1
|
Zong H, Zhang Y, Liu F, Zhang X, Yang Y, Cao X, Li Y, Li A, Zhou P, Gao R, Li Y. Interaction between tacrolimus and calcium channel blockers based on CYP3A5 genotype in Chinese renal transplant recipients. Front Pharmacol 2024; 15:1458838. [PMID: 39268459 PMCID: PMC11390670 DOI: 10.3389/fphar.2024.1458838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate the effect of calcium channel blockers (CCBs) on tacrolimus blood concentrations in renal transplant recipients with different CYP3A5 genotypes. Methods This retrospective cohort study included renal transplant recipients receiving tacrolimus-based immunosuppressive therapy with or without CCBs in combination. Patients were divided into combination and control groups based on whether or not they were combined with CCBs, and then further analyzed according to the type of CCBs (nifedipine/amlodipine/felodipine). Propensity score matching was conducted for the combination and the control groups using SPSS 22.0 software to reduce the impact of confounding factors. The effect of different CCBs on tacrolimus blood concentrations was evaluated, and subgroup analysis was performed according to the patients' CYP3A5 genotypes to explore the role of CYP3A5 genotypes in drug-drug interactions between tacrolimus and CCBs. Results A total of 164 patients combined with CCBs were included in the combination groups. After propensity score matching, 83 patients with nifedipine were matched 1:1 with the control group, 63 patients with felodipine were matched 1:2 with 126 controls, and 18 patients with amlodipine were matched 1:3 with 54 controls. Compared with the controls, the three CCBs increased the dose-adjusted trough concentration (C0/D) levels of tacrolimus by 41.61%-45.57% (P < 0.001). For both CYP3A5 expressers (CYP3A5*1*1 or CYP3A5*1*3) and non-expressers (CYP3A5*3*3), there were significant differences in tacrolimus C0/D between patients using felodipine/nifedipine and those without CCBs (P < 0.001). However, among CYP3A5 non-expressers, C0/D values of tacrolimus were significantly higher in patients combined with amlodipine compared to the controls (P = 0.001), while for CYP3A5 expressers, the difference in tacrolimus C0/D values between patients with amlodipine and without was not statistically significant (P = 0.065). Conclusion CCBs (felodipine/nifedipine/amlodipine) can affect tacrolimus blood concentration levels by inhibiting its metabolism. The CYP3A5 genotype may play a role in the drug interaction between tacrolimus and amlodipine. Therefore, genetic testing for tacrolimus and therapeutic drug monitoring are needed when renal transplant recipients are concurrently using CCBs.
Collapse
Affiliation(s)
- Huiying Zong
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yundi Zhang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong, China
| | - Xiaoming Zhang
- Urinary surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yilei Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong, China
| | - Xiaohong Cao
- Urinary surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yue Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong, China
| | - Anan Li
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Penglin Zhou
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Rui Gao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong, China
| |
Collapse
|
2
|
Nasser SA, Sabra R, Elmallah AI, El-Din MMM, Khedr MM, El-Mas MM. Facilitation by the renin-angiotensin system of cyclosporine-evoked hypertension in rats: Role of arterial baroreflexes and vasoreactivity. Life Sci 2016; 163:1-10. [DOI: 10.1016/j.lfs.2016.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 12/25/2022]
|
3
|
Cozza IC, Di Sacco THR, Mazon JH, Salgado MCO, Dutra SGV, Cesarino EJ, Souza HCD. Physical exercise improves cardiac autonomic modulation in hypertensive patients independently of angiotensin-converting enzyme inhibitor treatment. Hypertens Res 2011; 35:82-7. [DOI: 10.1038/hr.2011.162] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Barry SP, Townsend PA. What causes a broken heart--molecular insights into heart failure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 284:113-79. [PMID: 20875630 DOI: 10.1016/s1937-6448(10)84003-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of the molecular processes which regulate cardiac function has grown immeasurably in recent years. Even with the advent of β-blockers, angiotensin inhibitors and calcium modulating agents, heart failure (HF) still remains a seriously debilitating and life-threatening condition. Here, we review the molecular changes which occur in the heart in response to increased load and the pathways which control cardiac hypertrophy, calcium homeostasis, and immune activation during HF. These can occur as a result of genetic mutation in the case of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) or as a result of ischemic or hypertensive heart disease. In the majority of cases, calcineurin and CaMK respond to dysregulated calcium signaling and adrenergic drive is increased, each of which has a role to play in controlling blood pressure, heart rate, and left ventricular function. Many major pathways for pathological remodeling converge on a set of transcriptional regulators such as myocyte enhancer factor 2 (MEF2), nuclear factors of activated T cells (NFAT), and GATA4 and these are opposed by the action of the natriuretic peptides ANP and BNP. Epigenetic modification has emerged in recent years as a major influence cardiac physiology and histone acetyl transferases (HATs) and histone deacetylases (HDACs) are now known to both induce and antagonize hypertrophic growth. The newly emerging roles of microRNAs in regulating left ventricular dysfunction and fibrosis also has great potential for novel therapeutic intervention. Finally, we discuss the role of the immune system in mediating left ventricular dysfunction and fibrosis and ways this can be targeted in the setting of viral myocarditis.
Collapse
Affiliation(s)
- Seán P Barry
- Institute of Molecular Medicine, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | |
Collapse
|
5
|
Abstract
Systems Biology approaches to drug discovery largely focus on the increasing understanding of intracellular and cellular circuits, by computational representation of a molecular system followed by parameter validation against experimental data. This chapter outlines a universal approach to systems biology that allows the linking of intracellular molecular machinery and cellular activity. This procedure is achieved by applying mathematical modeling to molecular modules of a cell in the light of systems biology techniques.
Collapse
|