1
|
Raupp-Barcaro IFM, da Silva Dias IC, Meyer E, Vieira JCF, da Silva Pereira G, Petkowicz AR, de Oliveira RMW, Andreatini R. Involvement of dopamine D 2 and glutamate NMDA receptors in the antidepressant-like effect of amantadine in mice. Behav Brain Res 2021; 413:113443. [PMID: 34216648 DOI: 10.1016/j.bbr.2021.113443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
The present study investigated the pharmacological mechanisms of the antidepressant-like effects of amantadine in mice and their influence on hippocampal neurogenesis. To improve the translational validity of preclinical results, reproducibility across laboratories and replication in other animal models and species are crucial. Single amantadine administration at doses of 50 and 75 mg/kg resulted in antidepressant-like effects in mice in the tail suspension test (TST), reflected by an increase in immobility time. The effects of amantadine were seen at doses that did not alter locomotor activity. The tyrosine hydroxylase inhibitor α-methyl-ρ-tyrosine did not influence the anti-immobility effect of amantadine in the TST. Pretreatment with the α1 adrenergic receptor antagonist prazosin, β adrenergic receptor antagonist propranolol, α2 adrenergic receptor antagonist yohimbine, and α2 adrenergic receptor agonist clonidine did not alter the antidepressant-like effect of amantadine. However, amantadine's effect was blocked by the dopamine D2 receptor antagonist haloperidol and glutamate receptor agonist N-methyl-D-aspartate (NMDA). Repeated amantadine administration (50 mg/kg) also exerted an antidepressant-like effect, paralleled by an increase in hippocampal neurogenesis. The present results demonstrate that the antidepressant-like effects of amantadine may be mediated by its actions on D2 and NMDA receptors and likely involve hippocampal neurogenesis.
Collapse
Affiliation(s)
- Inara Fernanda Misiuta Raupp-Barcaro
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Isabella Caroline da Silva Dias
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Jeane Cristina Fonseca Vieira
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Giovana da Silva Pereira
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Arthur Ribeiro Petkowicz
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, Maringá, Paraná, 87020-900, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, C.P. 19031, Curitiba, Paraná, 81540-990, Brazil.
| |
Collapse
|
2
|
Molecular Targets Modulated by Fangchinoline in Tumor Cells and Preclinical Models. Molecules 2018; 23:molecules23102538. [PMID: 30301146 PMCID: PMC6222742 DOI: 10.3390/molecules23102538] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023] Open
Abstract
Despite tremendous progress made during the last few decades in the treatment options for cancer, compounds isolated from Mother Nature remain the mainstay for therapy of various malignancies. Fangchinoline, initially isolated from the dried root of Stephaniae tetrandrine, has been found to exhibit diverse pharmacological effects including significant anticancer activities both in tumor cell lines and selected preclinical models. This alkaloid appears to act by modulating the activation of various important oncogenic molecules involved in tumorigenesis leading to a significant decrease in aberrant proliferation, survival and metastasis of tumor cells. This mini-review briefly describes the potential effects of fangchinoline on important hallmarks of cancer and highlights the molecular targets modulated by this alkaloid in various tumor cell lines and preclinical models.
Collapse
|
3
|
Cao Q, Jiang Y, Cui SY, Tu PF, Chen YM, Ma XL, Cui XY, Huang YL, Ding H, Song JZ, Yu B, Sheng ZF, Wang ZJ, Xu YP, Yang G, Ye H, Hu X, Zhang YH. Tenuifolin, a saponin derived from Radix Polygalae, exhibits sleep-enhancing effects in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1797-1805. [PMID: 27912882 DOI: 10.1016/j.phymed.2016.10.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/10/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Radix Polygalae, the dried root of Polygala tenuifolia, has been extensively used as a traditional Chinese medicine for promoting intelligence and tranquilization. Polygalasaponins extracted from the root of P. tenuifolia possess evident anxiolytic and sedative-hypnotic activities. Previous studies have reported that tenuifolin was a major constituent of polygalasaponins. PURPOSE The currently study aims to investigate the hypnotic effect and possible mechanism of tenuifolin in freely moving mice. DESIGN/METHODS The hypnotic effects of tenuifolin (20, 40 and 80mg/kg, p.o.) were assessed by electroencephalographic (EEG) and electromyographic (EMG) analysis. Double-staining immunohistochemistry test was performed to evaluate the neuronal activity of sleep-wake regulating brain areas. High performance liquid chromatograph- electrochemical detection (HPLC-ECD) and ultrafast liquid chromatography-mass spectrometry (UFLC-MS) were used for the detection of neurotransmitters. Locomotor activity was measured by Open-field Test. RESULTS Tenuifolin at doses of 40 and 80mg/kg (p.o.) significantly prolonged the total sleep time by increasing the amount of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep, associated with the significant increase in the bouts of episodes respectively. After administration of tenuifolin, the cortical EEG power spectral densities during NREM and REM sleep were similar to that of natural sleep (vehicle) and thus compatible with physiological sleep. Double-immunohistochemistry staining test showed that tenuifolin increased the c-Fos positive ratios of GABAergic NREM sleep-promoting neurons in ventrolateral preoptic area (VLPO), cholinergic REM sleep-promoting neurons in laterodorsal tegmental area (LDT) and pontomesencephalic tegmental area (PPT) and decreased the c-Fos positive ratios in wake-promoting neurons (locus coeruleus (LC) and perifornical area (Pef)). Neurotransmitter detections revealed that tenuifolin significantly reduced the noradrenaline (NA) levels in LC, VLPO, PPT and LDT, elevated the GABA levels in VLPO, LC and Pef and increased the acetylcholine (Ach) levels in LDT and PPT. In addition, tenuifolin did not cause any change to locomotor activity. CONCLUSION Taken together, these results provide the first experimental evidence of the significant sleep-enhancing effect of tenuifolin in mice. This effect appears to be mediated, at least in part, by the activation of GABAergic systems and/or by the inhibition of noradrenergic systems. Moreover, this study adds new scientific evidence and highlights the therapeutic potential of the medicinal plant P. tenuifolia in the development of phytomedicines with hypnotic properties.
Collapse
Affiliation(s)
- Qing Cao
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Su-Ying Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue-Mei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Li Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiang-Yu Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Yuan-Li Huang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui Ding
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Jin-Zhi Song
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Bin Yu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhao-Fu Sheng
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Zi-Jun Wang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Ya-Ping Xu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Guang Yang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui Ye
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiao Hu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China
| | - Yong-He Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
4
|
Zhu Y, Wang Y, Lai J, Wei S, Zhang H, Yan P, Li Y, Qiao X, Yin F. Dopamine D1 and D3 Receptors Modulate Heroin-Induced Cognitive Impairment through Opponent Actions in Mice. Int J Neuropsychopharmacol 2016; 20:257-268. [PMID: 27815417 PMCID: PMC5408975 DOI: 10.1093/ijnp/pyw099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/02/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Chronic abuse of heroin leads to long-lasting and complicated cognitive impairment. Dopamine receptors are critically involved in the impulsive drug-driven behavior and the altered attention, processing speed, and mental flexibility that are associated with higher relapse rates. However, the effects of the different dopamine receptors and their possible involvement in heroin-induced cognitive impairment remain unclear. METHODS The 5-choice serial reaction time task was used to investigate the profiles of heroin-induced cognitive impairment in mice. The expression levels of dopamine D1- and D2-like receptors in the prefrontal cortex, nucleus accumbens, and caudate-putamen were determined. The effects of dopamine receptors on heroin-induced impulsivity in the 5-choice serial reaction time task were examined by agonist/antagonist treatment on D1 or D3 receptor mutant mice. RESULTS Systemic heroin administration influences several variables in the 5-choice serial reaction time task, most notably premature responses, a measure of motor impulsivity. These behavioral impairments are associated with increased D1 receptor and decreased D3 receptor mRNA and protein levels in 3 observed brain areas. The heroin-evoked increase in premature responses is mimicked by a D1 agonist and prevented by a D1 antagonist or genetic ablation of the D1 receptor gene. In contrast, a D3 agonist decreases both basal and heroin-evoked premature responses, while genetic ablation of the D3 receptor gene results in increased basal and heroin-evoked premature responses. CONCLUSIONS Heroin-induced impulsive behavior in the 5-choice serial reaction time task is oppositely modulated by D1 and D3 receptor activation. The D1 receptors in the cortical-mesolimbic region play an indispensable role in modulating such behaviors.
Collapse
Affiliation(s)
- Yongsheng Zhu
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Yunpeng Wang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Shuguang Wei
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Hongbo Zhang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Peng Yan
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Yunxiao Li
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Xiaomeng Qiao
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, China (Drs Zhu, Wang, Lai, Wei, Zhang, Yan, Li, and Qiao and Ms Yin); Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China (Drs Lai and Wei)
| |
Collapse
|