1
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
Chen Y, Hasegawa A, Wakimoto Y, Shibahara H. Update on the research on the antigens of anti-sperm antibodies over the last decade. J Reprod Immunol 2024; 164:104292. [PMID: 38964133 DOI: 10.1016/j.jri.2024.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
This review summarizes the advancements over a decade of research on antigens of anti-sperm antibodies (ASAs), which are key to male immune infertility. Despite the progress in assisted reproductive technologies, understanding the roles and mechanisms of ASAs and their antigens remains vital for immune infertility management. We conducted a comprehensive literature search on PubMed from January 2013 to December 2023 using the following keywords: "anti-sperm antibody," "sperm antigen," and "immune infertility." In this review, we focus on the discoveries in sperm antigen identification and characterization through proteomics, gene disruption technology, and immunoinformatics, along with the development of fertility biomarkers. Here, we discuss the clinical applications of improved ASA detection methods and the progress in the development of immunocontraceptive vaccines. The intersection of advanced diagnostic techniques and vaccine development represents a promising frontier in reproductive health. The findings also highlight the need for standardized ASA detection methods and a comprehensive molecular-level approach to understanding ASA-related infertility. These insights underscore the significance of ongoing reproductive immunology research in enhancing clinical fertility outcomes and contraceptive vaccine development.
Collapse
Affiliation(s)
- Yuekun Chen
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Akiko Hasegawa
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Yu Wakimoto
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
3
|
Parkes R, Garcia TX. Bringing proteomics to bear on male fertility: key lessons. Expert Rev Proteomics 2024; 21:181-203. [PMID: 38536015 PMCID: PMC11426281 DOI: 10.1080/14789450.2024.2327553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.
Collapse
Affiliation(s)
- Rachel Parkes
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
- Scott Department of Urology, Baylor College of Medicine
| |
Collapse
|
4
|
Arya D, Balasinor N, Singh D. Varicocele associated male infertility: cellular and molecular perspectives of pathophysiology. Andrology 2022; 10:1463-1483. [PMID: 36040837 DOI: 10.1111/andr.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Varicocele is a common risk factor associated with reduced male fertility potential. The current understanding of varicocele pathophysiology does not completely explain the clinical manifestation of infertility. The present treatment options such as antioxidant supplementation and varicocelectomy only helps ∼35% of men to achieve spontaneous pregnancy. OBJECTIVE This review aims to summarize the available knowledge on cellular and molecular alterations implicated to varicocele associated male infertility and also highlights the new knowledge generated by 'Omics' technologies. MATERIALS AND METHODS PubMed, MEDLINE, Cochrane and Google Scholar databases are searched using different combinations of keywords (varicocele, infertile/fertile men with varicocele, cellular changes, molecular mechanisms, proteome, epigenome, transcriptome and metabolome). A total of 229 relevant human and animal studies published till 2021 were included in this review. RESULTS Current understanding advocates oxidative stress (OS) as a major contributory factor to the varicocele associated male infertility. Excessive OS causes alteration in testicular microenvironment and sperm DNA fragmentation which further contributes to infertility. Molecular and omics studies have identified several promising biomarkers such as AAMP, SPINT1, MKI67 (genetic markers), sperm quality and function related protein markers, global sperm DNA methylation level (epigenetic marker), Hspa2, Protamine, Gadd7, Dynlt1 and Beclin1 (mRNA markers), PRDX2, HSPA, APOA2, YKL40 (seminal protein markers), total choline and PHGDH (metabolic markers). DISCUSSION Mature spermatozoa harbours a plethora of molecular information in form of proteome, epigenome and transcriptome; which could provide very important clues regarding pathophysiology of varicocele associated infertility. Recent molecular and omics studies in infertile men with varicocele have identified several promising biomarkers. Upon further validation with larger and well-defined studies, some of these biomarkers could aid in varicocele management. CONCLUSION The present evidences suggest inclusion of OS and sperm DNA fragmentation tests could be useful to the diagnostic workup for men with varicocele. Furthermore, including precise molecular markers may assist in diagnostics and prognostics of varicocele associated male infertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Deepshikha Arya
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR- National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| |
Collapse
|
5
|
Ernandez J, Gu C, Kathrins M. Awareness and reporting of globozoospermia among in vitro fertilization and andrology laboratories: A national survey. Andrologia 2022; 54:e14474. [PMID: 35587120 DOI: 10.1111/and.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
Globozoospermia (GZ) is a rare disorder found in less than 0.1% of infertile men in which spermatozoa lack acrosomes necessary for penetration of an oocyte. While methods have been demonstrated to allow globozoospermic men to achieve a viable pregnancy with their partner, the Wold Health Organization considers identifying and reporting GZ on semen analysis to be 'important'. Our study aims to determine if and to what extent in vitro fertilization (IVF) laboratories nationwide recognize and report GZ on semen analysis reports. We constructed an IRB-approved survey sent nationwide to IVF and andrology clinic laboratory directors listed by the Society for Assisted Reproductive Technology and/or the American Society for Reproductive Medicine. Results from the survey were de-identified for analysis. A total of 490 surveys were sent with a response rate of 10% (n = 51). Most respondents (66%) practiced in a private, rather than academic, setting. A majority of respondents were confident in their technicians' knowledge of GZ (86%) and ability to identify it on a sample (94%). However, only half of respondents noted a space to report the concern for GZ to the ordering physician, and 25% of respondents did not feel their clinic was able to identify patients where there is a concern for GZ. Similarly, 84% of respondents did not report a percent of acrosome-deficient sperm. Less than half of respondents reported that their clinic has previously diagnosed GZ. Though the majority of respondents felt that their laboratory technicians would be able to identify GZ, a significant minority felt that their clinic did not have means to be able to report concern for GZ. This may be due to the absence of a proper channel to report a concern for GZ, a lack of knowledge about the condition, or failure to distinguish GZ from a broader reported percentage of morphologically abnormal sperm. Given evidence that the diagnosis of GZ may be under-reported in the United States, there should be a national standard for laboratory technicians to be trained to recognize GZ and be able to report their suspicion to the ordering clinician.
Collapse
Affiliation(s)
- John Ernandez
- Division of Urology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Catherine Gu
- Division of Urology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Martin Kathrins
- Division of Urology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Botezatu A, Vladoiu S, Fudulu A, Albulescu A, Plesa A, Muresan A, Stancu C, Iancu IV, Diaconu CC, Velicu A, Popa OM, Badiu C, Dinu-Draganescu D. Advanced molecular approaches in male infertility diagnosis. Biol Reprod 2022; 107:684-704. [PMID: 35594455 DOI: 10.1093/biolre/ioac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent years a special attention has been given to a major health concern namely to male infertility, defined as the inability to conceive after 12 months of regular unprotected sexual intercourse, taken into account the statistics that highlight that sperm counts have dropped by 50-60% in recent decades. According to the WHO, infertility affects approximately 9% of couples globally, and the male factor is believed to be present in roughly 50% of cases, with exclusive responsibility in 30%. The aim of this manuscript is to present an evidence-based approach for diagnosing male infertility that includes finding new solutions for diagnosis and critical outcomes, retrieving up-to-date studies and existing guidelines. The diverse factors that induce male infertility generated in a vast amount of data that needed to be analysed by a clinician before a decision could be made for each individual. Modern medicine faces numerous obstacles as a result of the massive amount of data generated by the molecular biology discipline. To address complex clinical problems, vast data must be collected, analysed, and used, which can be very challenging. The use of artificial intelligence (AI) methods to create a decision support system can help predict the diagnosis and guide treatment for infertile men, based on analysis of different data as environmental and lifestyle, clinical (sperm count, morphology, hormone testing, karyotype, etc.) and "omics" bigdata. Ultimately, the development of AI algorithms will assist clinicians in formulating diagnosis, making treatment decisions, and predicting outcomes for assisted reproduction techniques.
Collapse
Affiliation(s)
- A Botezatu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - S Vladoiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - A Fudulu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Albulescu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,National Institute for Chemical pharmaceutical Research & Development
| | - A Plesa
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Muresan
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Stancu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - I V Iancu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - C C Diaconu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Velicu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - O M Popa
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Badiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | | |
Collapse
|
7
|
Rivera-Egea R, Sota N, González-Martín R, Meseguer M, Remohí J, Garrido N, Dominguez F. Differential sperm proteomic profiles according to pregnancy achievement in intracytoplasmic sperm injection cycles: a pilot study. J Assist Reprod Genet 2021; 38:1507-1521. [PMID: 33835370 PMCID: PMC8266945 DOI: 10.1007/s10815-021-02098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/01/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To describe the proteomic profiles in semen samples and define the differences in sperm proteomic profiles among samples that ultimately achieved pregnancy (P) via intracytoplasmic sperm injection (ICSI) in an oocyte donation program and those that were unsuccessful (NP). METHODS Prospective, analytical, observational nested case and control study evaluating the proteomic profile of spermatozoa from patients' ejaculates where pregnancies were (group pregnant (P), n= 4) or were not (group non-pregnant (NP), n=4) achieved after ICSI in an oocyte donation program aiming to standardize female factor. Proteins were separated and analyzed by means of SWATH-MS) and compared between P/NP groups to identify sperm biomarkers of fertility/infertility. Proteins are available via ProteomeXchange. RESULTS We identified and quantified 2228 proteins, with 37 significantly higher in the P group and 16 higher in NP. Enrichment analysis revealed that the increased proteins in P group sperm were related to motility, anaerobic metabolism, and protein biosynthesis functions, while the increased proteins in the NP group were involved in protein biosynthesis, protein folding, aerobic metabolism, and signal transduction, all of which are functions not previously described as influencing sperm success. Some proteins identified (e.g., SLC2A3, or CD81) are located in the cell membrane and thus may be employed to select spermatozoa by magnetic-activated cell sorting (MACS). CONCLUSION(S) This work revealed differences in the proteomic profiles of sperm samples successful in achieving pregnancy and those that were not, expanding our understanding of sperm function and infertility-related molecular markers, and enabling the future development of male fertility diagnostic tools and therapies.
Collapse
Affiliation(s)
- Rocio Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Plaza de la Policía Local, 3, 46015 Valencia, Spain
- IVI Foundation, Health Research Institute La Fe, Edificion Biopolo-La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain
| | - Nerea Sota
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Plaza de la Policía Local, 3, 46015 Valencia, Spain
| | - Roberto González-Martín
- IVI Foundation, Health Research Institute La Fe, Edificion Biopolo-La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain
| | - Marcos Meseguer
- IVI Foundation, Health Research Institute La Fe, Edificion Biopolo-La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain
- IVF Laboratory, IVIRMA Valencia, Plaza de la Policía Local, 3, 46015 Valencia, Spain
| | - Jose Remohí
- IVI Foundation, Health Research Institute La Fe, Edificion Biopolo-La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain
- Reproductive Medicine Department, IVIRMA Valencia, Plaza de la Policía Local, 3, 46015 Valencia, Spain
| | - Nicolas Garrido
- IVI Foundation, Health Research Institute La Fe, Edificion Biopolo-La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain
| | - Francisco Dominguez
- IVI Foundation, Health Research Institute La Fe, Edificion Biopolo-La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain
| |
Collapse
|
8
|
Carvalho MG, Silva KM, Aristizabal VHV, Ortiz PEO, Paranzini CS, Melchert A, Amaro JL, Souza FF. Effects of Obesity and Diabetes on Sperm Cell Proteomics in Rats. J Proteome Res 2021; 20:2628-2642. [PMID: 33705140 DOI: 10.1021/acs.jproteome.0c01044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infertility caused by male factors is potentially associated with metabolic disorders such as obesity and/or diabetes. This experimental study was conducted in a male rodent model to assess the effects of different diseases on semen quality and sperm proteomics. Ten Wistar rats were used for each treatment. Rats were fed commercial food provided controllably to the control group and the diabetic group, and a hypercaloric diet supplemented with 5% sucrose in water was provided ad libitum to the obese group for 38 weeks. Diabetes was induced with 35 mg/kg streptozotocin. After euthanasia, testicles, spermatozoa, fat, and blood (serum) samples were collected. Spermatozoa were evaluated for quality and subjected to proteomics analyses. Histology and cytology of the testis, and serum leptin, adiponectin, interleukin 8 (IL-8), blood glucose, and testosterone levels, were also assessed. Body weight, retroperitoneal and testicular fat, and the Lee index were also measured. Obesity and diabetes were induced. The diabetic group showed noticeable changes in spermatogenesis and sperm quality. The mass spectrometry proteomics data have been deposited in Mendeley Data (doi: 10.17632/rfp7kfjcsd.5). Fifteen proteins varied in abundance between groups, especially proteins related to energy production and structural function of the spermatozoa, suggesting disturbances in energy production with a subsequent alteration in sperm motility in both groups, but with a compensatory response in the obese group.
Collapse
Affiliation(s)
- Marcos G Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Kelry M Silva
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Viviana H V Aristizabal
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Pablo E O Ortiz
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Cristiane S Paranzini
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil.,Envol Biomedical, Immokalee, Florida 34143, United States
| | - Alessandra Melchert
- Department of Veterinary Clinical, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, 18618-681 Botucatu, São Paulo, Brazil
| | - João L Amaro
- Department of Surgical Specialties and Anesthesiology, Urology, School of Medicine, São Paulo State University ̈Júlio de Mesquita Filho"-UNESP, 18618-687 Botucatu, São Paulo, Brazil
| | - Fabiana F Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| |
Collapse
|
9
|
Torra-Massana M, Jodar M, Barragán M, Soler-Ventura A, Delgado-Dueñas D, Rodríguez A, Oliva R, Vassena R. Altered mitochondrial function in spermatozoa from patients with repetitive fertilization failure after ICSI revealed by proteomics. Andrology 2021; 9:1192-1204. [PMID: 33615715 DOI: 10.1111/andr.12991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Unexplained fertilization failure (FF), occurring in 1-3% of intracytoplasmic sperm injection (ICSI) cycles, results in both psychological and financial burden for the patients. However, the molecular causes behind FF remain largely unknown. Mass spectrometry is a powerful technique to identify and quantify proteins across samples; however, no study so far has used it to dissect the proteomic signature of spermatozoa with FF after ICSI. OBJECTIVE To investigate whether sperm samples from patients suffering repetitive FF after ICSI display alterations in their protein content. MATERIAL AND METHODS Seventeen infertile men were included: 5 patients presented FF in ≥3 consecutive ICSI cycles, while 12 patients had a fertilization rate >75% (controls). Individual sperm samples were subjected to 2D-LC-MS/MS. Both conventional and novel statistical approaches were used to identify differentially abundant proteins. Additionally, analysis of mitochondrial and proteasomal abundance and activity were performed, using Western blot, FACS analysis of JC-1 staining and AMC-peptide fluorometric assay. RESULTS Four proteins presented lower abundance (FMR1NB, FAM209B, RAB2B, and PSMA1) in the FF group compared to controls, while five mitochondrial proteins presented higher abundance in FF (DLAT, ATP5H, SLC25A3, SLC25A6, and FH) (p < 0.05). The altered abundance of mitochondrial DLAT and proteasomal PSMA1 was corroborated by Western blot. Of relevance, novel stable-protein pair analysis identified 73 correlations comprising 28 proteins within controls, while different mitochondrial proteins (ie, PDHA2, PHB2, and ATP5F1D) lost >50% of these correlations in specific FF samples pointing out specific mitochondrial deregulations. DISCUSSION This is the first proteomic analysis of spermatozoa from patients who resulted in fertilization failure after ICSI. The altered proteins, most of them related to mitochondrial function, could help to identify diagnostic/prognostic markers of fertilization failure and could further dissect the molecular paternal contribution to reach successful fertilization. CONCLUSION Sperm samples from patients with FF after ICSI present altered abundance of different proteins, including mainly mitochondrial proteins.
Collapse
Affiliation(s)
- Marc Torra-Massana
- EUGIN, Barcelona, Spain.,Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | | - Ada Soler-Ventura
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | - David Delgado-Dueñas
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | |
Collapse
|
10
|
Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, Arafa M, Panner Selvam MK, Shah R. Male infertility. Lancet 2021; 397:319-333. [PMID: 33308486 DOI: 10.1016/s0140-6736(20)32667-2] [Citation(s) in RCA: 571] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
It is estimated that infertility affects 8-12% of couples globally, with a male factor being a primary or contributing cause in approximately 50% of couples. Causes of male subfertility vary highly, but can be related to congenital, acquired, or idiopathic factors that impair spermatogenesis. Many health conditions can affect male fertility, which underscores the need for a thorough evaluation of patients to identify treatable or reversible lifestyle factors or medical conditions. Although semen analysis remains the cornerstone for evaluating male infertility, advanced diagnostic tests to investigate sperm quality and function have been developed to improve diagnosis and management. The use of assisted reproductive techniques has also substantially improved the ability of couples with infertility to have biological children. This Seminar aims to provide a comprehensive overview of the assessment and management of men with infertility, along with current controversies and future endeavours.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Chak-Lam Cho
- SH Ho Urology Center, Department of Surgery, Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA; Department of Medical Bioscience, University of Western Cape, Bellville, South Africa; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sarah Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Mohamed Arafa
- Male Infertility Unit, Urology Department, Hamad Medical Corporation, Doha, Qatar; Andrology Department, Cairo University, Cairo, Egypt
| | | | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Center, Mumbai, India
| |
Collapse
|
11
|
van Tilburg M, Sousa S, Lobo MDP, Monteiro-Azevedo ACOM, Azevedo RA, Araújo AA, Moura AA. Mapping the major proteome of reproductive fluids and sperm membranes of rams: From the cauda epididymis to ejaculation. Theriogenology 2020; 159:98-107. [PMID: 33126182 DOI: 10.1016/j.theriogenology.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
The present study evaluated the major proteome of ram seminal plasma and the main secretions that contribute to its formation, such as the cauda epididymal and accessory sex gland fluids. The study also investigated sperm membrane protein profiles before and after ejaculation. First, semen was collected from six rams (using artificial vagina) to obtain seminal plasma and ejaculated sperm. Then, rams were vasectomized for collection of accessory sex gland fluid (using artificial vagina). Next, rams were slaughtered and cauda epididymal fluid (CEF), seminal vesicle fluid, bulbourethral gland fluid and cauda epididymal sperm were properly collected. Proteins from reproductive fluids and sperm membranes were analyzed by 2-D SDS-PAGE, tandem mass spectrometry and bioinformatics. There we 386 proteins and 256 isoforms identified in all samples. The most abundant seminal plasma proteins were BSP1, BSP5 and spermadhesins (bodhesin-2 and spermadhesin Z13-like). These proteins were present in similar patterns in maps of accessory sexgland fluid, with very low quantities in the CEF and absent in the bulbourethral gland secretion. Thus, practically all BSPs and spermadhesins come from seminal vesicles. Bulbourethral gland fluid brought bactericidal/permeability-increasing protein-containing Family A member 1 isoforms, superoxide dismutase [Cu-Zn] and betamicroseminoprotein to seminal plasma. CEF was the major provider of clusterin, epididymal-specific lipocalin-5-like isoform, epididymal secretory gluthathione peroxidase, epididymal secretory protein E1 and prostaglandin-H2 D-isomerase to seminal plasma. Albumin came from all reproductive fluids. BSPs and spermadhesins were present in 2-D maps of ejaculated sperm but absent in cauda epididymal sperm. These proteins come from the seminal vesicles and bind to sperm at the moment of ejaculation. Other proteins of ejaculated and epididymal sperm membranes were mostly associated to energy production, cell adhesion and proteolytic activity (ATP synthases, disintegrin, metalloproteinase domain-containing protein 32, carboxypeptidase Q and cytosol aminopeptidase). In conclusion, there is a well-orchestrated sequence of events to form the major seminal plasma proteome, with specific contributions from cauda epididymis, seminal vesicles and bulbourethral glands. The present data contribute to a better understanding of male reproductive biology and how sperm functions are affected by the noncellularmicro environment of semen.
Collapse
Affiliation(s)
- Mauricio van Tilburg
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil
| | - Solange Sousa
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Marina D P Lobo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | | | - Renato A Azevedo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; The School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
12
|
Panner Selvam MK, Finelli R, Agarwal A, Henkel R. Proteomics and metabolomics - Current and future perspectives in clinical andrology. Andrologia 2020; 53:e13711. [PMID: 32598566 DOI: 10.1111/and.13711] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Proteomics and metabolomics are emerging as promising tools to investigate the molecular mechanisms associated with male infertility. Proteins and metabolites play a pivotal role in regulating the molecular pathways associated with physiological functions of spermatozoa. Semen analysis, physical examination and laboratory work up cannot identify the etiology of infertility in 30%-40% of cases, which are classified as idiopathic. Therefore, the application of proteomics and metabolomics in the field of andrology will aid to overcome the limitations of the standard semen analysis. Understanding the molecular pathways associated with male infertility will help in planning ad hoc treatments, contributing to the clinical management of infertile patients. In this review, proteomics and metabolomics studies on spermatozoa and seminal plasma are discussed with a focus on molecular biomarkers associated with male infertility-related conditions.
Collapse
Affiliation(s)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
13
|
Agarwal A, Baskaran S, Panner Selvam MK, Barbăroșie C, Master K. Unraveling the Footsteps of Proteomics in Male Reproductive Research: A Scientometric Approach. Antioxid Redox Signal 2020; 32:536-549. [PMID: 31861964 DOI: 10.1089/ars.2019.7945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Male reproductive research at molecular level has gained more attention as it offers the cellular mechanisms and biological pathways implicated in the reproductive physiology. Several researchers across the world have used global proteomic approach in conjunction with advanced bioinformatics software to identify putative biomarkers for various male infertility conditions. Recent Advances: Introduction of advance proteomic platforms has made it easier to generate enormous amount of data in a short period of time. In this article, we have reviewed the functional and comparative proteomic studies in the area of male reproductive research. We have discussed the key proteins and associated cellular pathways such as oxidative phosphorylation and mitochondrial dysfunction implicated in the various male infertility conditions. Furthermore, for the first time scientometric approach was used to analyze the publication trends and hot topics in proteomics of male reproductive research. Critical Issues: Analysis of publication trends revealed that majority of the published studies were focused on varicocele and asthenozoospermia, while very limited research has been conducted on assisted reproductive technology (ART). This area of research requires more attention as it would facilitate identification of novel biomarkers to catalogue proteomic characteristics of spermatozoa for achieving better results in ART. Future Directions: Future research should be focused on the development and validation of a biomarker panel for specific male infertility scenarios based on etiology. Translation of validated proteomic biomarkers into tests or assays for male infertility conditions would enable the physician to provide better management for the patients.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Cătălina Barbăroșie
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Kruyanshi Master
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
14
|
Krzastek SC, Smith RP, Kovac JR. Future diagnostics in male infertility: genomics, epigenetics, metabolomics and proteomics. Transl Androl Urol 2020; 9:S195-S205. [PMID: 32257860 PMCID: PMC7108983 DOI: 10.21037/tau.2019.10.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
A male factor is involved in 50% of couples with infertility. Unfortunately, the etiology of male factor infertility remains classified as idiopathic in nearly 50% of cases. The semen analysis (SA) continues to be first line for the workup of male infertility, but it is an imperfect test with high variability between samples. This lack of diagnostic capability has led to the desire to develop minimally invasive tests to aid with understanding the etiology of male factor infertility. Genetic factors are known to play a role in male infertility, and much work has been done to identify the many genes involved. The study of the genes involved, the impact of epigenetic modifications, proteins and metabolites produced are attractive targets for development of biomarkers which may be used to diagnose the etiology of male infertility. This review aims to explore recent advances in these fields as they pertain to the diagnosis of male infertility.
Collapse
Affiliation(s)
- Sarah C. Krzastek
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Ryan P. Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
15
|
Agarwal A, Panner Selvam MK, Baskaran S. Proteomic Analyses of Human Sperm Cells: Understanding the Role of Proteins and Molecular Pathways Affecting Male Reproductive Health. Int J Mol Sci 2020; 21:ijms21051621. [PMID: 32120839 PMCID: PMC7084638 DOI: 10.3390/ijms21051621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Human sperm proteomics research has gained increasing attention lately, which provides complete information about the functional state of the spermatozoa. Changes in the sperm proteome are evident in several male infertility associated conditions. Global proteomic tools, such as liquid chromatography tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight, are used to profile the sperm proteins to identify the molecular pathways that are defective in infertile men. This review discusses the use of proteomic techniques to analyze the spermatozoa proteome. It also highlights the general steps involved in global proteomic approaches including bioinformatic analysis of the sperm proteomic data. Also, we have presented the findings of major proteomic studies and possible biomarkers in the diagnosis and therapeutics of male infertility. Extensive research on sperm proteome will help in understanding the role of fertility associated sperm proteins. Validation of the sperm proteins as biomarkers in different male infertility conditions may aid the physician in better clinical management.
Collapse
|
16
|
Evaluation by re-derivation of a paternal line after 18 generations on seminal traits, proteome and fertility. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Fesahat F, Henkel R, Agarwal A. Globozoospermia syndrome: An update. Andrologia 2019; 52:e13459. [PMID: 31724759 DOI: 10.1111/and.13459] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022] Open
Abstract
Among the factors involved in male infertility, there is a rare morphology disorder called "globozoospermia" that is classified into total globozoospermia and partial globozoospermia (type I and type II, respectively). This syndrome is primarily characterised by the presence of round-headed spermatozoa with cytoskeleton defects around the nucleus and no acrosome. Current data support the negative correlation between globozoospermia and conventional intracytoplasmic sperm injection (ICSI) outcomes, revealing the need for the management of patients undergoing assisted reproduction technology (ART) through more effective treatment techniques. This review highlights the most important characteristics of globozoospermia such as sperm parameters, DNA/chromatin integrity and sperm DNA fragmentation (SDF), as well as genetic features based on the latest knowledge. Additionally, we looked into current progress on fertilisation potential and possible treatment strategies for patients presenting with globozoospermia.
Collapse
Affiliation(s)
- Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Abstract
Infertility affects nearly 15 per cent of all couples within the reproductive age worldwide, with about 50 per cent being exhibited in the male, called male factor infertility. Successful reproduction is dependent on sperm chromatin integrity. Spermatozoa are highly specialized cells that aim to transmit the paternal genomic blueprint to the oocyte. The spermatozoon is regulated by redox mechanisms during its epididymal transit to acquire fertilizing ability. While, at physiological levels, the production of reactive oxygen species (ROS) supports the spermatozoon to acquire its fertilizing ability, at high concentrations, it affects sperm function leading to infertility. Emerging proteomic technologies provide an opportunity to address these key issues that may solve many fertility-associated problems resulting from oxidative stress (OS). This review highlights the need for an efficient therapeutic approach to male infertility with the application of high-throughput OS-mediated proteomic technology, and also addresses the question as to whether targeting these altered sperm-specific proteins may help in designing an efficient and reversible male contraceptive.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Department of Zoology, Redox Biology Laboratory, Ravenshaw University, Cuttack, India
| | - Luna Samanta
- Department of Zoology, Redox Biology Laboratory, Ravenshaw University, Cuttack, India
| |
Collapse
|
19
|
Guo Y, Jiang J, Zhang H, Wen Y, Zhang H, Cui Y, Tian J, Jiang M, Liu X, Wang G, Li Y, Hu Z, Zhou Z, Sha J, Chen D, Yang X, Guo X. Proteomic Analysis of Dpy19l2-Deficient Human Globozoospermia Reveals Multiple Molecular Defects. Proteomics Clin Appl 2019; 13:e1900007. [PMID: 31424156 DOI: 10.1002/prca.201900007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/29/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the differences in protein expression between Dpy19l2-deficient human globozoospermia and normozoospermia. EXPERIMENTAL DESIGN Human sperm samples from three globozoospermic donors with Dpy19l2 deletion and three normal controls are subjected to TMT quantitative technology. SPESP1, HIST1H4A, and LYZL1 are randomly selected for western blotting analysis. GO annotations are performed using the Database for Annotation, Visualization, and Integrated Discovery. RESULTS A total of 2567 proteins are identified, of which 2510 proteins are quantified, and 491 are differentially expressed (fold-change > 2), with 370 upregulated and 121 downregulated in globozoospermic patients. The levels of several important proteins, including SPACA 1, IZUMO1, ZPBP1, and PLCZ1, are decreased in globozoospermic sperm. Bioinformatics analysis indicates the Dpy19l2-deficient sperm presented molecular defects in acrosome, chromatin, sperm-egg interaction, and fertilization. CONCLUSIONS AND CLINICAL RELEVANCE The present study is the first to analyze total globozoospermia with Dpy19l2 deletion using high-throughput proteomics. This study may provide insights into the mechanism of globozoospermia.
Collapse
Affiliation(s)
- Yueshuai Guo
- Central Laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, P. R. China.,State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Jiayin Jiang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Yang Wen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Jianyu Tian
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Min Jiang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Gaigai Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China.,Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu, P. R. China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Daozhen Chen
- Central Laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, P. R. China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China.,Department of Urology, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, Jiangsu, P. R. China
| |
Collapse
|
20
|
Panner Selvam MK, Baskaran S, Agarwal A. Proteomics of reproduction: Prospects and perspectives. Adv Clin Chem 2019; 92:217-243. [PMID: 31472755 DOI: 10.1016/bs.acc.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, proteomics has been used widely in reproductive research in order to understand the molecular mechanisms related to gametes at the cellular level and the role of proteins involved in fertilization. Network and pathway analysis using bioinformatic tools have paved way to obtain a wider picture on the possible pathways associated with the key differentially expressed proteins (DEPs) and its implication in various infertility scenarios. A brief overview of advanced techniques and bioinformatic tools used for reproductive proteomics is presented. Key findings of proteomic-based studies on male and female reproduction are also presented. Furthermore, the chapter sheds light on the cellular pathways and potential biomarkers associated with male and female infertility. Proteomics coupled with bioinformatic analysis provides an ideal platform for non-invasive management of infertility in couples.
Collapse
|
21
|
Protein profile of Dabry's sturgeon (Acipenser dabryanus) spermatozoa and relationship to sperm quality. Anim Reprod Sci 2018; 201:1-11. [PMID: 30587384 DOI: 10.1016/j.anireprosci.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/25/2018] [Accepted: 12/05/2018] [Indexed: 11/23/2022]
Abstract
Knowledge of conditions affecting sperm quality is essential for efficient culture of fish for commercial purposes and conservation of species. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry were used to characterize the proteomic profile of Acipenser dabryanus spermatozoa relative to motility and fertilization capacity. There were differential amounts of protein in 313 spots in spermatozoa of males classified to have relatively greater or lesser spermatozoa quality. The functions of 43 of 50 selected proteins were identified. The proteins in 14 spots were involved in metabolism, and of these, proteins in 11 spots were highly abundant in spermatozoa of males categorized to have spermatozoa of greater quality, including pyruvate kinase, enolase B, phosphoglycerate kinase, lactate dehydrogenase, cytosolic malate dehydrogenase, brain creatine kinase b, Ckmb protein, and nucleoside diphosphate kinase. The proteins involved in mechanics of flagellum movement were identified, including the dynein intermediate chain, radial spoke head 1 homolog; ropporin-1-like, Bardet-Biedl syndrome 5, ADP-ribosylation factor-like protein 3, tektin-4, gamma-actin, and tubulin cytoskeleton proteins to be differentially abundant in spermatozoa that were classified relatively greater or lesser quality. Heat shock proteins, copper/zinc superoxide dismutase and peroxiredoxins, which are involved in stress response were of differential abundance in spermatozoa from males with spermatozoa in the two different classification groups. Proteins were also detected that are involved in protein folding and binding, or hydrolase activity. The results are valuable for the prediction of sperm quality and for reproduction management in A. dabryanus and other threatened species.
Collapse
|
22
|
Modarres P, Tavalaee M, Ghaedi K, Nasr-Esfahani MH. An Overview of The Globozoospermia as A Multigenic Identified Syndrome. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:273-277. [PMID: 30291685 PMCID: PMC6186287 DOI: 10.22074/ijfs.2019.5561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/16/2018] [Indexed: 11/15/2022]
Abstract
Acrosome plays an integral role during fertilization and its absence in individuals with globozoospermia leads to
failure of in vitro fertilization (IVF) and oocyte activation post-intracytoplasmic sperm injection (ICSI). A variety
of processes, organelles and structures are involved in acrosome biogenesis including, trans-golgi network (TGN),
acroplaxome and cellular trafficking. This review aims to explain roles of related signals and molecules involved in
this process and also describe how their absence in form of mutation, deletion and knockout model may lead to phe-
nomenon referred to globozoospermia.
Collapse
Affiliation(s)
- Parastoo Modarres
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.Electronic Address:
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.Electronic Address:.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
23
|
Wang XM, Xiang Z, Fu Y, Wu HL, Zhu WB, Fan LQ. Comparative Proteomics Reveal the Association between SPANX Proteins and Clinical Outcomes of Artificial Insemination with Donor Sperm. Sci Rep 2018; 8:6850. [PMID: 29717166 PMCID: PMC5931513 DOI: 10.1038/s41598-018-25032-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Semen analysis is used for diagnosing male infertility and evaluating male fertility for more than a century. However, the semen analysis simply represents the population characteristics of sperm. It is not a comprehensive assessment of the male reproductive potential. In this study, 20 semen samples from human sperm bank with distinctive artificial insemination with donor sperm (AID) clinical outcomes were collected and analyzed using a two-dimensional differential in-gel electrophoresis (2D-DIGE); 45 differentially expressed protein spots were obtained, and 26 proteins were identified. Most differentially expressed proteins were related to sperm motility, energy consumption, and structure. These identified proteins included several sperm proteins associated with the nucleus on the X chromosome (SPANX) proteins. This prospective study aimed to investigate the association between the expression levels of SPANX proteins and the AID clinical outcomes. The proteins identified in this study provided a reference for the molecular mechanism of sperm fertility and revealed a predictive value of the SPANX proteins.
Collapse
Affiliation(s)
- X M Wang
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China
| | - Z Xiang
- Shenzhen Armed Police Hospital Reproductive Center, Shenzhen, China
| | - Y Fu
- Medical center for Human Reproduction, Beijing Chao-yang Hospital affiliated to Capital Medical University, Beijing, China
| | - H L Wu
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - W B Zhu
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - L Q Fan
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China. .,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
24
|
Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online 2018; 36:327-339. [DOI: 10.1016/j.rbmo.2017.12.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022]
|
25
|
Update on the proteomics of male infertility: A systematic review. Arab J Urol 2017; 16:103-112. [PMID: 29713541 PMCID: PMC5922221 DOI: 10.1016/j.aju.2017.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 02/07/2023] Open
Abstract
Objective To assess the role of differentially expressed proteins as a resource for potential biomarker identification of infertility, as male infertility is of rising concern in reproductive medicine and evidence pertaining to its aetiology at a molecular level particularly proteomic as spermatozoa lack transcription and translation. Proteomics is considered as a major field in molecular biology to validate the target proteins in a pathophysiological state. Differential expression analysis of sperm proteins in infertile men and bioinformatics analysis offer information about their involvement in biological pathways. Materials and methods Literature search was performed on PubMed, Medline, and Science Direct databases using the keywords ‘sperm proteomics’ and ‘male infertility’. We also reviewed the relevant cross references of retrieved articles and included them in the review process. Articles written in any language other than English were excluded. Results Of 575 articles identified, preliminary screening for relevant studies eliminated 293 articles. At the next level of selection, from 282 studies only 80 articles related to male infertility condition met the selection criteria and were included in this review. Conclusion In this molecular era, sperm proteomics has created a platform for enhanced understanding of male reproductive physiology as a potential tool for identification of novel protein biomarkers related to sperm function in infertile men. Therefore, it is believed that proteomic biomarkers can overcome the gaps in information from conventional semen analysis that are of limited clinical utility.
Collapse
|
26
|
Rahman MS, Kwon WS, Ryu DY, Khatun A, Karmakar PC, Ryu BY, Pang MG. Functional and Proteomic Alterations of F1 Capacitated Spermatozoa of Adult Mice Following Gestational Exposure to Bisphenol A. J Proteome Res 2017; 17:524-535. [PMID: 29198108 DOI: 10.1021/acs.jproteome.7b00668] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies regarding bisphenol A (BPA) exposure and male (in)fertility have conventionally focused on modifications in ejaculated spermatozoa function from exposed individuals. However, mammalian spermatozoa are incapable of fertilization prior to achieving capacitation, the penultimate step in maturation. Therefore, it is necessary to investigate BPA-induced changes in capacitated spermatozoa and assess the consequences on subsequent fertilization. Here, we demonstrate the effect of gestational BPA exposure (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on the functions, biochemical properties, and proteomic profiles of F1 capacitated spermatozoa from adult mice. The data showed that high concentrations of BPA inhibited motility, motion kinematics, and capacitation of spermatozoa, perhaps because of increased lipid peroxidation and protein tyrosine nitration, and decreased intracellular ATP levels and protein kinase-A activity in spermatozoa. We also found that BPA compromised the rates of fertilization and early embryonic development. Differentially expressed proteins identified between BPA-exposed and control groups play a critical role in energy metabolism, stress responses, and fertility. Protein function abnormalities were responsible for the development of several diseases according to bioinformatics analysis. On the basis of these results, gestational exposure to BPA may alter capacitated spermatozoa function and the proteomic profile, ultimately affecting their fertility potential.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Polash Chandra Karmakar
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| |
Collapse
|
27
|
Netherton JK, Hetherington L, Ogle RA, Velkov T, Baker MA. Proteomic analysis of good- and poor-quality human sperm demonstrates that several proteins are routinely aberrantly regulated. Biol Reprod 2017; 99:395-408. [DOI: 10.1093/biolre/iox166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/06/2017] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jacob K Netherton
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rachel A Ogle
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tony Velkov
- Facility for Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mark A Baker
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
28
|
Abstract
Idiopathic infertility, an etiology not identified as part of standard clinical assessment, represents approximately 20% of all infertility cases. Current male infertility diagnosis focuses on the concentration, motility, and morphology of spermatozoa. This is of limited value when predicting birth success and of limited utility when selecting the optimum treatment. At fertilization, spermatozoa provide their genomic contribution, as well as a set of RNAs and proteins that have distinct roles in development. The potential of spermatozoal RNAs to be used as a prognostic of live birth has been shown [Jodar et al. (2015) Science Translational Medicine 7(295):295re6]. This relied on a set of 648 sperm RNA elements derived from 285 genes that are perhaps indicative of future health status. To address this tenet, the present study correlated the levels of each transcript among all samples to assess linkage between transcript absence, birth success, and possible disease association. Correlations between transcript levels of the 285 genes were analyzed amongst themselves, and within the context of the entire transcript population for these samples. The transcripts ACE, GIGYF2, and ODF2 had many negative correlations and form the majority of correlations, suggesting an important function for these transcripts. Eleven of the 285 queried genes had disease-associated variants within a sperm RNA element. Three genes, GPX4, NDRG1, and RPS24 had SREs were absent in at least one individual from the test cohort. GPX4 and RPS24 are associated with developmental defects and/or neonatal lethality. This leaves the intriguing possibility that, while sperm RNAs delivered to the oocyte inform the success of live birth, they may also be predictors of human health. ABBREVIATIONS GO: Gene Ontology; ART: assisted reproductive technology; IVF: in vitro fertilization; ICSI: intra-cytoplasmic sperm injection; RNA-seq: RNA-sequencing; TIC: timed intercourse; IUI: intrauterine insemination; SRE: sperm RNA elements; HPA: Human Protein Atlas; SMDS: sedaghatian-type spondylometaphyseal dysplasia; DBA: Diamond-Blackfan anemia; RPKM: reads per kilobase per million; TPM: transcripts per million; IPA: Ingenuity Pathway Analysis; OMIM: Online Mendelian Inheritance in Man.
Collapse
Affiliation(s)
- Rayanne B Burl
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | | | - Edward Sendler
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | - Molly Estill
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Stephen A Krawetz
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
29
|
Jodar M, Soler-Ventura A, Oliva R. Semen proteomics and male infertility. J Proteomics 2017; 162:125-134. [DOI: 10.1016/j.jprot.2016.08.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
|
30
|
Gilany K, Minai-Tehrani A, Amini M, Agharezaee N, Arjmand B. The Challenge of Human Spermatozoa Proteome: A Systematic Review. J Reprod Infertil 2017; 18:267-279. [PMID: 29062791 PMCID: PMC5641436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently, there are 20,197 human protein-coding genes in the most expertly curated database (UniProtKB/Swiss-Pro). Big efforts have been made by the international consortium, the Chromosome-Centric Human Proteome Project (C-HPP) and independent researchers, to map human proteome. In brief, anno 2017 the human proteome was outlined. The male factor contributes to 50% of infertility in couples. However, there are limited human spermatozoa proteomic studies. Firstly, the development of the mapping of the human spermatozoa was analyzed. The human spermatozoa have been used as a model for missing proteins. It has been shown that human spermatozoa are excellent sources for finding missing proteins. Y chromosome proteome mapping is led by Iran. However, it seems that it is extremely challenging to map the human spermatozoa Y chromosome proteins based on current mass spectrometry-based proteomics technology. Post-translation modifications (PTMs) of human spermatozoa proteome are the most unexplored area and currently the exact role of PTMs in male infertility is unknown. Additionally, the clinical human spermatozoa proteomic analysis, anno 2017 was done in this study.
Collapse
Affiliation(s)
- Kambiz Gilany
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author: Kambiz Gilany, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, P.O. Box: 19615-1177 E-mail:
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Amini
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloofar Agharezaee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran, Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran, Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Capkova J, Kubatova A, Ded L, Tepla O, Peknicova J. Evaluation of the expression of sperm proteins in normozoospermic and asthenozoospermic men using monoclonal antibodies. Asian J Androl 2016; 18:108-13. [PMID: 25926605 PMCID: PMC4736337 DOI: 10.4103/1008-682x.151400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Recent studies have shown that infertility affects estimated 15% of all couples. Male infertility is the primary or contributory cause in 60% of these cases. Consequently, the application of assisted reproduction is increasing. These methods could benefit from an extended evaluation of sperm quality. For this reason, we analyzed sperm proteins from 30 men with normal spermiograms and 30 men with asthenozoospermia. Ejaculates of both groups were tested by flow cytometry (FCM) and fluorescence with a set of well-characterized anti-human sperm Hs-monoclonal antibodies (MoAbs), which were generated in our laboratory. No statistically significant differences were found between normospermics and asthenospermics in the expression of the sperm surface protein clusterin, evaluated with Hs-3 MoAb, and semenogelin, evaluated with Hs-9 MoAb. However, FCM revealed quantitative differences in the acrosomal proteins between normozoospermic and asthenozoospermic men, namely, in glyceraldehyde-3-phosphate dehydrogenase, evaluated with Hs-8 MoAb, valosin-containing protein, evaluated with Hs-14 MoAb, and ATP synthase (cAMP-dependent protein kinase II, PRKAR2A), evaluated with MoAb Hs-36. Asthenozoospermic men displayed a highly reduced expression of intra-acrosomal proteins, with a likely decrease in sperm quality, and thus a negative impact on successful reproduction. Asthenozoospermia seems to be a complex disorder involving intra-acrosomal proteins.
Collapse
Affiliation(s)
| | | | | | | | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| |
Collapse
|
32
|
Rahman MS, Kwon WS, Yoon SJ, Park YJ, Ryu BY, Pang MG. A novel approach to assessing bisphenol-A hazards using an in vitro model system. BMC Genomics 2016; 17:577. [PMID: 27507061 PMCID: PMC4977886 DOI: 10.1186/s12864-016-2979-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022] Open
Abstract
Background Although the toxicological impacts of the xenoestrogen bisphenol-A (BPA) have been studied extensively, but the mechanism of action is poorly understood. Eventually, no standard method exists for evaluating the possible health hazards of BPA exposure. Considering mice spermatozoa as a potential in vitro model, we investigated the effects of BPA exposure (0.0001, 0.01, 1, and 100 μM for 6 h) on spermatozoa and the related mechanisms of action. The same doses were also employed to evaluate protein profiles of spermatozoa as a means to monitor their functional affiliation to diseases. Results Our results demonstrated that high concentrations of BPA negatively affect sperm motility, viability, mitochondrial functions, and intracellular ATP levels by activating the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase-A pathways. Moreover, short-term exposure of spermatozoa to high concentrations of BPA induced differential expressions of 24 proteins. These effects appeared to be caused by protein degradation and phosphorylation in spermatozoa. Proteins differentially expressed in spermatozoa from BPA treatment groups are putatively involved in the pathogenesis of several diseases, mainly cancer, carcinoma, neoplasm, and infertility. Conclusions Based on these results, we propose that BPA adversely affects sperm function by the activation of several kinase pathways in spermatozoa. In addition, BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa, subsequently involve in the pathogenesis of many diseases. Therefore, we anticipated that current strategy might broadly consider for the health hazards assessment of other toxicological agents. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2979-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Sung-Jae Yoon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 456-756, Republic of Korea.
| |
Collapse
|
33
|
Sullivan R, Mieusset R. The human epididymis: its function in sperm maturation. Hum Reprod Update 2016; 22:574-87. [PMID: 27307387 DOI: 10.1093/humupd/dmw015] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Spermatozoa acquire their fertilizing ability and forward motility properties during epididymal transit. Our knowledge of gamete physiology is based on studies conducted in laboratory and domestic species; our knowledge of these processes in humans is limited. Medical indications for assisted reproductive technologies (ART) have progressed to include male infertility. Surgical procedures allow collection of spermatozoa from all along the human excurrent ducts, and the former have been used with some success in reproductive medicine. This has raised questions over the role of the epididymis in human sperm physiology. OBJECTIVE AND RATIONALE To reanalyze what we now know about epididymal physiology in humans and to assess the relevance of laboratory animal models for understanding human physiology and the pathophysiology of the epididymis. SEARCH METHODS A systematic bibliographic search of PubMed for articles published in English before May 2015 was carried out using the search terms 'epididymis' and 'sperm maturation'. Literature on the consequences of vasectomy on the epididymis was also searched. OUTCOMES Whereas the proximal epididymis is almost exclusively occupied by efferent ducts, the sperm reservoir capacity is poorly developed in humans. At the molecular level, the human transcriptome and proteome show some segment specificity; conflicting results persist with regard to secretome variation along the tubule. The number of genes regulated along the excurrent ducts in men is lower when compared to rodent species, but remains significant. It is challenging to reconcile biochemical and physiological studies with clinical data obtained from men undergoing reanastomosis of the vas deferens at different points along the excurrent duct. We propose that vasectomy/vasovasostomy is a model to understand the consequences of obstruction on epididymis function in humans. WIDER IMPLICATIONS Despite the scarcity of biological material available, the interspecies variability of the male reproductive tract urges us to use modern molecular and cellular biology tools to better understand human epididymis physiology in order to apply ART in a more responsible manner.
Collapse
Affiliation(s)
- Robert Sullivan
- Département d'obstétrique, gynécologie et reproduction, Centre de recherche du Centre hospitalier de l'Université Laval, axe reproduction, santé de la mère et de l'enfant,
| | - Roger Mieusset
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
34
|
Varghese DS, Chandran U, Soumya A, Pillai SM, Jayakrishnan K, Reddi PP, Kumar PG. Aberrant expression of TAR DNA binding protein-43 is associated with spermatogenic disorders in men. Reprod Fertil Dev 2016; 28:713-22. [DOI: 10.1071/rd14090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
Loss of function of TAR DNA-binding protein (TDP-43) has been implicated in neurodegenerative disorders in both humans and animal models. TDP-43 has also been shown to be cis-acting transcriptional repressor of the acrosome vesicle (Acrv) gene in mice. In the present study, we investigated the expression of the TDP-43 transcript (TARDBP) and protein in germ cells from 11 fertile and 98 subfertile men to verify its potential association with poor seminograms. The expression profile of TDP-43 was characterised in immature germ cells and spermatozoa from semen from fertile and subfertile men using reverse transcription–polymerase chain reaction, western blotting and immunofluorescence. Although germ cells from subfertile men tested negative for TARDBP, the full-length message of the same was detected in fertile men. TDP-43 was detected in spermatozoa from fertile men using western blot analysis and immunofluorescence. The expression of this protein was negligible in spermatozoa from men with primary spermatogenic dysfunction. We conclude that a deficiency in the TDP-43 expression is associated with defective spermatogenesis and male infertility. We propose that TDP-43 could be used as a marker of male factor infertility.
Collapse
|
35
|
Agarwal A, Bertolla RP, Samanta L. Sperm proteomics: potential impact on male infertility treatment. Expert Rev Proteomics 2016; 13:285-296. [PMID: 26853600 DOI: 10.1586/14789450.2016.1151357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Spermatozoa are unique cells that have highly compact DNA, motility (and hypermotility) patterns, a specific morphology, localized mitochondria and an apical acrosome. They are the end product of a dynamic process termed spermatogenesis. Sperm are therefore produced with specific proteins in order to effect different traits, such as the presence of cysteine-rich protamines in DNA, which effectively compacts DNA. Moreover, specific proteins are transferred during epididymal maturation and after ejaculation in order to render sperm capable of undergoing post-ejaculatory alterations, generally termed capacitation, which confers capacity to fertilize a mature oocyte. In addition, sperm exhibit several post-translational modifications, which are fundamental to their function, such as SUMOylation and ubiquitination. Discussed in this review is the current knowledge of the sperm proteome in terms of its composition and the function that these proteins determine, as well as their post-translational modifications and how these alter sperm functional integrity. Studies are emphasized that focus on shotgun proteomics--untargeted determination of the protein constituent of a cell in a given biological condition--and technologies currently applied toward that end are reviewed.
Collapse
Affiliation(s)
- Ashok Agarwal
- a American Center for Reproductive Medicine, Department of Urology , Cleveland Clinic , Cleveland , OH , USA
| | - Ricardo Pimenta Bertolla
- b Department of Surgery, Division of Urology, Human Reproduction Section , Federal University of São Paulo , São Paulo , Brazil
| | - Luna Samanta
- c Department of Zoology, School of Life Sciences , Ravenshaw University , Cuttack , India
| |
Collapse
|
36
|
The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 2015; 363:295-312. [PMID: 26661835 DOI: 10.1007/s00441-015-2320-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Spermatogenesis is a complex process in which >2300 genes are temporally and spatially regulated to form a terminally differentiated sperm cell that must maintain the ability to contribute to a totipotent embryo which can successfully differentiate into a healthy individual. This process is dependent on fidelity of the genome, epigenome, transcriptome, and proteome of the spermatogonia, supporting cells, and the resulting sperm cell. Infertility and/or disease risk may increase in the offspring if abnormalities are present. This review highlights the recent advances in our understanding of these processes in light of the "omics revolution". We briefly review each of these areas, as well as highlight areas of future study and needs to advance further.
Collapse
|
37
|
Capkova J, Margaryan H, Kubatova A, Novak P, Peknicova J. Target antigens for Hs-14 monoclonal antibody and their various expression in normozoospermic and asthenozoospermic men. Basic Clin Androl 2015; 25:11. [PMID: 26550480 PMCID: PMC4636759 DOI: 10.1186/s12610-015-0025-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022] Open
Abstract
Background Poor semen quality is one of the main causes of infertility. We have generated a set of monoclonal antibodies to human sperm and used them to investigate sperm quality. Some of these antibodies found differences in the expression of proteins between normal sperm and pathological sperm displaying severe defects. One of them was the Hs-14 antibody. The aim of this paper was to determine the target protein of the Hs-14 monoclonal antibody and to investigate the expression of the Hs-14-reacting protein on the sperm of asthenozoospermic men with sperm motility defect and of healthy normozoospermic men. Methods Indirect immunofluorescence, one-dimensional and two-dimensional polyacrylamide gel electrophoresis, immunoblotting and mass spectrometry. Results The Hs-14 antibody binds fibronectin, β-tubulin and valosin-containing protein - new name for this protein is transitional endoplasmic reticulum ATPase (TERA). Since the Hs-14 reaction with TERA remained the strongest at the highest antibody dilution, and Hs-14 consistently labelled the same spot or band as the monospecific anti-TERA antibody on immunoblots, we assume that TERA is an Hs-14-specific protein. Binding of fibronectin and β-tubulin might represent nonspecific cross-reactivity or Hs-14 reaction with similar epitopes of these proteins. A significant difference (P < 0.001) in immunofluorescence staining with Hs-14 was found between the normozoospermic and asthenozoospermic men. Conclusion The Hs-14 antibody enables discrimination between sterile or subfertile asthenozoospermic and fertile normozoospermic men. Decreased levels of TERA in men can be used as a biomarker of reduced fertility. Electronic supplementary material The online version of this article (doi:10.1186/s12610-015-0025-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jana Capkova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hasmik Margaryan
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alena Kubatova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Petr Novak
- Institute of Microbiology AS CR, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology AS CR, the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
38
|
Hashemitabar M, Sabbagh S, Orazizadeh M, Ghadiri A, Bahmanzadeh M. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet 2015; 32:853-63. [PMID: 25825237 PMCID: PMC4491089 DOI: 10.1007/s10815-015-0465-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/16/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Asthenozoospermia is a common cause of human male infertility characterized by reduced sperm motility. The molecular mechanism that impairs sperm motility is not fully understood. This study proposed to identify novel biomarkers by focusing on sperm tail proteomic analysis of asthenozoospermic patients. METHODS Sperm were isolated from normozoospermic and asthenozoospermic semen samples. Tail fractions were obtained by sonication followed by Percoll gradient. The proteins were extracted by solubilization and subjected to two-dimensional gel electrophoresis (2-DE); then, the spots were analyzed using Image Master 2D Platinum software. The significantly increased/decreased amounts of proteins in the two groups were exploited by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight (MALDI-TOF-TOF) mass spectrometry. RESULTS Three hundred ninety protein spots were detected in both groups. Twenty-one protein spots that had significantly altered amounts (p < 0.05) were excised and exploited using MALDI-TOF-TOF mass spectrometry. They led to the identification of the following 14 unique proteins: Tubulin beta 2B; glutathione S-transferase Mu 3; keratin, type II cytoskeletal 1; outer dense fiber protein 2; voltage-dependent anion-selective channel protein 2; A-kinase anchor protein 4; cytochrome c oxidase subunit 6B; sperm protein associated with the nucleus on the X chromosome B; phospholipid hydroperoxide glutathione peroxidase-mitochondrial; isoaspartyl peptidase/L-asparaginase; heat shock-related 70 kDa protein 2; stress-70 protein, mitochondrial; glyceraldehyde-3-phosphate dehydrogenase, testis-specific and clusterin. CONCLUSION Fourteen proteins present in different amounts in asthenozoospermic sperm tail samples were identified, four of which are reported here for the first time. These proteins might be used as markers for the better diagnosis of sperm dysfunctions, targets for male contraceptive development, and to predict embryo quality.
Collapse
Affiliation(s)
- Mahmoud Hashemitabar
- />Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Susan Sabbagh
- />Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- />Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atta Ghadiri
- />Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Bahmanzadeh
- />Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
39
|
Codina M, Estanyol JM, Fidalgo MJ, Ballescà JL, Oliva R. Advances in sperm proteomics: best-practise methodology and clinical potential. Expert Rev Proteomics 2015; 12:255-77. [PMID: 25921224 DOI: 10.1586/14789450.2015.1040769] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The recent application of mass spectrometry to the study of the sperm cell has led to an unprecedented capacity for identification of sperm proteins in a variety of species. Knowledge of the proteins that make up the sperm cell represents the first step towards understanding its normal function and the molecular anomalies associated with male infertility. The present review starts with an introduction of the sperm cell biology and is followed by the consideration of the methodological key aspects to be aware of during sample sourcing and preparation, including data interpretation. It then overviews the initiatives developed so far towards the completion of the sperm proteome, with a particular focus in human but with the inclusion of some comments on different model species. Finally, all studies performing differential proteomics in infertile patients are reviewed, pointing to future potential applications.
Collapse
Affiliation(s)
- Montserrat Codina
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Luppi S, Martinelli M, Giacomini E, Giolo E, Zito G, Garcia RC, Ricci G. Comparative proteomic analysis of spermatozoa isolated by swim-up or density gradient centrifugation. Reprod Biol Endocrinol 2015; 13:36. [PMID: 25928042 PMCID: PMC4410587 DOI: 10.1186/s12958-015-0027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Reports about the morphologic and functional characteristics of spermatozoa prepared by density gradient centrifugation (DC) or swim-up (SU) have produced discordant results. We have performed a proteomic comparison of cells prepared by DC and SU providing a molecular insight into the differences between these two methods of sperm cell isolation. METHODS Protein maps were obtained by 2-dimensional (2-D) separations consisting of isoelectrofocusing (IEF) from pI 3 to 11 followed by SDS-polyacrylamide gel electrophoresis. 2-D gels were stained with Sypro Ruby. Map images of DC and SU spermatozoa were compared using dedicated software. Intensities of a given spot were considered different between DC and SU when their group mean differed by >1.5-fold (p<0.05, Anova). RESULTS No differences were observed for 853 spots, indicating a 98.7% similarity between DC and SU. Five spots were DC>SU and 1 was SU>DC. Proteins present in 3 of the differential spots could be identified. One DC>SU spot contained lactate dehydrogenase C and gamma-glutamylhydrolase, a second DC>SU spot contained fumarate hydratase and glyceraldehyde-3-phosphate dehydrogenase-2, and a SU>DC spot contained pyruvate kinase M1/M2. CONCLUSIONS The differences in protein levels found on comparison of DC with SU spermatozoa indicate possible dissimilarities in their glycolytic metabolism and DNA methylation and suggest that DC cells may have a better capacitation potential.
Collapse
Affiliation(s)
- Stefania Luppi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy.
| | - Monica Martinelli
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy.
| | - Elisa Giacomini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Elena Giolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy.
| | - Gabriella Zito
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Rodolfo C Garcia
- International Centre for Genetic Engineering and Biotechnology (I.C.G.E.B.), Area Science Park, 34149, Trieste, Italy.
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, 34137, Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| |
Collapse
|
41
|
Huang YL, Fu Q, Yang L, Guan JL, Pan H, Chen FM, Lu KL, Zhang M. Differences between high- and low-motility buffalo sperm identified by comparative proteomics. Reprod Domest Anim 2015; 50:443-51. [PMID: 25809445 DOI: 10.1111/rda.12511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/17/2015] [Indexed: 02/03/2023]
Abstract
This study was undertaken to investigate differences in protein expression between high- and low-motility sperm of swamp buffalo. The research used two-dimensional gel electrophoresis (2DE) coupled to matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS) to analyse the different proteins. The results showed 18 different expression protein spots between high- and low-motility buffalo sperm; eight of these proteins were up-regulated in low-motility sperm, five were down-regulated, one deleted and four proteins specifically expressed. Finally, four proteins were successfully identified by MS as belonging to three unique proteins; they are outer dense fibre of sperm tails protein 2 (ODF2), ATP synthase subunit alpha (ATP5A1) and succinyl-CoA synthetase subunit beta (SUCLG2). In summary, these results help to develop an understanding of the molecular mechanisms associated with low-motility sperm and provide clues for finding molecular markers associated with sperm motility.
Collapse
Affiliation(s)
- Y-L Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China; Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Nanning, Guangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Vilagran I, Yeste M, Sancho S, Castillo J, Oliva R, Bonet S. Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker. Andrology 2015; 3:345-56. [PMID: 25678437 DOI: 10.1111/andr.12009] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023]
Abstract
Variation in boar sperm freezability (i.e. capacity to withstand cryopreservation) between ejaculates is a limitation largely reported in the literature. Prediction of sperm freezability and classification of boar ejaculates into good (GFEs) and poor freezability ejaculates (PFEs) before cryopreservation takes place may increase the use of frozen-thawed spermatozoa. While markers of boar sperm freezability have been found from sperm cell extracts, little attention has been paid to seminal plasma. On this basis, the present study compared the fresh seminal plasma proteome of 9 GFEs and 9 PFEs through two-dimensional difference gel electrophoresis (2D-DIGE) and liquid chromatography mass spectrometry (LC-MS/MS). The ejaculates were previously classified as GFE or PFE upon their sperm viability and progressive motility assessments at 30 and 240 min post thawing. From a total of 51 spots, four were found to significantly (p < 0.05) differ between GFEs and PFEs, and two were identified as fibronectin-1 (FN1) and glutathione peroxidase 5 (GPX5). These two potential markers were further studied by western blot and correlation analysis between protein relative abundances in fresh seminal plasma and regression factors from principal component analyses (PCA) run using post-thawing sperm quality parameters. Results confirmed that FN1 is a reliable marker of boar sperm freezability, because GFEs presented significantly (p < 0.05) higher FN1-amounts than PFEs and FN1 was found to be correlated with the first PCA component at 240 min post thawing. In contrast, GPX5 was not validated as a boar sperm freezability marker. We can thus conclude that levels of FN1 in fresh seminal plasma from boar semen may be used as a sperm freezability marker, thereby facilitating the use of frozen-thawed boar spermatozoa.
Collapse
Affiliation(s)
- I Vilagran
- Department of Biology, Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
SummaryTo ascertain whether aromatase (CYP19A1) expression is linked to sperm fertility of pigs, the present study determined the expression of the CYP19A1 gene in porcine sperm and its relationship with fertilization in vitro. First, to investigate its role in fertility, the presence of CYP19A1 of mRNA and protein expression in porcine sperm were confirmed by real-time (RT) or quantitative polymerase chain reaction (q-PCR) and by western blots. The expression levels were determined quantitatively using two sperm groups recovered by a Percoll gradient, which revealed that the sperm group with a low density had a higher penetration rate than that of the high-density group (P < 0.05). However, the expression level of CYP19A1 was not significantly different between the two groups. Secondly, to examine the effect of aromatase activity on fertilization, fresh semen was treated with a steroidal inhibitor, exemestane (50 μM for 0.5 h), followed by the dose- and time-dependent viability test. Our results clearly showed that an exemestane treatment effect (P < 0.05) was found for both the sperm-penetration rate and the oocyte cleavage rate. These results indicated that CYP19A1 could be involved in sperm fertility and its expression in sperm plays an important role in fertilization.
Collapse
|
44
|
Légaré C, Droit A, Fournier F, Bourassa S, Force A, Cloutier F, Tremblay R, Sullivan R. Investigation of male infertility using quantitative comparative proteomics. J Proteome Res 2014; 13:5403-14. [PMID: 25355644 DOI: 10.1021/pr501031x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Male factors account for 40% of infertility cases. The identification of differentially expressed proteins on spermatozoa from fertile and infertile men can help in the elucidation of the molecular basis of male infertility. The aim of this study was to compare sperm proteomes from 3 different groups: fertile men, normozoospermic men consulting for infertility, and normozoospermic men with an impaired capacity for fertilization (IVF-failure). We used differential proteomics with isobaric tags for relative and absolute quantitation (iTRAQ) labeling, and LC-MS analysis to identify proteins that are differentially expressed. A total of 348 unique proteins were identified and quantified. The analysis identified 33 proteins that were differentially expressed in the IVF-failure group vs the fertile group. Comparison of the infertile and fertile groups revealed that 18 proteins appeared to be differentially expressed. Four proteins were similarly altered in the IVF-failure and infertile groups: semenogelin 1 (SEMG1), prolactin-induced protein (PIP), glyceraldehyde-3-phosphate dehydrogenase (GAPDHS), and phosphoglycerate kinase 2 (PGK2). These protein markers were selected for validation using multiple reactions monitoring mass spectrometry (MRM-MS) and further confirmed by Western blot analysis. Overall, these results suggest that a panel of proteins may be used as biomarkers for future studies of infertility.
Collapse
Affiliation(s)
- Christine Légaré
- Département Obstétrique, Gynécologie et Reproduction and ‡Département Médecine Moléculaire, Centre de Recherche, Centre Hospitalier Universitaire de Québec , Quebec City, Quebec, Canada G1V 4G2
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Gayatri Mohanty
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Nirlipta Swain
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Luna Samanta
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| |
Collapse
|
46
|
Holland A, Ohlendieck K. Comparative profiling of the sperm proteome. Proteomics 2014; 15:632-48. [DOI: 10.1002/pmic.201400032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Ashling Holland
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| |
Collapse
|
47
|
Frapsauce C, Pionneau C, Bouley J, Delarouziere V, Berthaut I, Ravel C, Antoine JM, Soubrier F, Mandelbaum J. Proteomic identification of target proteins in normal but nonfertilizing sperm. Fertil Steril 2014; 102:372-80. [DOI: 10.1016/j.fertnstert.2014.04.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/11/2022]
|
48
|
Acute epididymitis induces alterations in sperm protein composition. Fertil Steril 2014; 101:1609-17.e1-5. [DOI: 10.1016/j.fertnstert.2014.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 11/20/2022]
|
49
|
Azpiazu R, Amaral A, Castillo J, Estanyol JM, Guimerà M, Ballescà JL, Balasch J, Oliva R. High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 2014; 29:1225-37. [PMID: 24781426 DOI: 10.1093/humrep/deu073] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Are there quantitative alterations in the proteome of normozoospermic sperm samples that are able to complete IVF but whose female partner does not achieve pregnancy? SUMMARY ANSWER Normozoospermic sperm samples with different IVF outcomes (pregnancy versus no pregnancy) differed in the levels of at least 66 proteins. WHAT IS KNOWN ALREADY The analysis of the proteome of sperm samples with distinct fertilization capacity using low-throughput proteomic techniques resulted in the detection of a few differential proteins. Current high-throughput mass spectrometry approaches allow the identification and quantification of a substantially higher number of proteins. STUDY DESIGN, SIZE, DURATION This was a case-control study including 31 men with normozoospermic sperm and their partners who underwent IVF with successful fertilization recruited between 2007 and 2008. PARTICIPANTS/MATERIALS, SETTING, METHODS Normozoospermic sperm samples from 15 men whose female partners did not achieve pregnancy after IVF (no pregnancy) and 16 men from couples that did achieve pregnancy after IVF (pregnancy) were included in this study. To perform the differential proteomic experiments, 10 no pregnancy samples and 10 pregnancy samples were separately pooled and subsequently used for tandem mass tags (TMT) protein labelling, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, liquid chromatography tandem mass spectrometry (LC-MS/MS) identification and peak intensity relative protein quantification. Bioinformatic analyses were performed using UniProt Knowledgebase, DAVID and Reactome. Individual samples (n = 5 no pregnancy samples; n = 6 pregnancy samples) and aliquots from the above TMT pools were used for western blotting. MAIN RESULTS AND THE ROLE OF CHANCE By using TMT labelling and LC-MS/MS, we have detected 31 proteins present at lower abundance (ratio no pregnancy/pregnancy < 0.67) and 35 at higher abundance (ratio no pregnancy/pregnancy > 1.5) in the no pregnancy group. Bioinformatic analyses showed that the proteins with differing abundance are involved in chromatin assembly and lipoprotein metabolism (P values < 0.05). In addition, the differential abundance of one of the proteins (SRSF protein kinase 1) was further validated by western blotting using independent samples (P value < 0.01). LIMITATIONS, REASONS FOR CAUTION For individual samples the amount of recovered sperm not used for IVF was low and in most of the cases insufficient for MS analysis, therefore pools of samples had to be used to this end. WIDER IMPLICATIONS OF THE FINDINGS Alterations in the proteins involved in chromatin assembly and metabolism may result in epigenetic errors during spermatogenesis, leading to inaccurate sperm epigenetic signatures, which could ultimately prevent embryonic development. These sperm proteins may thus possibly have clinical relevance. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economia y Competividad; FEDER BFU 2009-07118 and PI13/00699) and Fundación Salud 2000 SERONO13-015. There are no competing interests to declare.
Collapse
Affiliation(s)
- Rubén Azpiazu
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, Barcelona 08036, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|