms against invasive nucleic acids. Two major strategies are utilized. Transcriptional gene silencing (TGS) acts to prevent RNA synthesis and posttranscriptional gene silencing (PTGS) acts to degrade existing RNA. Although the final effects are similar, the mechanisms of TGS and PTGS are species specific. In most eukaryotes, gene silencing is associated with de novo DNA methylation. However, Caenorhabditis elegans shows an efficient PTGS-like mechanism but lacks a DNA methylation system. Additionally, key enzymes involved in plant and nematode PTGS, the cellular RNA-directed RNA polymerases, appear to be missing in Drosophila melanogaster. In this review, we discuss common features of TGS and PTGS that have been identified across species but for TGS we will concentrate only on methylation-mediated gene inactivation. This effort is complicated by the vague borders between gene silencing and normal gene regulation. Mechanisms that are involved in gene silencing are also used to regulate controlled expression of endogenous genes. To outline the general aspects, gene silencing will be defined as narrowly as possible. The intention behind this review is to stimulate discussion and we seek to facilitate this by introducing speculative concepts that could lead to some reappraisal of the literature.
Collapse
Affiliation(s)
- Michael Wassenegger
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Martinsried, Germany
| |
Collapse
|
4
|
Abstract
Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.
Collapse
Affiliation(s)
- Paul F Fransz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands.
| | | |
Collapse
|
5
|
Abstract
Methylation of cytosines within the CpG dinucleotide by DNA methyltransferases is involved in regulating transcription and chromatin structure, controlling the spread of parasitic elements, maintaining genome stability in the face of vast amounts of repetitive DNA, and X chromosome inactivation. Cellular DNA methylation is highly compartmentalized over the mammalian genome and this compartmentalization is essential for embryonic development. When the complicated mechanisms that control which DNA sequences become methylated go awry, a number of inherited genetic diseases and cancer may result. Much new information has recently come to light regarding how cellular DNA methylation patterns may be established during development and maintained in somatic cells. Emerging evidence indicates that various chromatin states such as histone modifications (acetylation and methylation) and nucleosome positioning (modulated by ATP-dependent chromatin remodeling machines) determine DNA methylation patterning. Additionally, various regulatory factors interacting with the DNA methyltransferases may direct them to specific DNA sequences, regulate their enzymatic activity, and allow their use as transcriptional repressors. Continued studies of the connections between DNA methylation and chromatin structure and the DNA methyltransferase-associated proteins, will likely reveal that many, if not all, epigenetic modifications of the genome are directly connected. Such studies should also yield new insights into treating diseases involving aberrant DNA methylation.
Collapse
Affiliation(s)
- Keith D Robertson
- Epigenetic Gene Regulation and Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892, USA.
| |
Collapse
|
6
|
Abstract
It is increasingly clear that chromatin is not just a device for packing DNA within the nucleus but also a dynamic material that changes as cellular environments alter. The precise control of chromatin modification in response to developmental and environmental cues determines the correct spatial and temporal expression of genes. Here, we review exciting discoveries that reveal chromatin participation in many facets of plant development. These include: chromatin modification from embryonic and meristematic development to flowering and seed formation, the involvement of DNA methylation and chromatin in controlling invasive DNA and in maintenance of epigenetic states, and the function of chromatin modifying and remodeling complexes such as SWI/SNF and histone acetylases and deacetylases in gene control. Given the role chromatin structure plays in every facet of plant development, chromatin research will undoubtedly be integral in both basic and applied plant biology.
Collapse
Affiliation(s)
- Guofu Li
- Sangamo Biosciences Inc, Point Richmond Tech Center, Richmond, CA 94804, USA.
| | | | | |
Collapse
|
7
|
Singer T, Yordan C, Martienssen RA. Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). Genes Dev 2001; 15:591-602. [PMID: 11238379 PMCID: PMC312647 DOI: 10.1101/gad.193701] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Robertson's Mutator transposable elements in maize undergo cycles of activity and then inactivity that correlate with changes in cytosine methylation. Mutator-like elements are present in the Arabidopsis genome but are heavily methylated and inactive. These elements become demethylated and active in the chromatin-remodeling mutant ddm1 (Decrease in DNA Methylation), which leads to loss of heterochromatic DNA methylation. Thus, DNA transposons in plants appear to be regulated by chromatin remodeling. In inbred ddm1 strains, transposed elements may account, in part, for mutant phenotypes unlinked to ddm1. Gene silencing and paramutation are also regulated by DDM1, providing support for the proposition that epigenetic silencing is related to transposon regulation.
Collapse
Affiliation(s)
- T Singer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
8
|
Abstract
The evolutionary history of organisms is often assumed to be recorded in the structure of important molecules, such as DNA sequences. Whereas the structure of these molecules does sometimes affirm other evidence of ancestry, like fossil records, it sometimes does not. Horizontal gene transfer can distort perceptions of ancestry. Determining the impact of horizontal gene transfer on evolution has been limited by the crude tools available to detect it. Physical and genetic vectors are now known to conduct genes between organisms, even between biological kingdoms of organisms. The effects are being noticed in important molecules preserved in the genomes of organisms. This article will review the systematic bias in using molecular morphology, like DNA sequences, to infer ancestry and how this bias is the unavoidable result of the way that experimental genetics itself evolved. We present the novel hypothesis that genes usually called epigenes, like methylation patterns and prions, are infectiously transferred, sometimes using DNA as a vector, but not as a gene.
Collapse
Affiliation(s)
- J A Heinemann
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand.
| | | |
Collapse
|
9
|
|
10
|
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without a change in DNA sequence. Epigenetic phenomena have major economic and medical relevance, and several, such as imprinting and paramutation, violate Mendelian principles. Recent discoveries link the recognition of nucleic acid sequence homology to the targeting of DNA methylation, chromosome remodeling, and RNA turnover. Although epigenetic mechanisms help to protect cells from parasitic elements, this defense can complicate the genetic manipulation of plants and animals. Essential for normal development, epigenetic controls become misdirected in cancer cells and other human disease syndromes.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Heath and Human Development, NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA.
| | | |
Collapse
|
11
|
Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 1999; 23:62-6. [PMID: 10471500 DOI: 10.1038/12664] [Citation(s) in RCA: 603] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methylation of DNA at the dinucleotide CpG is essential for mammalian development and is correlated with stable transcriptional silencing. This transcriptional silencing has recently been linked at a molecular level to histone deacetylation through the demonstration of a physical association between histone deacetylases and the methyl CpG-binding protein MeCP2 (refs 4,5). We previously purified a histone deacetylase complex from Xenopus laevis egg extracts that consists of six subunits, including an Rpd3-like deacetylase, the RbA p48/p46 histone-binding protein and the nucleosome-stimulated ATPase Mi-2 (ref. 6). Similar species were subsequently isolated from human cell lines, implying functional conservation across evolution. This complex represents the most abundant form of deacetylase in amphibian eggs and cultured mammalian cells. Here we identify the remaining three subunits of this enzyme complex. One of them binds specifically to methylated DNA in vitro and molecular cloning reveals a similarity to a known methyl CpG-binding protein. Our data substantiate the mechanistic link between DNA methylation, histone deacetylation and transcriptional silencing.
Collapse
Affiliation(s)
- P A Wade
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Building 18T Room 106, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|