1
|
Wang F, Shen W, Cai Y, Zhang X, Du H, Lai M, Liu H, Kohli E, Zhou W. Buprenorphine reduces methamphetamine intake and drug seeking behavior via activating nociceptin/orphanin FQ peptide receptor in rats. Front Psychiatry 2022; 13:983595. [PMID: 36276332 PMCID: PMC9583165 DOI: 10.3389/fpsyt.2022.983595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Buprenorphine, which has been approved for the treatment of opioid dependence, reduces cocaine consumption by co-activating μ-opioid receptors and nociceptin/orphanin FQ peptide (NOP) receptors. However, the role of buprenorphine in methamphetamine (METH) reinforcement and drug-seeking behavior remains unclear. This study investigated the effects of buprenorphine on METH self-administration and reinstatement of METH-seeking behavior in rats. We found that buprenorphine pretreatment had an inhibitory effect on METH self-administration behavior, and that buprenorphine at a dose of 0.3 mg/kg could inhibit motivation to respond for METH. Pretreatment with the NOP receptor antagonist thienorphine (0.5 mg/kg) or SB-612111 (1 mg/kg) could reverse the inhibitory effect of buprenorphine (0.1 mg/kg) on the METH self-administration. Moreover, treatment with buprenorphine (0.1 mg/kg and 0.3 mg/kg) significantly reduced the drug-seeking behavior induced by context or by METH priming but failed to reduce the drug-seeking behavior induced by conditional cues. Additionally, the NOP receptor antagonist SB-612111 reversed the inhibitory action of buprenorphine on the drug-seeking behavior induced by METH priming. The results demonstrated that buprenorphine reduced either METH intake or the drug-seeking behavior by activating NOP receptors, providing empirical evidence for the clinical use of buprenorphine in the treatment of METH relapse and addiction.
Collapse
Affiliation(s)
- Fangmin Wang
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labellisée Ligue Nationale Contre Le, Cancer and Laboratoire d’Excellence LipSTIC, Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Wenwen Shen
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Yujia Cai
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Xin Zhang
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Han Du
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Miaojun Lai
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Huifen Liu
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, Labellisée Ligue Nationale Contre Le, Cancer and Laboratoire d’Excellence LipSTIC, Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Wenhua Zhou
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Kong L, Shu X, Tang S, Ye R, Sun H, Jiang S, Li Z, Chai J, Fang Y, Lan Y, Yu L, Xie Q, Fu W, Wang Y, Li W, Qiu Z, Liu J, Shao L. SLL-627 Is a Highly Selective and Potent κ Opioid Receptor (KOR) Agonist with an Unexpected Nonreduction in Locomotor Activity. J Med Chem 2022; 65:10377-10392. [PMID: 35900351 DOI: 10.1021/acs.jmedchem.2c00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Undue central nervous system (CNS) side effects including dysphoria and sedation remain to be a challenge for the development of κ opioid receptor (KOR) agonists as effective and safe analgesics. On the basis of our previous work on morphinan-based KOR agonists, a series of 7α-methyl-7β-substituted northebaine derivatives were designed, synthesized, and biologically assayed. Among others, compound 4a (SLL-627) has been identified as a highly selective and potent KOR agonist both in vitro and in vivo, and its molecular basis was also examined and discussed. Besides low liability to conditioned place aversion (CPA) test, treatment of SLL-627 was associated with a nonreduction in locomotor activity, compared to most of the other arylacetamide- or morphinan-based KOR agonists which generally exhibited apparently sedative effects. This unexpected finding provides new insights to dissociate analgesia from sedation for future discovery of innovative KOR agonists.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Xuelian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Siyuan Tang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Rongrong Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Shuang Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jingrui Chai
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Fang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yinjie Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Linqian Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China.,State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
3
|
Kumatia EK, Appiah-Opong R. The Hydroethanolic Stem Bark Extract of Tieghemella heckelii (A.Chev.) Pierre ex Dubard (Sapotaceae) Produced N-Methyl-D-Aspartate (NMDA) Receptor-Dependent Analgesia and Attenuates Acute Inflammatory Pain via Disruption of Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3466757. [PMID: 34422066 PMCID: PMC8371650 DOI: 10.1155/2021/3466757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/22/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Tieghemella heckelii stem bark is used in African traditional medicine to treat inflammatory pain conditions. However, these biological actions of the plant have not been proven. This study investigates the phytochemical composition and the mechanisms of analgesic and anti-inflammatory actions of the hydroethanolic stem bark extract of T. heckelii (THBE). METHODS Phytochemical composition of THBE was investigated using qualitative and quantitative phytochemical analyses. Anti-inflammatory activity was evaluated using the carrageenan-induced paw oedema assay. Analgesic activity was evaluated using hot plate and acetic acid-induced writhing assays. Mechanism of analgesic action was determined using pharmacological antagonist such as naloxone, atropine, flumazenil, nifedipine, or ketamine. Test agents were administered orally as follows: Tween 80 (5%) (control), diclofenac sodium (DS) 10/tramadol 9 mg/kg (standard), or THBE 10, 100, and 450 mg/kg. Glutathione peroxidase (GPx), superoxide dismutase (SOD), and lipid peroxidation levels were also measured. RESULTS THBE which contained 58.45% saponins, 229.04 ± 0.049 GAE mg/g phenolic compounds,and 0.482 ± 0.0028 QE mg/g flavonoids produced (p < 0.5) anti-inflammatory effect of 56.22% and analgesia of 330 ± 72% and 50.4% in the hot plate and writhing assays, respectively, at 10 mg/kg and inhibited oxidative stress by GPx and SOD elevation in rats during inflammation. Ketamine significantly blocked the analgesia of THBE, indicating NMDA receptor-dependent analgesic action. Whereas, naloxone, atropine, nifedipine, and flumazenil could not antagonize the analgesic action of THBE. CONCLUSION These results show that THBE produced potent anti-inflammatory effect via disruption of oxidative stress and also generated NMDA receptor-dependent analgesia.
Collapse
Affiliation(s)
- Emmanuel K. Kumatia
- Centre for Plant Medicine Research, Department of Phytochemistry, Mampong-Akwapim, Ghana
| | - Regina Appiah-Opong
- University of Ghana, Noguchi Memorial Institute for Medical Research, Department of Clinical Pathology, Accra, Ghana
| |
Collapse
|
4
|
Zhou P, Li Y, Yong Z, Chen M, Zhang Y, Su R, Gong Z. Thienorphine induces antinociception without dependence through activation of κ- and δ-, and partial activation of μ- opioid receptor. Brain Res 2020; 1748:147083. [DOI: 10.1016/j.brainres.2020.147083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
|
5
|
da Cruz RMD, Braga RM, de Andrade HHN, Monteiro ÁB, Luna IS, da Cruz RMD, Scotti MT, Mendonça-Junior FJB, de Almeida RN. RMD86, a thiophene derivative, promotes antinociceptive and antipyretic activities in mice. Heliyon 2020; 6:e05520. [PMID: 33294672 PMCID: PMC7695913 DOI: 10.1016/j.heliyon.2020.e05520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Treatment of pain and fever remains an important challenge for modern medicine. Non-steroidal anti-inflammatory drugs (NSAIDs) are the pharmacological options most often used, but their frequent use exposes the patient to serious side effects and dangerous drug interactions. In this context, thiophene derivatives are promising therapeutic alternatives. In this study, we evaluated the in vivo and in silico antinociceptive and antipyretic properties of RMD86, a thiophene derivative. At 100 mg/kg, RMD86 induced no significant changes in the motor coordination of mice in the Rotarod test. At 25, 50, and 100 mg/kg RMD86 significantly reduced the number of abdominal contortions induced by acetic acid (antinociceptive activity) in mice when compared to the control. In the formalin test, for the first phase, there was a reduction in licking times at doses of 50 and 100 mg/kg. In the second phase, reduction occurred at all doses. In the hot plate test, RMD86 (at 100 mg/kg) increased latency time in the first 30 min. For antipyretic activity, RMD86, when compared to the reference drug acetaminophen (250 mg/kg), significantly reduced pyrexia at 30, 60, and 120 min, at dosages of 25, 50 and 100 mg/kg. Molecular docking studies revealed that RMD86 presents a greater number of interactions and lower energy values than both the co-crystallized ligand and the reference drug (meloxicam) against COX-1 and COX-2 isoenzymes. The results give evidence of the analgesic and antipyretic properties like NSAIDs suggesting its potential for pain therapy.
Collapse
Affiliation(s)
- Ryldene Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Renan Marinho Braga
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Humberto Hugo Nunes de Andrade
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Álefe Brito Monteiro
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Isadora Silva Luna
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Rayssa Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil
| | - Marcus Tullius Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Francisco Jaime Bezerra Mendonça-Junior
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil
| | - Reinaldo Nóbrega de Almeida
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| |
Collapse
|
6
|
Wang K, Xu B, Wu J, Zhu Y, Guo L, Xie J. Elucidating fentanyls differentiation from morphines in chemical and biological samples with surface‐enhanced Raman spectroscopy. Electrophoresis 2019; 40:2193-2203. [DOI: 10.1002/elps.201900004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Kai Wang
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing P. R. China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing P. R. China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing P. R. China
| | - Yingjie Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing P. R. China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing P. R. China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing P. R. China
| |
Collapse
|
7
|
Dai W, Gao X, Xiao D, Li YL, Zhou XB, Yong Z, Su RB. The Impact and Mechanism of a Novel Allosteric AMPA Receptor Modulator LCX001 on Protection Against Respiratory Depression in Rodents. Front Pharmacol 2019; 10:105. [PMID: 30837875 PMCID: PMC6389625 DOI: 10.3389/fphar.2019.00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022] Open
Abstract
Analgesics and sedative hypnotics in clinical use often give rise to significant side effects, particularly respiratory depression. For emergency use, specific antagonists are currently administered to counteract respiratory depression. However, antagonists are often short-lasting and eliminate drug generated analgesia. To resolve this issue, novel positive AMPA modulators, LCX001, was tested to alleviate respiratory depression triggered by different drugs. The acetic acid writhing and hot-plate test were conducted to evaluate analgesic effect of LCX001. Binding assay, whole-cell recording, live cell imaging, and Ca2+ imaging were used to clarify mechanism and impact of LCX001 on respiratory protection. Results showed that LCX001 effectively rescued and prevented opioid (fentanyl and TH-030418), propofol, and pentobarbital-induced respiratory depression by strengthening respiratory frequency and minute ventilation. The acetic acid writhing test and hot-plate test revealed potent anti-nociceptive efficacy of LCX001, in contrast to other typical ampakines that did not affect analgesia. Furthermore, LCX001 potentiated [3H]AMPA and L-glutamate binding affinity to AMPA receptors, and facilitated glutamate-evoked inward currents in HEK293 cells stably expressing GluA2(R). LCX001 had a typical positive modulatory impact on AMPAR-mediated function. Importantly, application of LCX001 generated a significant increase in GluA2(R) surface expression, and restrained opioid-induced abnormal intracellular Ca2+ load, which might participate in breathing modulation. Our study improves therapeutic interventions for the treatment of drug induced respiratory depression, and increases understanding of potential mechanism of AMPA receptor modulators.
Collapse
Affiliation(s)
- Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dian Xiao
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu-Lei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin-Bo Zhou
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zheng Yong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Rui-Bin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Dai W, Xiao D, Gao X, Zhou XB, Fang TY, Yong Z, Su RB. A brain-targeted ampakine compound protects against opioid-induced respiratory depression. Eur J Pharmacol 2017; 809:122-129. [DOI: 10.1016/j.ejphar.2017.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 02/02/2023]
|
10
|
Zhang LS, Wang J, Chen JC, Tao YM, Wang YH, Xu XJ, Chen J, Xu YG, Xi T, Hu XW, Wang YJ, Liu JG. Novel κ-opioid receptor agonist MB-1C-OH produces potent analgesia with less depression and sedation. Acta Pharmacol Sin 2015; 36:565-71. [PMID: 25816912 DOI: 10.1038/aps.2014.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Abstract
AIM To characterize the pharmacological profiles of a novel κ-opioid receptor agonist MB-1C-OH. METHODS [(3)H]diprenorphine binding and [(35)S]GTPγS binding assays were performed to determine the agonistic properties of MB-1C-OH. Hot plate, tail flick, acetic acid-induced writhing, and formalin tests were conducted in mice to evaluate the antinociceptive actions. Forced swimming and rotarod tests of mice were used to assess the sedation and depression actions. RESULTS In [(3)H]diprenorphine binding assay, MB-1C-OH did not bind to μ- and δ-opioid receptors at the concentration of 100 μmol/L, but showed a high affinity for κ-opioid receptor (Ki=35 nmol/L). In [(35)S]GTPγS binding assay, the compound had an Emax of 98% and an EC50 of 16.7 nmol/L for κ-opioid receptor. Subcutaneous injection of MB-1C-OH had no effects in both hot plate and tail flick tests, but produced potent antinociception in the acetic acid-induced writhing test (ED50=0.39 mg/kg), which was antagonized by pretreatment with a selective κ-opioid receptor antagonist Nor-BNI. In the formalin test, subcutaneous injection of MB-1C-OH did not affect the flinching behavior in the first phase, but significantly inhibited that in the second phase (ED50=0.87 mg/kg). In addition, the sedation or depression actions of MB-1C-OH were about 3-fold weaker than those of the classical κ agonist (-)U50,488H. CONCLUSION MB-1C-OH is a novel κ-opioid receptor agonist that produces potent antinociception causing less sedation and depression.
Collapse
|
11
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|