1
|
Zhang Y, Zeng R, Xia Y, Han W, Luan Y, Zhang Y, Wu S, Wang S, Wang J, Chen Y, Chen D. Visualization of protrusion-localized STAT3 mRNA using a self-powered lipidic nanoflare for predicting hepatocellular carcinoma metastasis. Mikrochim Acta 2025; 192:241. [PMID: 40102274 PMCID: PMC11920302 DOI: 10.1007/s00604-025-06988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/15/2025] [Indexed: 03/20/2025]
Abstract
Cancer cell metastasis is one of the major causes of patients death with hepatocellular carcinoma (HCC). Previous findings demonstrated that protrusion-accumulated STAT3 mRNA is highly related to HCC cell metastasis, making protrusion-localized STAT3 mRNA an ideal biomarker for evaluating HCC cell initiation and progression. A self-powered lipidic nanoflare (SLNF) has been developed for detecting the expression level of protrusion-accumulated STAT3 mRNA in individual HCC cells, which enables accurate prediction of HCC metastasis. The LNF system is a cholesterol micelle decorated with two kinds of DNA probes, a double-stranded response DNA and a single-stranded fuel probe. The cholesterol micelle can be easily assembled from an amphipathic cholesterol-conjugated DNA via hydrophobicity-mediated aggregation, exhibiting a highly efficient cell internalization. Moreover, the compact and high-density arrangement of DNA probes on the surface of cholesterol micelle enhances their biostability. All the above features make the LNF system an ideal approach for intracellular RNA imaging. The assay commences with the binding of STAT3 mRNA to the response DNA, which peels off the waste DNA and exposes the toehold domain. This domain serves as the proximal holding point for the fuel probe to initiate a strand displacement amplification, which is a crucial step in enabling the detection of targets expressed at trace levels, yielding a limit of detection (LOD) of 100 pM at 37 °C within 1.5 h. The SLNF system is expected to provide useful insight into the development of simple and degradation-resistant DNA probes for visual prediction of HCC metastasis, showing potential applications in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Ya Zhang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325035, China
- Hepatology Institute of Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruichao Zeng
- School of Clinical Medicine, The First People's Hospital of Lin'an Distract, Hangzhou, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yuanhang Xia
- School of Clinical Medicine, The First People's Hospital of Lin'an Distract, Hangzhou, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, 310053, China
| | - Wei Han
- Center of Laboratory Animal, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yifei Luan
- School of Innovation and Entrepreneurship, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yuheng Zhang
- School of Clinical Medicine, The First People's Hospital of Lin'an Distract, Hangzhou, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, 310053, China
| | - Shijia Wu
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325035, China
- Hepatology Institute of Wenzhou Medical University, Wenzhou, 325035, China
| | - Shouhao Wang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325035, China
- Hepatology Institute of Wenzhou Medical University, Wenzhou, 325035, China
| | - Jinyong Wang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325035, China
- Hepatology Institute of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325035, China.
- Hepatology Institute of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Dazhi Chen
- School of Clinical Medicine, The First People's Hospital of Lin'an Distract, Hangzhou, Lin'an People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, 310053, China.
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Wang C, Choi HJ, Woodbury L, Lee K. Interpretable Fine-Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403547. [PMID: 39239705 PMCID: PMC11538677 DOI: 10.1002/advs.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Hee June Choi
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lucy Woodbury
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Kwonmoo Lee
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
3
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
4
|
Cai W, Ji J, Wu B, Hao K, Ren P, Jin Y, Yang L, Tong Q, Shen Z. Characterization of the small RNA transcriptomes of cell protrusions and cell bodies of highly metastatic hepatocellular carcinoma cells via RNA sequencing. Oncol Lett 2021; 22:568. [PMID: 34113396 PMCID: PMC8185705 DOI: 10.3892/ol.2021.12829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggest that hepatocellular carcinoma (HCC) HCCLM3 cells initially develop pseudopodia when they metastasize, and microRNAs (miRNAs/miRs) and circular RNAs (circRNAs) have been demonstrated to serve important roles in the development, progression and metastasis of cancer. The present study aimed to isolate the cell bodies (CBs) and cell protrusions (CPs) from HCCLM3 cells, and screen the miRNAs and circRNAs associated with HCC infiltration and metastasis in CBs and CPs. The Boyden chamber assay has been confirmed to effectively isolate the CBs and CPs from HCCLM3 cells via observation of microtubule immunofluorescence, DAPI staining and nuclear protein H3 western blotting. Following high-throughput sequencing of the successfully isolated CBs and CPs, 64 pairs of miRNAs, including 23 pairs of upregulated genes and 41 pairs of downregulated genes, and 260 sets of circRNAs, including 127 upregulated genes and 133 downregulated genes, were significantly differentially expressed, using the following criteria: HP/HB ratio, fold change ≥|1.5|, P<0.05). PCR analysis verified that changes in the expression levels of hsa-let-7a-5p, hsa-let-7c-3p, hsa-miR-30c-5p, hsa_circ_0059580, hsa_circ_0067475, hsa_circ_0002100 and hsa_circ_00072309 were consistent with the sequencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to analyze the functions and roles of the differentially expressed miRNAs and circRNAs. The interaction maps between miRNAs and circRNAs were constructed, and signaling pathway maps were analyzed to determine the molecular mechanism and regulation of the differentially expressed miRNAs and circRNAs. Taken together, the results of the present study suggest that the Boyden chamber assay can be used to effectively isolate the somatic CBs and CPs of HCC, which can be used to screen the miRNAs and circRNAs associated with invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Wenpin Cai
- Department of Laboratory Medicine, Wen Zhou Traditional Chinese Medicine Hospital, Wenzhou, Zhejiang 325035, P.R. China
| | - Jingzhang Ji
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Biting Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Kaixuan Hao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ping Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yu Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lihong Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qingchao Tong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhifa Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
5
|
Shen Z, Liu B, Wu B, Zhou H, Wang X, Cao J, Jiang M, Zhou Y, Guo F, Xue C, Wu ZS. FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis. Commun Biol 2021; 4:540. [PMID: 33972660 PMCID: PMC8110961 DOI: 10.1038/s42003-021-02071-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Most hepatocellular carcinoma (HCC)-associated mortalities are related to the metastasis of cancer cells. The localization of mRNAs and their products to cell protrusions has been reported to play a crucial role in the metastasis. Our previous findings demonstrated that STAT3 mRNA accumulated in the protrusions of metastatic HCC cells. However, the underlying mechanism and functional significance of this localization of STAT3 mRNA has remained unexplored. Here we show that fragile X mental retardation protein (FMRP) modulates the localization and translation of STAT3 mRNA, accelerating HCC metastasis. The results of molecular analyses reveal that the 3′UTR of STAT3 mRNA is responsible for the localization of STAT3 mRNA to cell protrusions. FMRP is able to interact with the 3′UTR of STAT3 mRNA and facilitates its localization to protrusions. Importantly, FMRP could promote the IL-6-mediated translation of STAT3, and serine 114 of FMRP is identified as a potential phosphorylation site required for IL-6-mediated STAT3 translation. Furthermore, FMRP is highly expressed in HCC tissues and FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo. Collectively, our findings provide further insights into the mechanism of HCC metastasis associated with the regulation of STAT3 mRNA localization and translation. Shen et al. propose a mechanism for the metastasis of hepatocellular carcinoma (HCC) cells through the localization and translation modulation of the STAT3 oncogene by fragile X mental retardation protein (FMRP). To this end, the authors also find that FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China. .,Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Min Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingying Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feixia Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
6
|
Wang C, Choi HJ, Kim SJ, Desai A, Lee N, Kim D, Bae Y, Lee K. Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging. Nat Commun 2018; 9:1688. [PMID: 29703977 PMCID: PMC5923236 DOI: 10.1038/s41467-018-04030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/29/2018] [Indexed: 12/25/2022] Open
Abstract
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Hee June Choi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Sung-Jin Kim
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Aesha Desai
- Department of Pathology and Anatomical Sciences, Computational Cell Biology, Anatomy and Pathology Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Namgyu Lee
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Dohoon Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Computational Cell Biology, Anatomy and Pathology Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14203, USA
| | - Kwonmoo Lee
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
7
|
Xiao W, Zhao S, Shen F, Liang J, Chen J. Overexpression of CD147 is associated with poor prognosis, tumor cell migration and ERK signaling pathway activation in hepatocellular carcinoma. Exp Ther Med 2017; 14:2637-2642. [PMID: 28962206 DOI: 10.3892/etm.2017.4818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. The aim of the present study was to reveal the prognostic significance of CD147 and to preliminarily explore the molecular mechanisms involved. Blood and tumor tissue specimens were obtained from 133 HCC patients. All patients were followed up for 4 years. The serum and tissue levels of CD147 were analyzed using ELISA and immunohistochemistry, respectively. The SMMC-7721 hepatoma carcinoma cell line was transfected with CD147 overexpression vector and cell migration was evaluated using a wound healing assay. Extracellular signal-regulated kinase (ERK) inhibitor UO126 was applied to study the role of the ERK pathway in cell migration. CD147 expression in HCC tissue was associated with poor prognosis of patients [odds ratio (OR): 3.13, 95% confidence interval (CI): 1.52-6.43], and patients with no CD147 expression had a significantly survival advantage (P=0.016). However, serum CD147 levels had no such prognostic significance (OR: 1.94, 95% CI: 0.96-3.91; P=0.097). In the wound healing assay, the wound distance in the non-transfected cell group was wider than that in the transfected cell group without UO126 treatment (178.0±31.1 vs. 106.0±20.7 µm; P=0.003), but similar to that in the transfected cell group with 10 µM UO126 treatment (170.4±13.2 µm; P=0.629). The present study revealed that the expression of CD147 in HCC tissue is an independent prognostic indicator. In addition CD147 overexpression may be associated with tumor cell migration and ERK signaling pathway activation.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Fangzhen Shen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
8
|
Querido E, Dekakra-Bellili L, Chartrand P. RNA fluorescence in situ hybridization for high-content screening. Methods 2017; 126:149-155. [PMID: 28694064 DOI: 10.1016/j.ymeth.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022] Open
Abstract
Single molecule RNA imaging using fluorescent in situ hybridization (FISH) can provide quantitative information on mRNA abundance and localization in a single cell. There is now a growing interest in screening for modifiers of RNA abundance and/or localization. For instance, microsatellite expansion within RNA can lead to toxic gain-of-function via mislocalization of these transcripts into RNA aggregate and sequestration of RNA-binding proteins. Screening for inhibitors of these RNA aggregate can be performed by high-throughput RNA FISH. Here we describe detailed methods to perform single molecule RNA FISH in multiwell plates for high-content screening (HCS) microscopy. We include protocols adapted for HCS with either standard RNA FISH with fluorescent oligonucleotide probes or the recent single molecule inexpensive FISH (smiFISH). Recommendations for success in HCS microscopy with high magnification objectives are discussed.
Collapse
Affiliation(s)
- Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Lynda Dekakra-Bellili
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Qc H3C 3J7, Canada.
| |
Collapse
|
9
|
Chen S, Tan Y, Deng H, Shen Z, Liu Y, Wu P, Tan C, Jiang Y. UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion in vitro. Oncotarget 2017; 8:71736-71749. [PMID: 29069742 PMCID: PMC5641085 DOI: 10.18632/oncotarget.17601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 J2 (UBE2J2) is an ubiquitin proteasome component that responds to proteotoxic stress. We found that UBE2J2 was highly expressed in cellular protrusions of HCCLM3 metastatic hepatocellular carcinoma (HC) cells. Immunohistochemical analyses showed that UBE2J2 was expressed at higher levels in HC patient tissues than in corresponding non-tumor tissues. Because cellular protrusions are important for cell invasion, we hypothesized that UBE2J2 promotes HC cell invasion. We used chip-based surface plasmon resonance (SPR) to assess possible mechanisms of UBE2J2-regulated HCCLM3 cell invasion. We found that p-EGFR interacted with UBE2J2, and this finding was confirmed by co-immunoprecipitation analysis. UBE2J2 overexpression activated endothelial-mesenchymal transition in the non-invasive SMMC7721 HC cell line, and promoted invasion. UBE2J2 silencing reduced HCCLM3 cell invasion and endocytosis, and downregulated p-EGFR expression. p-EGFR inhibition by lapatinib reduced UBE2J2-promoted cell invasion, suggesting p-EGFR is important for UBE2J2-mediated HCCLM3 cell invasion. These findings demonstrate that endocytosis by HC cells is closely related to invasion, and may provide new anti-HC therapeutic targets. UBE2J2 may also be a novel biomarker for clinical HC diagnosis.
Collapse
Affiliation(s)
- Shaopeng Chen
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ying Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | | | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanhong Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Pan Wu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuyang Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|