1
|
Hönscheid PV, Baretton GB, Puhr M, Siciliano T, Israel JS, Stope MB, Ebersbach C, Beier AMK, Thomas C, Erb HHH. Prostate Cancer's Silent Partners: Fibroblasts and Their Influence on Glutamine Metabolism Manipulation. Int J Mol Sci 2024; 25:9275. [PMID: 39273225 PMCID: PMC11394735 DOI: 10.3390/ijms25179275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer-associated fibroblast (CAF)s in the tumour microenvironment (TME) modulate the extracellular matrix, interact with cancer cells, and facilitate communication with infiltrating leukocytes, significantly contributing to cancer progression and therapeutic response. In prostate cancer (PCa), CAFs promote malignancy through metabolic rewiring, cancer stem cell regulation, and therapy resistance. Pre-clinical studies indicate that targeting amino acid metabolism, particularly glutamine (Gln) metabolism, reduces cancer proliferation and stemness. However, most studies lack the context of CAF-cancer interaction, focusing on monocultures. This study assesses the influence of CAFs on PCa growth by manipulating Gln metabolism using colour-labelled PCa cell lines (red) and fibroblast (green) in a co-culture system to evaluate CAFs' effects on PCa cell proliferation and clonogenic potential. CAFs increased the proliferation of hormone-sensitive LNCaP cells, whereas the castration-resistant C4-2 cells were unaffected. However, clonogenic growth increased in both cell lines. Gln deprivation and GLS1 inhibition experiments revealed that the increased growth rate of LNCAP cells was associated with increased dependence on Gln, which was confirmed by proteomic analyses. Tissue analysis of PCa patients revealed elevated GLS1 levels in both the PCa epithelium and stroma, suggesting that GLS1 is a therapeutic target. Moreover, the median overall survival analysis of GLS1 expression in the PCa epithelium and stroma identified a "high-risk" patient group that may benefit from GLS1-targeted therapies. Therefore, GLS1 targeting appears promising in castration-resistant PCa patients with high GLS1 epithelium and low GLS1 stromal expression.
Collapse
Affiliation(s)
- Pia V Hönscheid
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital Carl Gustav Carus, Medical Faculty, TU Dresden, 01307 Dresden, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Tiziana Siciliano
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Justus S Israel
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| | - Celina Ebersbach
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K Beier
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Holger H H Erb
- Department of Urology, University Hospital Carl Gustav Carus, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- UroFors Consortium (Natural Scientists in Urological Research), German Society of Urology, 14163 Berlin, Germany
| |
Collapse
|
2
|
de la Fuente-Mendoza JE, Azorín-Vega EP, Mendoza-Nava HJ, Rodríguez-Martínez G, Rodríguez-Dorantes M. Estimation of the relative biological effectiveness (RBE) of the Lu-DOTA-iPSMA177<!--Q1:CorrectlyacknowledgingtheprimaryfundersandgrantIDsofyourresearchisimportanttoensurecompliancewithfunderpolicies.Pleasemakesurethatfundersarementionedaccordingly.--> radiopharmaceutical. Appl Radiat Isot 2023; 202:111065. [PMID: 37879244 DOI: 10.1016/j.apradiso.2023.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Relative biological effectiveness is a radiobiological parameter relevant in radiotherapy planning and useful in evaluating the physiological impact of radiation in different tissues. Targeted radionuclide therapy allows the selective and specific deposition of higher radiation doses in a noninvasive way and without collateral effects through the administration of radiopharmaceuticals. Lu-DOTA-177(hydrazinylnicotinoyl-Lys-(Nal)-NH-CO-NH-Glu) also called Lu-iPSMA177 is a third generation radiopharmaceutical composed by a peptide that recognizes the prostate-specific membrane antigen (PSMA), a membrane protein overexpressed in several types of cancer and that mediates the radiopharmaceutical's recognition of cancer cells. The present study reports radiobiological parameters of Lu-iPSMA177 and demonstrates the superiority of targeted radiopharmaceuticals over external radiotherapy treatment options in terms of their relative biological effectiveness. The relative biological effectiveness value of 1.020±0.003 for the LINAC, estimated by fitting the linear-quadratic model equation to the resulting survival curves, was like those of 1.25±0.04,1.060±0.005and1.00±0.04 obtained by an alternative method in relation to the mean lethal doses at 90, 80 or 60 survival percent respectively. While the relative biological effectiveness values of 5.65±0.13,4.72±0.27and2.87±0.19 estimated for Lu-iPSMA177 were significantly higher than those for the LINAC. The results confirm that the biological effect produced by the deposition of a radiation absorbed dose delivered by the LINAC can be induced with a quarter of that dose using Lu-iPSMA177 due to the energy distribution, dose-rate and energy fluence.
Collapse
|
3
|
Qian L, Liu YF, Lu SM, Yang JJ, Miao HJ, He X, Huang H, Zhang JG. Construction of a fatty acid metabolism-related gene signature for predicting prognosis and immune response in breast cancer. Front Genet 2023; 14:1002157. [PMID: 36936412 PMCID: PMC10014556 DOI: 10.3389/fgene.2023.1002157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Breast cancer has the highest incidence among malignant tumors in women, and its prevalence ranks first in global cancer morbidity. Aim: This study aimed to explore the feasibility of a prognostic model for patients with breast cancer based on the differential expression of genes related to fatty acid metabolism. Methods: The mRNA expression matrix of breast cancer and paracancer tissues was downloaded from The Cancer Genome Atlas database. The differentially expressed genes related to fatty acid metabolism were screened in R language. The TRRUST database was used to predict transcriptional regulators related to hub genes and construct an mRNA-transcription factor interaction network. A consensus clustering approach was used to identify different fatty acid regulatory patterns. In combination with patient survival data, Lasso and multivariate Cox proportional risk regression models were used to establish polygenic prognostic models based on fatty acid metabolism. The median risk score was used to categorize patients into high- and low-risk groups. Kaplan-Meier survival curves were used to analyze the survival differences between both groups. The Cox regression analysis included risk score and clinicopathological factors to determine whether risk score was an independent risk factor. Models based on genes associated with fatty acid metabolism were evaluated using receiver operating characteristic curves. A comparison was made between risk score levels and the fatty acid metabolism-associated genes in different subtypes of breast cancer. The differential gene sets of the Kyoto Encyclopedia of Genes and Genomes for screening high- and low-risk populations were compared using a gene set enrichment analysis. Furthermore, we utilized CIBERSORT to examine the abundance of immune cells in breast cancer in different clustering models. Results: High expression levels of ALDH1A1 and UBE2L6 prevented breast cancer, whereas high RDH16 expression levels increased its risk. Our comprehensive assessment of the association between prognostic risk scoring models and tumor microenvironment characteristics showed significant differences in the abundance of various immune cells between high- and low-risk breast cancer patients. Conclusions: By assessing fatty acid metabolism patterns, we gained a better understanding of the infiltration characteristics of the tumor microenvironment. Our findings are valuable for prognosis prediction and treatment of patients with breast cancer based on their clinicopathological characteristics.
Collapse
Affiliation(s)
- Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu-Min Lu
- Department of Oncology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Juan-Juan Yang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua-Jie Miao
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin He
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| | - Jian-Guo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| |
Collapse
|
4
|
Iwanaga M, Kawamura H, Kubo N, Mizukami T, Oike T, Sato H, Miyazawa Y, Sekine Y, Kawabata-Iwakawa R, Nishiyama M, Ohno T, Nakano T. Double-layer omics analysis of castration- and X-ray-resistant prostate cancer cells. JOURNAL OF RADIATION RESEARCH 2022; 63:585-590. [PMID: 35589101 PMCID: PMC9303586 DOI: 10.1093/jrr/rrac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 01/31/2022] [Indexed: 06/15/2023]
Abstract
Castration-resistant prostate cancer shows resistance to not only androgen deprivation therapy (ADT) but also X-ray therapy. On the other hand, carbon ion beams have a high biological effect and are used for various cancers showing resistance to X-ray therapy. The purposes of this study are to clarify the difference in the sensitivity of Castration-resistant prostate cancer to X-ray and carbon ion beams and to elucidate the mechanism. The androgen-insensitive prostate cancer cell line LNCaP-LA established by culturing the androgen-sensitive prostate cancer cell line LNCaP for 2 years in androgen-free medium was used for this study. First, colony formation assays were performed to investigate its sensitivity to X-ray and carbon ion beams. Next, DNA mutation analysis on 409 cancer-related genes and comprehensive transcriptome analysis (RNA-seq) were performed with a next-generation sequencer. Lethal dose 50 values of X-rays for LNCaP and LNCaP-LA were 1.4 Gy and 2.8 Gy, respectively (P < 0.01). The Lethal dose 50 values of carbon ion beams were 0.9 Gy and 0.7 Gy, respectively (P = 0.09). On DNA mutation analysis, AR mutation was observed specifically in LNCaP-LA. From RNA-seq, 181 genes were identified as differentially expressed genes (DEGs; FDR <0.10, P < 0.00076) between LNCaP and LNCaP-LA. Function analysis suggested that cell death was suppressed in LNCaP-LA, and pathway analysis suggested that the NRF2-pathway involved in intracellular oxidative stress prevention was activated in LNCaP-LA. LNCaP-LA showed X-ray resistance compared to LNCaP and sensitivity to carbon ion beams. The AR mutation and the NRF2-pathway were suggested as causes of resistance.
Collapse
Affiliation(s)
- Mototaro Iwanaga
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hidemasa Kawamura
- Corresponding author. 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, JAPAN, Phone: +81-27-220-8383, Fax: +81-27-220-8397, E-mail:
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuji Mizukami
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoshiyuki Miyazawa
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoshitaka Sekine
- Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
5
|
Azorín-Vega EP, de León CL, García-Reyna MG, Vega-Carrillo HR. Mathematical description of the effect of HIF inhibition on the radiobiological response of LNCaP cells. Appl Radiat Isot 2022; 184:110157. [DOI: 10.1016/j.apradiso.2022.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
|
6
|
Sánchez C, Mercado A, Contreras HR, Carvajal V F, Salgado A, Huidobro C, Castellón EA. Membrane translocation and activation of GnRH receptor sensitize prostate cancer cells to radiation. Int J Radiat Biol 2021; 97:1555-1562. [PMID: 34519609 DOI: 10.1080/09553002.2021.1980628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND GnRH analogs are widely used as neoadjuvant agents for radiotherapy in prostate cancer (PCa) patients, with well-documented effects in reducing tumor bulk and increasing progression-free survival. GnRH analogs act locally in the prostate by triggering apoptosis of PCa cells via activation of the GnRH receptor (GnRHR). During PCa progression, the distribution of GnRHR within the cell is altered, with reduced expression in the cell membrane and remaining sequestered in the endoplasmic reticulum. Pharmacoperone IN3 is able to relocalize GnRHR to the cell membrane. The aim of this study was to evaluate the effect of radiation on PCa cells pretreated with leuprolide, alone or in combination with IN3, as radiosensitizers. MATERIAL AND METHODS PC3 and human PCa primary cell cultures were treated with IN3 for 24 h, followed by different doses of leuprolide for 48 h and, finally, single doses of radiation (3, 6, and 9 Gy). After radiation, cell survival, apoptosis, cell cycle distribution, and colony growth were evaluated. RESULTS Radiation reduced cell survival and increased apoptosis in a dose-dependent manner. This effect was also directly related to leuprolide concentration. Pretreatment with IN3 enhanced apoptosis and decreased cell survival, also observing a higher proportion of cells arrested in G2. CONCLUSION Neoadjuvant leuprolide increases radiation-mediated apoptosis of PCa cells. This effect was enhanced by pretreatment with pharmacoperone IN3. Clinical use of IN3 as a radiosensitizer combined with androgen deprivation therapy to improve survival of patients with PCa remains to be evaluated.
Collapse
Affiliation(s)
| | - Alejandro Mercado
- Clínica Las Condes, Santiago, Chile.,Departamento de Oncología Básica y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Héctor R Contreras
- Departamento de Oncología Básica y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Carvajal V
- Departamento de Oncología Básica y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | - Enrique A Castellón
- Departamento de Oncología Básica y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Post AEM, Bussink J, Sweep FCGJ, Span PN. Changes in DNA Damage Repair Gene Expression and Cell Cycle Gene Expression Do Not Explain Radioresistance in Tamoxifen-Resistant Breast Cancer. Oncol Res 2019; 28:33-40. [PMID: 31046897 PMCID: PMC7851527 DOI: 10.3727/096504019x15555794826018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen-induced radioresistance, reported in vitro, might pose a problem for patients who receive neoadjuvant tamoxifen treatment and subsequently receive radiotherapy after surgery. Previous studies suggested that DNA damage repair or cell cycle genes are involved, and could therefore be targeted to preclude the occurrence of cross-resistance. We aimed to characterize the observed cross-resistance by investigating gene expression of DNA damage repair genes and cell cycle genes in estrogen receptor-positive MCF-7 breast cancer cells that were cultured to tamoxifen resistance. RNA sequencing was performed, and expression of genes characteristic for several DNA damage repair pathways was investigated, as well as expression of genes involved in different phases of the cell cycle. The association of differentially expressed genes with outcome after radiotherapy was assessed in silico in a large breast cancer cohort. None of the DNA damage repair pathways showed differential gene expression in tamoxifen-resistant cells compared to wild-type cells. Two DNA damage repair genes were more than two times upregulated (NEIL1 and EME2), and three DNA damage repair genes were more than two times downregulated (PCNA, BRIP1, and BARD1). However, these were not associated with outcome after radiotherapy in the TCGA breast cancer cohort. Genes involved in G1, G1/S, G2, and G2/M phases were lower expressed in tamoxifen-resistant cells compared to wild-type cells. Individual genes that were more than two times upregulated (MAPK13) or downregulated (E2F2, CKS2, GINS2, PCNA, MCM5, and EIF5A2) were not associated with response to radiotherapy in the patient cohort investigated. We assessed the expression of DNA damage repair genes and cell cycle genes in tamoxifen-resistant breast cancer cells. Though several genes in both pathways were differentially expressed, these could not explain the cross-resistance for irradiation in these cells, since no association to response to radiotherapy in the TCGA breast cancer cohort was found.
Collapse
Affiliation(s)
- Annemarie E M Post
- Radboud University Medical Center, Department of Radiation Oncology, Radiotherapy and OncoImmunology LaboratoryNijmegenThe Netherlands
| | - Johan Bussink
- Radboud University Medical Center, Department of Radiation Oncology, Radiotherapy and OncoImmunology LaboratoryNijmegenThe Netherlands
| | - Fred C G J Sweep
- Radboud University Medical Center, Department of Laboratory MedicineNijmegenThe Netherlands
| | - Paul N Span
- Radboud University Medical Center, Department of Radiation Oncology, Radiotherapy and OncoImmunology LaboratoryNijmegenThe Netherlands
| |
Collapse
|
8
|
The putative tumour suppressor protein Latexin is secreted by prostate luminal cells and is downregulated in malignancy. Sci Rep 2019; 9:5120. [PMID: 30914656 PMCID: PMC6435711 DOI: 10.1038/s41598-019-41379-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022] Open
Abstract
Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas.
Collapse
|
9
|
Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death. Oncotarget 2018; 7:62340-62351. [PMID: 27694690 PMCID: PMC5308731 DOI: 10.18632/oncotarget.11470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy is promising and effective for treating prostate cancer but the addition of a tumor cell radiosensitizer would improve therapeutic outcomes. PC-1/PrLZ, a TPD52 protein family member is frequently upregulated in advanced prostate cancer cells and may be a biomarker of aggressive prostate cancer. Therefore, we investigated the potential role of PC-1/PrLZ for increasing radioresistance in human prostate cancer cell lines. Growth curves and survival assays after g-ray irradiation confirmed that depletion of endogenous PC-1/PrLZ significantly increased prostate cancer cell radiosensitivity. Irradiation (IR) increased PC-1/PrLZ expression in a dose- and time-dependent manner and increased radiosensitivity in PC-1/PrLZ-suppressed cells was partially due to decreased DNA double strand break (DBS) repair which was measured with comet and gH2AX foci assays. Furthermore, depletion of PC-1/PrLZ impaired the IR-induced G2/M checkpoint, which has been reported to be correlate with radioresistance in cancer cells. PC-1/PrLZ-deficient cells exhibited higher level of autophagy when compared with control cells. Thus, specific inhibition of PC-1/PrLZ might provide a novel therapeutic strategy for radiosensitizing prostate cancer cells.
Collapse
|
10
|
Rae C, Mairs RJ. Evaluation of the radiosensitizing potency of chemotherapeutic agents in prostate cancer cells. Int J Radiat Biol 2016; 93:194-203. [PMID: 27600766 DOI: 10.1080/09553002.2017.1231946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Despite recent advances in the treatment of metastatic prostate cancer, survival rates are low and treatment options are limited to chemotherapy and hormonal therapy. Although ionizing radiation is used to treat localized and metastatic prostate cancer, the most efficient use of radiotherapy is yet to be defined. Our purpose was to determine in vitro the potential benefit to be gained by combining radiation treatment with cytotoxic drugs. MATERIALS AND METHODS Inhibitors of DNA repair and heat shock protein 90 and an inducer of oxidative stress were evaluated in combination with X-radiation for their capacity to reduce clonogenic survival and delay the growth of multicellular tumor spheroids. RESULTS Inhibitors of the PARP DNA repair pathway, olaparib and rucaparib, and the HSP90 inhibitor 17-DMAG, enhanced the clonogenic cell kill and spheroid growth delay induced by X-radiation. However, the oxidative stress-inducing drug elesclomol failed to potentiate the effects of X-radiation. PARP inhibitors arrested cells in the G2/M phase when administered as single agents or in combination with radiation, whereas elesclomol and 17-DMAG did not affect radiation-induced cell cycle modulation. CONCLUSION These results indicate that radiotherapy of prostate cancer may be optimized by combination with inhibitors of PARP or HSP90, but not elesclomol.
Collapse
Affiliation(s)
- Colin Rae
- a Radiation Oncology , Institute of Cancer Sciences, University of Glasgow , Glasgow , UK
| | - Robert J Mairs
- a Radiation Oncology , Institute of Cancer Sciences, University of Glasgow , Glasgow , UK
| |
Collapse
|
11
|
Tesson M, Rae C, Nixon C, Babich JW, Mairs RJ. Preliminary evaluation of prostate-targeted radiotherapy using (131) I-MIP-1095 in combination with radiosensitising chemotherapeutic drugs. ACTA ACUST UNITED AC 2016; 68:912-21. [PMID: 27139157 PMCID: PMC5298040 DOI: 10.1111/jphp.12558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/13/2016] [Indexed: 12/22/2022]
Abstract
Objectives Despite recent advances in the treatment of metastatic prostate cancer, survival rates are low and treatment options are limited to chemotherapy and hormonal therapy. 131I‐MIP‐1095 is a recently developed prostate‐specific membrane antigen (PSMA)‐targeting, small molecular weight radiopharmaceutical which has anti‐tumour activity as a single agent. Our purpose was to determine in vitro the potential benefit to be gained by combining 131I‐MIP‐1095 with cytotoxic drug treatments. Methods Various cytotoxic agents were evaluated in combination with 131I‐MIP‐1095 for their capacity to delay the growth of LNCaP cells cultured as multicellular tumour spheroids. Two end‐points were used to assess treatment efficacy: (i) the time required for doubling of spheroid volume and (ii) the area under the volume–time growth curves. Key findings The PARP‐1 inhibitor olaparib, the topoisomerase I inhibitor topotecan, the proteasome inhibitor bortezomib, the inhibitor of the P53–MDM2 interaction nutlin‐3 and the copper‐chelated form of the oxidising agent disulfiram (DSF:Cu) all significantly enhanced the inhibition of the growth of spheroids induced by 131I‐MIP‐1095. However, the Chk1 inhibitor AZD7762 failed to potentiate the effect of 131I‐MIP‐1095. Conclusions These results indicate that targeted radiotherapy of prostate cancer may be optimised by combining its administration with chemotherapy.
Collapse
Affiliation(s)
- Mathias Tesson
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Colin Rae
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Colin Nixon
- Beatson Institute for Cancer Research, Glasgow, UK
| | - John W Babich
- Division of Radiopharmacy, Department of Radiology, Cornell University, New York, NY, USA
| | - Robert J Mairs
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
WANG JIE, YI SUQIN, ZHOU JUN, ZHANG YOUTAO, GUO FENG. The NF-κB subunit RelB regulates the migration and invasion abilities and the radio-sensitivity of prostate cancer cells. Int J Oncol 2016; 49:381-92. [DOI: 10.3892/ijo.2016.3500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/11/2016] [Indexed: 11/06/2022] Open
|
13
|
Locke JA, Dal Pra A, Supiot S, Warde P, Bristow RG. Synergistic action of image-guided radiotherapy and androgen deprivation therapy. Nat Rev Urol 2015; 12:193-204. [PMID: 25800395 DOI: 10.1038/nrurol.2015.50] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The combined use of androgen deprivation therapy (ADT) and image-guided radiotherapy (IGRT) can improve overall survival in aggressive, localized prostate cancer. However, owing to the adverse effects of prolonged ADT, it is imperative to identify the patients who would benefit from this combined-modality therapy relative to the use of IGRT alone. Opportunities exist for more personalized approaches in treating aggressive, locally advanced prostate cancer. Biomarkers--such as disseminated tumour cells, circulating tumour cells, genomic signatures and molecular imaging techniques--could identify the patients who are at greatest risk for systemic metastases and who would benefit from the addition of systemic ADT. By contrast, when biomarkers of systemic disease are not present, treatment could proceed using local IGRT alone. The choice of drug, treatment duration and timing of ADT relative to IGRT could be predicated on these personalized approaches to prostate cancer medicine. These novel treatment intensification and reduction strategies could result in improved prostate-cancer-specific survival and overall survival, without incurring the added expense of metabolic syndrome and other adverse effects of ADT in all patients.
Collapse
Affiliation(s)
- Jennifer A Locke
- Department of Urologic Sciences, University of British Columbia, Gordon &Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Alan Dal Pra
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 4, CH-3010 Bern, Switzerland
| | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes-St-Herblain, 8 quai Moncousu, BP 70721, 44000 Nantes, France
| | - Padraig Warde
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Robert G Bristow
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
14
|
Gao XF, Zhou T, Chen GH, Xu CL, Ding YL, Sun YH. Radioiodine therapy for castration-resistant prostate cancer following prostate-specific membrane antigen promoter-mediated transfer of the human sodium iodide symporter. Asian J Androl 2014; 16:120-3. [PMID: 24369144 PMCID: PMC3901869 DOI: 10.4103/1008-682x.122354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Radioiodine therapy, the most effective form of systemic radiotherapy available, is currently useful only for thyroid cancer because of the thyroid-specific expression of the human sodium iodide symporter (hNIS). Here, we explore the efficacy of a novel form of gene therapy using prostate-specific membrane antigen (PSMA) promoter-mediated hNIS gene transfer followed by radioiodine administration for the treatment of castration-resistant prostate cancer (CRPC). The androgen-dependent C33 LNCaP cell line and the androgen-independent C81 LNCaP cell line were transfected by adenovirus. PSMA promoter-hNIS (Ad.PSMApro-hNIS) or adenovirus.cytomegalovirus–hNIS containing the cytomegalovirus promoter (Ad.CMV-hNIS) or a control virus. The iodide uptake was measured in vitro. The in vivo iodide uptake by C81 cell xenografts in nude mice injected with an adenovirus carrying the hNIS gene linked to PSMA and the corresponding tumor volume fluctuation were assessed. Iodide accumulation was shown in different LNCaP cell lines after Ad.PSMApro-hNIS and Ad.CMV-hNIS infection, but not in different LNCaP cell lines after adenovirus.cytomegalovirus (Ad.CMV) infection. At each time point, higher iodide uptake was shown in the C81 cells infected with Ad.PSMApro-hNIS than in the C33 cells (P < 0.05). An in vivo animal model showed a significant difference in 131I radioiodine uptake in the tumors infected with Ad.PSMApro-hNIS, Ad.CMV-hNIS and control virus (P < 0.05) and a maximum reduction of tumor volume in mice infected with Ad.PSMApro-hNIS. These results show prostate-specific expression of the hNIS gene delivered by the PSMA promoter and effective radioiodine therapy of CRPC by the PSMA promoter-driven hNIS transfection.
Collapse
Affiliation(s)
| | | | | | | | - Ye-Lei Ding
- Department of Urology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
15
|
WANG LIJUAN, HAN SUXIA, JIN GUIHUA, ZHOU XIA, LI MENG, YING XIA, WANG LE, WU HUILI, ZHU QING. Linc00963: A novel, long non-coding RNA involved in the transition of prostate cancer from androgen-dependence to androgen-independence. Int J Oncol 2014; 44:2041-9. [DOI: 10.3892/ijo.2014.2363] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
|
16
|
Zhu L, Zhu B, Yang L, Zhao X, Jiang H, Ma F. RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomed Rep 2014; 2:354-358. [PMID: 24839547 PMCID: PMC4022971 DOI: 10.3892/br.2014.250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Abstract
Apoptosis in prostate cancer (PCa) induced by ionizing radiation (IR) is believed to play a critical role in radioresistance. Bcl-xl, an important member of the anti-apoptotic Bcl-2 family, has critical roles in tumor progression and development. The aim of the present study was to investigate the association of Bcl-xl expression and radiosensitivity from murine PCa RM-1 cells. An adenovirus-mediated RNA interference technique was employed to inhibit the expression of the RelB gene. RelB proteins were detected upon irradiation following transfection with small interfering (si)RelB, as shown by western blot analysis. The radiosensitivity of the RM-1 cells was determined by clonogenic assays. The apoptosis of the RM-1 cells were detected by flow cytometry assay, then quantitative polymerase chain reaction assays were performed to determine the expression level of Bcl-xl mRNA in the RM-1 cells. Radiation treatment increased the RelB protein levels from the cytosol and nucleus in the RM-1 cells. The protein expression levels of RelB in the pLentilox-sh-RelB-transfected RM-1 cells were significantly lower than in the negative interference group following radiation treatment. The percentage of cells undergoing apoptosis in the siRelB-RM-1 group was significantly higher than that in the control group following radiation treatment. Finally, a positive link between Bcl-xl expression and RelB activity was established in the RM-1 cells. Inhibition of RelB correlates with a decrease in expression of Bcl-xl. In conclusion, adenovirus-mediated siRNA targeting RelB inhibits Bcl-xl expression, enhances radiosensitivity and regulates the irradiation-induced apoptosis of the murine PCa RM-1 cell line.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bin Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Luoyan Yang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaokun Zhao
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Honhyi Jiang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Fang Ma
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
17
|
Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol 2013; 87:7502-15. [PMID: 23637395 DOI: 10.1128/jvi.00519-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human papillomaviruses (HPVs) cause benign and malignant tumors of the mucosal and cutaneous epithelium. The initial events regulating HPV infection impact the establishment of viral persistence, which is requisite for malignant progression of HPV-infected lesions. However, the precise mechanisms involved in HPV entry into host cells, including the cellular factors regulating virus uptake, are not clearly defined. We show that HPV16 exposure to human keratinocytes initiates epidermal growth factor receptor (EGFR)-dependent Src protein kinase activation that results in phosphorylation and extracellular translocation of annexin A2 (AnxA2). HPV16 particles interact with AnxA2 in association with S100A10 as a heterotetramer at the cell surface in a Ca(2+)-dependent manner, and the interaction appears to involve heparan-sulfonated proteoglycans. We show multiple lines of evidence that this interaction promotes virus uptake into host cells. An antibody to AnxA2 prevents HPV16 internalization, whereas an antibody to S100A10 blocks infection at a late endosomal/lysosomal site. These results suggest that AnxA2 and S100A10 have separate roles during HPV16 binding, entry, and trafficking. Our data additionally imply that AnxA2 and S100A10 may be involved in regulating the intracellular trafficking of virus particles prior to nuclear delivery of the viral genome.
Collapse
|
18
|
The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells. Cancers (Basel) 2010; 2:1354-78. [PMID: 24281119 PMCID: PMC3835133 DOI: 10.3390/cancers2021354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells. Furthermore, in DHT treated C4-2B cells, increased expression of the p65 (active) isoform of Nrf1 correlated with enhanced AR transactivation. Our findings implicate a crucial balance of Nrf1 and Nrf2 signaling in regulating AR activity in AI-PCa cells. Here we will discuss how understanding the mechanisms by which oxidative stress may affect AR signaling may aid in developing novel therapies for AI-PCa.
Collapse
|